
Expression

CSE 307: Principles of Programming Languages
Expressions

R. Sekar

1 / 20

Expression

Topics

1. Expression

2 / 20

Expression

Expressions

Basic language constructs for generating values.

Given by a grammar:

E → E + E

E → E − E

E → E ∗ E

E → − E

E → (E)

E → id

E → int_const

3 / 20

Expression

Meaning of Expressions

Meaning for expressions are given by “semantic functions” that associate a value with

every expression.

What is the value of x + 1?

What is the value of f(x) where f is defined as int f(int i) { return i+1;}

Depends on what the value of x is.

An expression’s value can be determined when the values of all variables in that

expression are given.

How to represent values of variables?

Environment: maps variable name to locations

Store: maps locations to values

4 / 20

Expression

Example: C flat (C [)

A small language to illustrate how semantic functions are written.

Values

Integer constants

Boolean constants (true, false)

Variables of type

int

Pointers

5 / 20

Expression

Expressions in C [

E → E arith_op E

E → − E

E → (E)

E → id

E → int_const

arith_op → + | − | ∗

C → E comp_op E

C → C logical_op C

C → ! C

C → boolean_const

comp_op → == | <
logical_op → && | ||

6 / 20

Expression

Abstract Syntax of C [Expressions

type expr = Add of expr * expr

| Sub of expr * expr

| Mul of expr * expr

| Neg of expr

| Id of string

| IntConst of int;;

type cond = Equal of expr * expr

| Less of expr * expr

| And of cond * cond

| Or of cond * cond

| Not of cond

| True | False;;

7 / 20

Expression

Abstract syntax of C [(Continued)

Each expression in concrete syntax can be represented by an equivalent expression in

abstract syntax.

Examples:

Concrete Abstract

x+1 Add(Id("x"), IntConst(1))

x*(y+3) Mul(Id("x"), Add(Id("y"), IntConst(3)))

x == y Equal(Id("x"), Id("y"))

Abstract syntax ignores certain details (e.g., paranthesis in expressions), but makes

certain features explicit (e.g. the “kind” of expression).

8 / 20

Expression

Environment and Store

Only values we can store for now are integers.

type storable = Intval of integer;;

When we add pointers to the languages, we will add to the definition of value.

Locations can be simply represented by integers.

type location = int;;

9 / 20

Expression

Environment and Store

Store maps locations to values.

type store = location * storable list;;

Example: [(1,Int(3)), (2,Int(7))]: Location 1 has value 3 and 2 has value 7.

Functions over store:

value_at: store * location -> storable

Environment maps variables to locations.

type environment = string * location list;;

Example: [("x", 1), ("y", 2)]: Variable x is at location 1 and y is at location 2.

Functions over environment:

binding_of: environment * string -> location

10 / 20

Expression

The meaning of expressions

What is the value of x + 1?

It is the value of x added to the value of 1.
The value of x is given by
the environment which specifies the location associated with x, and

the store which specifies the values stored in locations.

“Value of” can be viewed as a function
eval_expr:expr * environment * store -> value

11 / 20

Expression

Expression evaluation

Order of evaluation

For the abstract syntax tree

+

5+

+

42

+

3x

the equivalent expression is (x + 3) + (2 + 4) + 5

12 / 20

Expression

Expression evaluation (Continued)

One possible semantics:

evaluate AST bottom-up, left-to-right.

This constrains optimization that uses mathematical properties of operators

(e.g. commutativity and associativity)

e.g.,it may be preferable to evaluate of e1+(e2+e3)instead of (e1+e2)+e3

(x+0)+(y+3)+(z+4)=>x+y+z+0+3+4=>x+y+z+7

the compiler can evaluate 0+3+4 at compile time, so that at runtime, we have two fewer

addition operations.

13 / 20

Expression

Expression evaluation (Continued)

Some languages leave order of evaluation unspecified.

even the order of evaluation of procedure parameters are not specified.

Problem:

Semantics of expressions with side-e�ects, e.g., (x++) + x

If initial value of x is 5
left-to-right evaluation yields 11 as answer, but

right-to-left evaluation yields 10

So, languages with expressions with side-e�ects forced to specify evaluation order

Still, a bad programming practice to use expressions where di�erent orders of

evaluation can lead to di�erent results

Impacts readability (and maintainability) of programs
14 / 20

Expression

Left-to-right evaluation

Left-to-right evaluation with short-circuit semantics is appropriate for boolean

expressions.

e1&&e2: e2 is evaluated only if e1 evaluates to true.

e1||e2: e2 is evaluated only if e1 evaluates to false.

This semantics is convenient in programming:

Consider the statement: if((i<n) && a[i]!=0)

With short-circuit evaluation, a[i] is never accessed if i>= n

Another example: if ((p!=NULL) && p->value>0)

15 / 20

Expression

Left-to-right evaluation (Continued)

Disadvantage:

In an expression like “if((a==b)||(c=d))”

The second expression has a statement. The value of c may or may not be the value of d,

depending on if a == b is true or not.

Bottom-up:

No order specified among unrelated subexpressions.

Short-circuit evaluation of boolean expressions.

Delayed evaluation

Delay evaluation of an expressions until its value is absolutely needed.

Generalization of short-circuit evaluation.

16 / 20

Expression

Evaluating expressions

Assume that we are interested only in int values:
eval_expr: expr * environment * store -> int

Recall:
type expr = Add of expr * expr

| Sub of expr * expr

| Mul of expr * expr

| Neg of expr

| Id of string

| IntConst of int ;;

type location = int;;

type storable =

Intval of integer;;

type store =

location * storable list;;

type environment =

string * location list;;

eval_expr(Id(x), env, store) = i
where binding_of(env, x) = l

and value_at(store, l) = Intval(i)

17 / 20

Expression

Evaluating expressions: The Program

eval_expr(expr, env, store) =
match expr with

| IntConst(i) -> i

| Id(x) ->
let l = binding_of(env, x)
in let Intval(i) = value_at(store, l)
in i

| Add(e1, e2) ->
let v1 = eval_expr(e1, env, store)
and v2 = eval_expr(e2, env, store)
in v1 + v2

...
Similarly we can define eval_cond: cond * environment * store -> bool

18 / 20

Expression

Evaluation order

Consider evaluating conditions with the following fragment:
Or(c1, c2) ->
let b1 = eval_cond(c1, env, store)
and b2 = eval_cond(c2, env, store)
in b1 || b2

What is the e�ect of (i==0) || (x/i)?

Short-circuit evaluation: For c1 || c2, evaluate c2 only if c1 is false.
Or(c1, c2) ->
if (eval_cond(c1, env, store))
then true
else eval_cond(c2, env, store)

19 / 20

Expression

Evaluation order (contd.)

In the fragment of C [considered so far, expressions do not have any side e�ect (i.e.

cannot change the store)

and hence, order of evaluation does not change the final result.

In C/C++/Java/. . ., expressions may have side e�ects (e.g. x++)

Side e�ects modify the store

Expression valuation function then becomes:

eval_expr: expr * environment * store -> (int * store) i.e., meaning that

the expression returns its value and the updated store

20 / 20

	Expression

