CSE 307: Principles of Programming Languages

Exceptions

R. Sekar

Topics

Explicit Vs Implicit Control Transfer

e Control abstractions studied so far are explicit:

o At the statement involving transfer of control, there is a syntactic indication of the point of

transfer.
e Even for procedure calls or goto statements, there is an explicit indication of the target of

transfer.
@ An implicit control abstraction involves:

o Constructs that enable one to set up the transfer point in advance.

o At the statement that transfers control, the target is not explicitly specified.

Explicit Vs Implicit Control Transfer

e Examples:
e Function Pointers
e Return Statements

o Exceptions

Terminology

Exception: An error, or more generally, an unusual condition.

Raise, Throw, Signal: A statement is said to “raise” (or “throw” or “signal”) an exception
if the execution of this statement leads to an exception. ("throw" is the term used in
C++/)ava language descriptions, “raise” is used in OCAML.)

Catch: A catch statement is used in C++/Java to declare a handler. OCAML uses the “try

.. with” statement to handle exceptions.

Terminology (Continued)

Resumption model: After the execution of the handler, control returns back to the
statement that raised the exception.
e Example: signal handling in UNIX/C.

Termination Model: Control does not return to that statement after the handler is

executed.
e Example: Exception handling in most programming languages (C++, Java and

OCAML).

Exception Handling in OCAML

@ Exceptions are like datatypes in many ways.

o exception BadN;;

e They may take arguments, such as:
o exception BadM of string * int * int * int;;

@ Once defined, they may be raised in functions as follows:
let rec comb(n, m) = if n<0 then raise BadN
else if m<0 then raise (BadM("M less than zero", 0, n, m))
else if m>n then raise (BadM("M > N", 1, n, m))
else if (m=0) || (m=n) then 1
else comb(n-1,m) + comb(n-1,m-1);;
val comb : int * int -> int = <fun>
comb(-1, 2);;
Exception: BadN.
comb(9, -1);;
Exception: BadM ("M less than zero", 0, 9, -1).

Exception Handling in OCAML (Continued)

e Handlers can be setup using the “handle” keyword:
<exprWithHandler> ::= try <expr> with <match>
<match> ::= <handler> | | <handler>
<handler> ::= <exceptionValue> -> <handleexpr>
<handleexpr> ::= <expr>

@ The meaning of expressions:
o If the <expr> evaluates without raising an exception, then its value is returned as the value
of <exprWithHandler>.
o If the evaluation of some function f in <expr> returns an exception value EV, then the rest
of <expr> is not evaluated.
o Instead, EV is matched against the <exceptionValue> associated with each of the <handler>’s.
If it matches an <exceptionValue>, then the corresponding <handleexpr> is executed.

o If there is no match, EV is returned as the value of the expression <exprWithHandler>

Exception Handling in OCAML (Continued)

e Uncaught exceptions are propagated up the call stack.
e Example: £ calls g, which in turn calls h

e if h raises an exception and there is no handler for this exception in h, then g gets

that exception.

o If there is a handler for the exception in g, the handler is executed, and execution

continues normally after that.

e otherwise, the exception is propagated to f.

Exception Handling in OCAML (Continued)

@ The semantics of matching exception handlers is exactly as with function definitions.

In particular, when there are multiple matches, the first match is taken.

e Example:
let f nm=
try comb(n, m) with
BadN -> 1
| BadM(s, 0, x, y) -> (print_string "BadM exception, "; print_string (s~", ");

print_string "raised, ignoring\n"; 1);;
val £ : int -> int -> int = <fun>
#f2 (-1);;
BadM exception, M less than zero, raised, ignoring
- :int =1
f (-2) 1;;
- int =1
#f13;;

Exception: BadM ("M > N", 1, 1, 3).
10/15

Exception Handling in C++/Java

@ The syntactic constructs for exceptions parallel those of OCAML, and semantics of

exceptions remains essentially the same.

e Syntax:
<blockWithHandler> ::= try <block> <match>
<match> ::= <handler> ... <handler>
<handler> ::= catch (<parameter decl>) { <block> }

/15

Exception Handling in C++/Java (Continued)

e Example:

int fac(int n) {
if (n <= 0) throw (-1) ; else if (n > 15) throw ("n too large");
else return n*xfac(n-1); }

void g (int n) {

int k;
try { k = fac (n) ;}
catch (int i) { cout << "negative value invalid" ; 2}

catch (char *s) { cout << s; }

catch (...) { cout << "unknown exception" ;}
@ use of g(-1) will print “negative value invalid”, g(16) will print “n too large”

e If an unexpected error were to arise in evaluation of fac or g, such as running out of

memory, then “unknown exception” will be printed

12/15

Exception Vs Return Codes

e Exceptions are often used to communucate error values from a callee to its caller.
Return values provide alternate means of communicating errors.

e Example use of exception handler:

float g (int a, int b, int c¢) {
float x = fac(a) + fac(b) + fac(c) ; return x ; }

main() {
try { g(-1, 3, 28); }
catch (char *s) { cout << "Exception ‘" << s << "’raised, exiting\n"; }

catch (...) { cout << "Unknown exception, eixting\n";

}

@ We do not need to concern ourselves with every point in the program where an error

may arise.

13/15

Exception Vs Return Codes (Continued)

float g(int a, int b, int c) {
int x1 = fac(a);
if (x1 > 0) {
int x2 = fac(b);
if (x2 > 0) {
int x3 = fac(c); @ Assume that fac returns 0 or a
if (x3 > 0)
return x1 + x2 + x3;

negative number to indicated errors

else return x3;

o If return codes were used to indicate

}
else return x2; errors, then we are forced to check
} .
olse return xi; return codes (and take appropriate
: action) at every point in code.
main() {

int x = g(-1, 2, 25);
if (x < 0) { /* identify where error occurred, print */ }

} 14/15

Use of Exceptions in C++ Vs Java

@ In C++, exception handling was an after-thought.
e Earlier versions of C++ did not support exception handling.
e Exception handling not used in standard libraries

o Net result: continued use of return codes for error-checking

@ In Java, exceptions were included from the beginning.

o All standard libraries communicate errors via exceptions.
o Net result: all Java programs use exception handling model for error- checking, as opposed

to using return codes.

15/15

