
CSE 307: Principles of Programming Languages
C++ Language

R. Sekar

1 / 19

Topics

2 / 19

C++

Developed as an extension to C

by adding object oriented constructs originally found in Smalltalk (and Simula67).

Most legal C programs are also legal C++ programs

“Backwards compatibility” made it easier for C++ to be accepted by the programming

community

. . . but made certain features problematic (leading to “dirty” programs)

Many of C++ features have been used in Java

Some have been “cleaned up”

Some useful features have been left out

3 / 19

C++ and Java: The Commonalities

Classes, instances (objects), data members (fields) and member functions (methods).

Overloading and inheritance.

base class (C++) → superclass (Java)

derived class (C++) → subclass (Java)

Constructors

Protection (visibility): private, protected and public

Static binding for data members (fields)

4 / 19

A C++ Primer for Java Programmers

Classes, fields and methods:
Java: C++:

class A extends B {

private int x;

protected int y;

public int f() {

return x;

}

public void print() {

System.out.println(x);

}

}

class A : public B {

private: int x;

protected: int y;

public: int f() {

return x;

}

void print() {

std::cout << x << std::endl;

}

}
5 / 19

A C++ Primer for Java Programmers

Declaring objects:

In Java, the declaration A va declares va to be a reference to object of class A.

Object creation is always via the new operator

In C++, the declaration A va declares va to be an object of class A.

Object creation may be automatic (using declarations) or via new operator:

A *va = new A;

6 / 19

Objects and References

In Java, all objects are allocated on the heap; references to objects may be stored in

local variables.

In C++, objects are treated analogous to C structs: they may be allocated and

stored in local variables, or may be dynamically allocated.

Parameters to methods:

Java distinguishes between two sets of values: primitives (e.g. ints, floats, etc.) and

objects (e.g String, Vector, etc.

Primitive parameters are passed to methods by value (copying the value of the argument to

the formal parameter)

Objects are passed by reference (copying only the reference, not the object itself).

C++ passes all parameters by value unless specially noted.
7 / 19

Inheritance, Overloading, and Overriding

Inheritance: Subclass inherits all data members and member functions (and can

access all public/protected members) from its superclass.

Code reuse: If a method f() is defined in class A, and B is a subclass of A . . .

. . . the method can be applied to objects of type B without redefinition.

Overloading: A method is distinguished by its name and its signature (the number

and types of arguments).

So multiple methods can be defined with the same name.

Overriding: A member (field or method) can be redefined in a subclass which will

then override access to the same member of the superclass.

8 / 19

Overloading

Consider the following definition of Java class Test

class Test extends Base {

void h(Test t);

void h(Base b);

}

Let t and b refer to objects of class “Base” and “Test” respectively.

What is the behavior of the following calls?

t.h(b);

t.h(t);

9 / 19

Inheritance

Consider the following Java class definitions:

class Base {

void h(Base b);

}

class Test extends Base {

void h(Base b);

}

Let b and t refer to objects of class Base and Test respectively.

What is the behavior of the following calls?

b.h(b);

t.h(b);

10 / 19

Inheritance and Overloading

Instance methods in OO languages have an implicit object parameter (i.e. this).

Inheritance resembles overloading on the implicit parameter.

Main point to consider:
What types are used to resolve the overloading?
(i.e., How is the signature of the call constructed?)

Let Test be a subclass of Base. Consider the following definitions:

Base b;

Test t;

What are the types of variables b and t?

What are the types of objects that can be referenced by b and t?

11 / 19

Types

Apparent Type: Type of an object as per the declaration in the program.

Actual Type: Type of the object at run time.

Let Test be a subclass of Base. Consider the following program:

Base b = new Base();

Test t = new Test();

...

b = t;

Variable Apparent type of

object referenced

b Base

t Test

. . . throughout the scope of b and t’s declarations

12 / 19

Types (contd.)

Let Test be a subclass of Base. Consider the following program fragment:

Base b = new Base();

Test t = new Test();

...

b = t;

Variable Program point Actual type of

object referenced

b before b=t Base

t before b=t Test

b after b=t Test

t after b=t Test

13 / 19

Binding field and method names

In Java:

field names are resolved using their apparent types (i.e., at compile time)

[also called “Static Binding”]

method names are resolved using their actual types (i.e., at run time)

[also called “Dynamic Binding”]

In C++:

both field and names are resolved using their apparent types (i.e., at compile time)

. . . unless methods are declared as virtual and are accessed via references.

14 / 19

Polymorphism

“The ablilty to assume di�erent forms”

A function/method is polymorphic if it can be applied to values of many types.

Class hierarchy and inheritance provide a form of polymorphism called subtype

polymorphism.

[same function can be applied to di�erent types]

Overloading provides a form of polymorphism called ad-hoc polymorphism.

[di�erent forms are distinguished by types of parameters (sometimes return values

too)]

Polymorphic functions increase code reuse.

15 / 19

Polymorphism (contd.)

Consider the following code fragment: (x < y)? x : y

“Finds the minimum of two values”.

The same code fragment can be used regardless of whether x and y are

ints

floatss

(in C++:) in any class that implements operator “<”.

Templates lift the above form of polymorphism (called parametric polymorphism) to

functions and classes.

16 / 19

Function Template

Declaring function templates:

template <typename T>

T min (T x, T y) {

return (x < y)? x : y;

}

typename parameter can be name of any type (e.g. int, long, Base, . . .)

Using template functions:

z = min(x, y)

Compiler fills out the template’s typename parameter using the types of arguments.

Can also be explicitly used as: min<float>(x, y)

17 / 19

Class Templates

Of great importance in implementing data structures (say list of elements, where all

elements have to be of the same type).

Java does not provide templates:

Some uses of templates can be replaced by using Java interfaces.

Many other uses would require “type casting”

e.g.:

Iterator e = ...

Int x = (Integer) e.next();

Inherently dangerous since it skirts around compile-time type checking.

18 / 19

C++ “features” from C

A class declaration (set of (and type of) data members, and signatures of member

functions) can be separated into a separate header file.

Header file specifies an ‘‘interface”.

Member functions and constructors can be defined within a class declaration, or

(usually) in separate files (sometimes called Dot-C files)

Dot-C file specifies an ‘‘implementation”.

Header files may be included in Dot-C files using the #include directive.

Makefiles are used to compile and link program units.

19 / 19

