
Abstraction

CSE 307: Principles of Programming Languages
Modules and Encapsulation

R. Sekar

1 / 14

Abstraction

Topics

1. Abstraction

Abstract Data Type

Modules

2 / 14

Abstraction Abstract Data Type Modules

Section 1

Abstraction

3 / 14

Abstraction Abstract Data Type Modules

Abstraction

Objective of every programming language

managing program complexity

Primary means for complexity reduction

Abstraction

We abstract often-used “computation patterns” by more compact equivalents.

4 / 14

Abstraction Abstract Data Type Modules

Abstraction (Continued)

We can trace the use of abstractions from early days of computers:

represent programs using bit-patterns, as opposed to “rewiring” circuits

replace hard-to-remember machine instructions by assembly instructions.

abstract repeated patterns in assembly instructions by macros

allow direct expression of higher level concepts such as compound types, loops, and

functions into programs.

5 / 14

Abstraction Abstract Data Type Modules

Motivation

Primitive types:
insulate programmers from implementation details
e.g., representation of floating point numbers

provided with a set of operations that have “expected” behavior

Compound types

operations provided only to access/modify fields

implementation details are visible throughout program

ADT (Abstract Data Type)

hide implementation details

provide set of meaningful operations as with primitive types

6 / 14

Abstraction Abstract Data Type Modules

ADT

Type is characterized by a set of operations

Encapsulation: Only way to access the data is through these operations

access to internal representation of ADT is restricted

Information hiding:

Semantics of operations don’t depend on implementation

implementation can be changed without a�ecting “client code”, i.e., code that uses this ADT

Supports following design goals

modifiability/maintainability, reusability, security

7 / 14

Abstraction Abstract Data Type Modules

Algebraic Specification of ADT

type complex imports real;

operations:

+: complex × complex → complex

-: complex × complex → complex

*: complex × complex → complex

/: complex × complex → complex

makecomplex: real × real → complex

realpart: complex → real

imagpart: complex → real

8 / 14

Abstraction Abstract Data Type Modules

Algebraic Specification of ADT (Contd.)

axioms

realpart(makecomplex(r,s)) = r

imagpart(makecomplex(r,s)) = s

realpart(x+y) = realpart(x) + realpart(y)

imagpart(x+y) = imagpart(x) + imagpart(y)

realpart(x-y) = realpart(x) - realpart(y)

imagpart(x-y) = imagpart(x) - imagpart(y)

.....

9 / 14

Abstraction Abstract Data Type Modules

ADT in Standard ML

abstype 'element Queue = Q of 'element list

with

val createQ = Q [];

fun enqueue (Q l, e) = Q (l @ e);

fun dequeue (Q l) = Q (tl l);

fun frontq (Q l) = hd l;

fun emptyq (Q [])= true

| emptyq (Q h::t) = false;

end;

type 'a Queue

val createq = -: 'a Queue

..... 10 / 14

Abstraction Abstract Data Type Modules

Modules

More general than ADTs

a way to group “semantically related” code that may or may not operate on a single type

Program unit with a public interface and private implementation

May include private operations

Export datatypes, variables, constants, functions

Ideal to support

separate compilation

library facilities

namespace separation (to avoid name clashes)

11 / 14

Abstraction Abstract Data Type Modules

Java Packages

A package is a group of related classes

Classes in other packages referenced using a qualified name <pkg>.<name>

“import” keyword can be used to reduce clutter due to qualified names

Other related features

relationship between file names and class names

no need for separate header files

12 / 14

Abstraction Abstract Data Type Modules

Modules in C

C does not support modules

Functionality partially simulated using files

Namespace pollution can be managed using “static” keyword

name visible only in the current file

overloaded meaning - static in some contexts means static memory allocation

“extern” keyword used in a file to declare symbols to be located in other files

interface exported by a module can be specified in a corresponding header file

this header file “#include”’d by users of this module

linker deals with name resolution across files

13 / 14

Abstraction Abstract Data Type Modules

C++ Name spaces

Name spaces can be declared as follows:

namespace <name> {

<declarations and/or functions>

}

A name Y within a namespace X can be accessed using a qualified name X::Y

A “using” declaration can be used to import all names within a namespace

14 / 14

	Abstraction
	Abstract Data Type
	Modules

