R. Sekar

1/14



Abstract Data Type
1. Abstraction Modules

2114



Section 1

3/14



Abstraction Abstract Data Type Modules

Abstraction

@ Objective of every programming language

e managing program complexity

@ Primary means for complexity reduction

e Abstraction

@ We abstract often-used “computation patterns” by more compact equivalents.



Abstraction Abstract Data Type Modules

Abstraction (Continued)

@ We can trace the use of abstractions from early days of computers:

represent programs using bit-patterns, as opposed to “rewiring” circuits

replace hard-to-remember machine instructions by assembly instructions.

abstract repeated patterns in assembly instructions by macros

allow direct expression of higher level concepts such as compound types, loops, and

functions into programs.



Abstraction Abstract Data Type Modules

Motivation

@ Primitive types:
e insulate programmers from implementation details

e e.g., representation of floating point numbers
o provided with a set of operations that have “expected” behavior
e Compound types
e operations provided only to access/modify fields
e implementation details are visible throughout program
@ ADT (Abstract Data Type)

e hide implementation details

e provide set of meaningful operations as with primitive types

6/14



Abstraction Abstract Data Type Modules

ADT

e Type is characterized by a set of operations
e Encapsulation: Only way to access the data is through these operations

e access to internal representation of ADT is restricted

e Information hiding:
e Semantics of operations don’t depend on implementation

o implementation can be changed without affecting “client code”, i.e., code that uses this ADT

@ Supports following design goals

o modifiability/maintainability, reusability, security



Abstraction

Algebraic Specification of ADT

Abstract Data Type Modules

@ type complex imports real;

@ operations:
o + complex X complex — complex
e -: complex x complex — complex
e * complex x complex — complex

e /: complex x complex — complex
e makecomplex: real x real — complex
e realpart: complex — real

e imagpart: complex — real



Abstraction Abstract Data Type Modules

Algebraic Specification of ADT (Contd.)

@ axioms

realpart(makecomplex(r,s)) = r
imagpart(makecomplex(r,s)) = s
realpart(x+y) = realpart(x) + realpart(y)
imagpart(x+y) = imagpart(x) + imagpart(y)
realpart(x-y) = realpart(x) - realpart(y)
imagpart(x-y) = imagpart(x) - imagpart(y)



Abstraction Abstract Data Type Modules

ADT in Standard ML

abstype ’element Queue = Q of ’element list

with
val
fun
fun
fun
fun
|

end;

createQ = Q [1;

enqueue (Q 1, e) = Q (1 @ e);
dequeue (Q 1) = Q (t1 1);
frontq (Q 1) = hd 1;

emptyq (Q [1)= true

emptyq (Q h::t) = false;

type ’a Queue

val createq = -: ’a Queue

0/14



Abstraction Abstract Data Type Modules

Modules

@ More general than ADTs

e a way to group “semantically related” code that may or may not operate on a single type
@ Program unit with a public interface and private implementation

e May include private operations
e Export datatypes, variables, constants, functions

o Ideal to support
e separate compilation
o library facilities

e namespace separation (to avoid name clashes)



Abstraction Abstract Data Type Modules

Java Packages

@ A package is a group of related classes
o Classes in other packages referenced using a qualified name <pkg>.<name>
e “import” keyword can be used to reduce clutter due to qualified names

@ Other related features
e relationship between file names and class names

e no need for separate header files



Abstraction Abstract Data Type Modules

Modules in C

e C does not support modules
o Functionality partially simulated using files
e Namespace pollution can be managed using “static” keyword
e name visible only in the current file
o overloaded meaning - static in some contexts means static memory allocation
o “extern” keyword used in a file to declare symbols to be located in other files

o interface exported by a module can be specified in a corresponding header file

o this header file “#include”d by users of this module

o linker deals with name resolution across files



Abstraction Abstract Data Type Modules

C++ Name spaces

e Name spaces can be declared as follows:
namespace <name> {

<declarations and/or functions>
}

@ A name Y within a namespace X can be accessed using a qualified name X::Y

@ A “using” declaration can be used to import all names within a namespace



	Abstraction
	Abstract Data Type
	Modules


