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Abstraction Abstract Data Type Modules

Abstraction

@ Objective of every programming language

e managing program complexity

@ Primary means for complexity reduction

e Abstraction

@ We abstract often-used “computation patterns” by more compact equivalents.
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Abstraction (Continued)

@ We can trace the use of abstractions from early days of computers:

represent programs using bit-patterns, as opposed to “rewiring” circuits

replace hard-to-remember machine instructions by assembly instructions.

abstract repeated patterns in assembly instructions by macros

allow direct expression of higher level concepts such as compound types, loops, and

functions into programs.
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Motivation

@ Primitive types:
e insulate programmers from implementation details

e e.g., representation of floating point numbers
o provided with a set of operations that have “expected” behavior
e Compound types
e operations provided only to access/modify fields
e implementation details are visible throughout program
@ ADT (Abstract Data Type)

e hide implementation details

e provide set of meaningful operations as with primitive types
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ADT

e Type is characterized by a set of operations
e Encapsulation: Only way to access the data is through these operations

e access to internal representation of ADT is restricted

e Information hiding:
e Semantics of operations don’t depend on implementation

o implementation can be changed without affecting “client code”, i.e., code that uses this ADT

@ Supports following design goals

o modifiability/maintainability, reusability, security



Abstraction

Algebraic Specification of ADT

Abstract Data Type Modules

@ type complex imports real;

@ operations:
o + complex X complex — complex
e -: complex x complex — complex
e * complex x complex — complex

e /: complex x complex — complex
e makecomplex: real x real — complex
e realpart: complex — real

e imagpart: complex — real
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Algebraic Specification of ADT (Contd.)

@ axioms

realpart(makecomplex(r,s)) = r
imagpart(makecomplex(r,s)) = s
realpart(x+y) = realpart(x) + realpart(y)
imagpart(x+y) = imagpart(x) + imagpart(y)
realpart(x-y) = realpart(x) - realpart(y)
imagpart(x-y) = imagpart(x) - imagpart(y)
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ADT in Standard ML

abstype ’element Queue = Q of ’element list

with
val
fun
fun
fun
fun
|

end;

createQ = Q [1;

enqueue (Q 1, e) = Q (1 @ e);
dequeue (Q 1) = Q (t1 1);
frontq (Q 1) = hd 1;

emptyq (Q [1)= true

emptyq (Q h::t) = false;

type ’a Queue

val createq = -: ’a Queue
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Modules

@ More general than ADTs

e a way to group “semantically related” code that may or may not operate on a single type
@ Program unit with a public interface and private implementation

e May include private operations
e Export datatypes, variables, constants, functions

o Ideal to support
e separate compilation
o library facilities

e namespace separation (to avoid name clashes)



Abstraction Abstract Data Type Modules

Java Packages

@ A package is a group of related classes
o Classes in other packages referenced using a qualified name <pkg>.<name>
e “import” keyword can be used to reduce clutter due to qualified names

@ Other related features
e relationship between file names and class names

e no need for separate header files
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Modules in C

e C does not support modules
o Functionality partially simulated using files
e Namespace pollution can be managed using “static” keyword
e name visible only in the current file
o overloaded meaning - static in some contexts means static memory allocation
o “extern” keyword used in a file to declare symbols to be located in other files

o interface exported by a module can be specified in a corresponding header file

o this header file “#include”d by users of this module

o linker deals with name resolution across files
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C++ Name spaces

e Name spaces can be declared as follows:
namespace <name> {

<declarations and/or functions>
}

@ A name Y within a namespace X can be accessed using a qualified name X::Y

@ A “using” declaration can be used to import all names within a namespace
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