
1

1

Basic Semantics
Semantics: describes the meaning of programs
• Operational Vs Denotational
• Formal Vs Informal

Semantics is typically defined in a bottom-up
fashion:
• Values
• Names

• Constants
• Variables

• Expressions
• Statements
• Compound statements
• Procedures
• Program

2

Attributes
Meanings of names is captured via
attributes associated with the names:
• Type
• Value
• Location

3

Bindings
Binding: Establishing an association
between name and an attribute.
Binding time
• static
• language definition time
• language implementation time
• compile-time
• link time
• load time
• dynamic

4

Binding Time (Contd.)‏
Examples
• type is statically bound in most langs
• value of a variable is dynamically bound
• location may be dynamically or statically

bound
Binding time also affects where
bindings are stored
• Name type: symbol table
• Name location: environment
• Location value: memory

2

5

Scopes
Region of program over which a
declaration is in effect
• i.e. bindings are maintained
Possible values
• Global
• Package or module
• File
• Class
• Procedure
• Block

6

Visibility
Redefinitions in inner scopes supercede outer
definitions
Qualifiers may be needed to make otherwise
invisible names to be visible in a scope.
Examples
• local variable superceding global variable
• names in other packages.
• private members in classes.

7

Symbol Table
Uses data structures that allow efficient name
lookup operations in the presence of scope
changes.
We can use
• hash tables to lookup attributes for each name
• a scope stack that keeps track of the current scope and

its surrounding scopes
• the top most element in the scope stack corresponds

to the current scope
• the bottommost element will correspond to the

outermost scope.

8

Support for Scopes
lexical scopes can be supported using
a scope stack as follows:

• Symbols in a program reside in multiple hash tables
• In particular,symbols within each scope are contained in a

single hash table for that scope

• At anytime, the scope stack keeps track of all the
scopes surrounding that program point.
The elements of the stack contain pointers to the
corresponding hash table.

3

9

Support for Scopes(contd.)‏
• To lookup a name

• Start from the hash table pointed to by the top element of
the stack.

• If the symbol is not found, try hash table pointed by the next
lower entry in the stack.

• This process is repeated until we find the name, or we
reach the bottom of the stack.

• Scope entry and exit operations modify the scope
stack appropriately.
• When a new scope is entered, a corresponding hash table

is created. A pointer to this hash table is pushed onto the
scope stack.

• When we exit a scope, the top of the stack is popped off.
10

Example
float y = 1.0
void f(int x) {
for (int x = 0; ...) {

{
int y = 1;

}
{

float x = 1.0;
}

}
}
main() {

float y = 10.0;
f(1);

}
14

15

1
2
3
4
5
6
7
8
9
10
11
12
13

11

illustration
At (1)‏
• We have a single hash table, which is the global hash table.
• The scope stack contains exactly one entry, which points to

this global hash table.
When the compiler moves from (1) to (2)‏
• The name y is added to the hash table for the current scope.
• Since the top of scope stack points to the global table, "y" is

being added to the global table.
When the compiler moves from (2) to (3)
• The name "f" is added to the global table, a new hash table

for f's scope is created.
• A pointer to f's table is pushed on the scope stack.
• Then "x" is added to hash table for the current scope.

12

Static vs Dynamic Scoping
Static or lexical scoping:
• associations are determined at compile time
• using a sequential processing of program

Dynamic scoping:
• associations are determined at runtime
• processing of program statements follows the

execution order of different statements

4

13

Example
if we added a new function "g" to the above
program as follows:
void g() {

int y ;
f(); }

Consider references to the name "y" at (3).
• With static scoping, it always refers to the global

variable y defined between (1) and (2).
• With dynamic scoping

• if "f" is called from main, "y" will refer to the float variable
declared in main.

• If "f" is invoked from within g, the same name will refer to
the integer variable "y" defined in g.

14

Example (Contd.)‏
Since the type associated with "y" at (3) can
differ depending upon the point of call, we
cannot statically determine the type of "y" .
Dynamic scoping does not fit well with static
typing.
Since static typing has now been accepted
to be the right approach, almost all current
languages (C/C++/Java/SML/LISP) use
static scoping.

15

Some Coding Conventions
Constant names use all upper case letters
Type names are capitalized
Variable and function names start with a
lowercase letter
Member variable names end with an ‘_’ to
make it easy to distinguish from local vars

16

Using “const” keyword
Denotes that a variable does not change
There may be member variables, local variables
or global variables that never change, but this is
unusual, so “const” key word is primarily used with
function parameters
• indicates that certain arguments to a function do not change

within the function body
• Member functions take an implicit object argument. If they

don’t change this argument, then use a “const” after closing
parenthesis of declaration•const SymTabEntry& symTab() const;

• Note that functions may be overloaded, so same function
name could correspond to a const and non-const function•SymTabEntry& symTab();

