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Low-level Code Generation
Assembly code generation
• Register allocation
• Instruction selection

Machine code generation
• Instruction encoding
• Linker and loader
• Relocatable code

• Defer assignment of locations for static objects (code, 
variables) to linking phase

• Static linking
• Dynamic linking
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Machine code generation (contd.)‏
• Position-independent code (PIC) ‏

• Can be shared by different processes that map a library to 
different locations

• Code does not assume knowledge of memory location of its 
code or variables

• Symbol tables
• Often, code that is shipped has all symbols “stripped off”
• For libraries, need to maintain a minimal amount of symbol info
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Register Allocation: Factors
Special-purpose registers
• Stack pointer, Base pointer, Instruction pointer, ...
• Reserved for specific uses across most code

• Register allocation deals with general-purpose registers

Application/binary interface requirements
• Caller- Vs Callee-save registers

• Caller-save registers need to be explicitly saved by the 
caller before every procedure call, and restored after

• Callee-save registers have to be saved before use by 
every function, and restored if used.

Some (most) instructions may operate only on 
register operands
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Register Allocation: Simple Strategies
1.Load a register from memory before each 

operation, store immediately afterwards
• Too inefficient

2.Avoid load/store's within a basic block
Load registers at entry of a BB, and store at its end. 
Fails to discriminate between loops and other Bbs
May require too many registers

• “Global” register allocation
Consider uses across Bbs
Even more “pressure” on registers ...
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Global Register Allocation
Model cost of instructions
• Cost of fetching

• On modern processors, fetching costs can be ignored to a 
certain extent due to the use of dedicated pipelines for 
instruction fetching/decoding, plus branch prediction etc.

• Cost of memory access
• For loading registers
• For saving registers
• For accessing memory (in case of instructions that accept 

memory operands) ‏
• Take into account loops

• e.g., treat the cost of non-loop operations to be zero
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Register usage counts
Use(x) = number of uses of variable x (before 
reassignment) within a block, plus 2 if x is live at the 
end of the loop
• Use registers to hold variables with highest use count

If there are nested loops, allocate registers for 
innermost loop, and then allocate remaining 
registers to outer loops
• Alternatively, reuse registers used in inner loops in outer 

loops by saving/restoring registers
• Avoid unnecessary save/restores by analyzing across BBs 

to find variables used in inner as well as outer loops.
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Working with fixed number of Registers

Can be modeled as a graph-coloring problem
• Allocate a symbolic register for each variable
• Construct a register-interference graph (RIG)‏

• Edge between two symbolic registers if one is live at the 
point where the other is assigned

• You can use N registers if RIG is N-colorable
• i.e., there is a way to assign N colors to graph nodes such 

that neighboring nodes have different colors
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Graph-coloring (contd.)‏
Graph-coloring problem is NP-complete
• But good heuristics exist:

• Eliminate all nodes that have less than degree N
• Eliminating one node will reduce the degree of nodes 

connected to it
• Color for the eliminated node can be chosen to be one of 

those that is not assigned to any of its neighbors
• If all nodes have degree >= N, pick one to “spill,” i.e., save 

to memory and restore later
• Pick registers that have least cost savings
• Avoid spills in inner loops
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Instruction Selection
Instruction selection is a complex task, especially 
when considering modern processors with a large 
number of instructions and addressing modes
Many semantically equivalent instructions 
sequences may perform the same desired task
• How to select the “minimal cost” sequence?

Ideally, one does not have to hand-code a code 
generator, but have it be generated from 
specifications!
• Instruction selection by tree-rewriting 
• Initially, the tree represents generated intermediate code
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Instruction Specification
Represent  each target 
machine instruction as a 
rewrite rule
Rules can capture 
additional semantic 
conditions

11

Instruction Selection Example
Intermediate code for a[i] = b+1
Rewrite tree repeatedly using rules corresponding to instruction
specifications until you get to a single node tree.
Result
LD    R0, #a
ADD R0, R0, SP
ADD R0, R0, i[SP]
LD    R1, b
INC  R1
ST    *R0, R1
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Instruction Specification
For each instruction in target language, specify: 
• Assembly representation of target machine instructions

• Instruction parameters include registers and constants
• Its semantics in the intermediate language

• Parameterized in terms of registers and constants in the 
target instruction

• Specify input operands as well as the location where the 
result is stored

• Cost of executing the instruction
• Additional constraints on applicability of instruction

• e.g., a certain constant must be at most 8 bits



4

13

Code generation by rewriting
Represent intermediate code generated by the compiler as a 
tree, and use rewriting using the rules in the instruction 
specification
Trees can represent expressions as well as sequence of 
statements
• Introduce a sequencing operation to represent sequencing
• Don't force sequencing of unrelated statements, or else the code

generator won't be able to choose evaluation orders that lead to
more efficient code. 
• Example: a=b+5; c=d+5; e=a+b
• More efficient if c=d+5 is moved later, as it would allow a and b 

to continue to be in registers while evaluating e=a+b
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Optimal Code Generation
Some intermediate operations may not have 
equivalent instructions
• e.g.,“add R0, R0, M1” versus “ld R1, M; add R0, R0, R1”

Multiple rules may match the same node
• Cost of evaluation may hinge on which match is chosen
• Example: “inc R0” versus “add R0, 1”

The order of rewriting can change the cost
• Mainly due to selection of registers, and based on which 

intermediate results remain in registers as opposed to 
being stored in memory.
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Optimal Code Generation
But, dynamic programming algorithms for optimal 
code generation exist under reasonable 
assumptions
• Optimal code for E1 op E2 will contain optimal code for 

evaluating E1 and optimal code for evaluating E2
• Dynamic programming algorithm tries to construct the 

optimal code bottom-up: from E1 and E2's optimal 
codes, build optimal code for E1 op E2

• Dynamic programming algorithm iterates over
• number of registers used for operand evaluation
• order of evaluation of operand (when permissible)‏
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Dynamic Programming Algorithm
For each node n in tree, compute C[n][i] which represents the minimum 
cost for evaluating the subtree rooted at n using at most i registers, for 
0 <= i <= k (# of registers in the target architecture) ‏
The operands for evaluating the operation at n may differ, depending 
on the matching instruction
While evaluating operands of n, we may use:
• All i registers for evaluating each operand, but this requires evaluation 

results to be stored in memory in order to free up registers for evaluating 
other operands

• Use less than i registers so that operands can be retained in registers
• An order of evaluation that minimizes the number of registers that need to 

be saved to memory

For the root node r, pick how many registers to use (may be k) ‏
Generate instructions based on the choices at each node that result in 
the least cost for C[r][k] 
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