
1

1

Low-level Code Generation
Assembly code generation
• Register allocation
• Instruction selection

Machine code generation
• Instruction encoding
• Linker and loader
• Relocatable code

• Defer assignment of locations for static objects (code,
variables) to linking phase

• Static linking
• Dynamic linking

2

Machine code generation (contd.)‏
• Position-independent code (PIC) ‏

• Can be shared by different processes that map a library to
different locations

• Code does not assume knowledge of memory location of its
code or variables

• Symbol tables
• Often, code that is shipped has all symbols “stripped off”
• For libraries, need to maintain a minimal amount of symbol info

3

Register Allocation: Factors
Special-purpose registers
• Stack pointer, Base pointer, Instruction pointer, ...
• Reserved for specific uses across most code

• Register allocation deals with general-purpose registers

Application/binary interface requirements
• Caller- Vs Callee-save registers

• Caller-save registers need to be explicitly saved by the
caller before every procedure call, and restored after

• Callee-save registers have to be saved before use by
every function, and restored if used.

Some (most) instructions may operate only on
register operands

4

Register Allocation: Simple Strategies
1.Load a register from memory before each

operation, store immediately afterwards
• Too inefficient

2.Avoid load/store's within a basic block
Load registers at entry of a BB, and store at its end.
Fails to discriminate between loops and other Bbs
May require too many registers

• “Global” register allocation
Consider uses across Bbs
Even more “pressure” on registers ...

2

5

Global Register Allocation
Model cost of instructions
• Cost of fetching

• On modern processors, fetching costs can be ignored to a
certain extent due to the use of dedicated pipelines for
instruction fetching/decoding, plus branch prediction etc.

• Cost of memory access
• For loading registers
• For saving registers
• For accessing memory (in case of instructions that accept

memory operands) ‏
• Take into account loops

• e.g., treat the cost of non-loop operations to be zero

6

Register usage counts
Use(x) = number of uses of variable x (before
reassignment) within a block, plus 2 if x is live at the
end of the loop
• Use registers to hold variables with highest use count

If there are nested loops, allocate registers for
innermost loop, and then allocate remaining
registers to outer loops
• Alternatively, reuse registers used in inner loops in outer

loops by saving/restoring registers
• Avoid unnecessary save/restores by analyzing across BBs

to find variables used in inner as well as outer loops.

7

Working with fixed number of Registers

Can be modeled as a graph-coloring problem
• Allocate a symbolic register for each variable
• Construct a register-interference graph (RIG)‏

• Edge between two symbolic registers if one is live at the
point where the other is assigned

• You can use N registers if RIG is N-colorable
• i.e., there is a way to assign N colors to graph nodes such

that neighboring nodes have different colors

8

Graph-coloring (contd.)‏
Graph-coloring problem is NP-complete
• But good heuristics exist:

• Eliminate all nodes that have less than degree N
• Eliminating one node will reduce the degree of nodes

connected to it
• Color for the eliminated node can be chosen to be one of

those that is not assigned to any of its neighbors
• If all nodes have degree >= N, pick one to “spill,” i.e., save

to memory and restore later
• Pick registers that have least cost savings
• Avoid spills in inner loops

3

9

Instruction Selection
Instruction selection is a complex task, especially
when considering modern processors with a large
number of instructions and addressing modes
Many semantically equivalent instructions
sequences may perform the same desired task
• How to select the “minimal cost” sequence?

Ideally, one does not have to hand-code a code
generator, but have it be generated from
specifications!
• Instruction selection by tree-rewriting
• Initially, the tree represents generated intermediate code

10

Instruction Specification
Represent each target
machine instruction as a
rewrite rule
Rules can capture
additional semantic
conditions

11

Instruction Selection Example
Intermediate code for a[i] = b+1
Rewrite tree repeatedly using rules corresponding to instruction
specifications until you get to a single node tree.
Result
LD R0, #a
ADD R0, R0, SP
ADD R0, R0, i[SP]
LD R1, b
INC R1
ST *R0, R1

12

Instruction Specification
For each instruction in target language, specify:
• Assembly representation of target machine instructions

• Instruction parameters include registers and constants
• Its semantics in the intermediate language

• Parameterized in terms of registers and constants in the
target instruction

• Specify input operands as well as the location where the
result is stored

• Cost of executing the instruction
• Additional constraints on applicability of instruction

• e.g., a certain constant must be at most 8 bits

4

13

Code generation by rewriting
Represent intermediate code generated by the compiler as a
tree, and use rewriting using the rules in the instruction
specification
Trees can represent expressions as well as sequence of
statements
• Introduce a sequencing operation to represent sequencing
• Don't force sequencing of unrelated statements, or else the code

generator won't be able to choose evaluation orders that lead to
more efficient code.
• Example: a=b+5; c=d+5; e=a+b
• More efficient if c=d+5 is moved later, as it would allow a and b

to continue to be in registers while evaluating e=a+b

14

Optimal Code Generation
Some intermediate operations may not have
equivalent instructions
• e.g.,“add R0, R0, M1” versus “ld R1, M; add R0, R0, R1”

Multiple rules may match the same node
• Cost of evaluation may hinge on which match is chosen
• Example: “inc R0” versus “add R0, 1”

The order of rewriting can change the cost
• Mainly due to selection of registers, and based on which

intermediate results remain in registers as opposed to
being stored in memory.

15

Optimal Code Generation
But, dynamic programming algorithms for optimal
code generation exist under reasonable
assumptions
• Optimal code for E1 op E2 will contain optimal code for

evaluating E1 and optimal code for evaluating E2
• Dynamic programming algorithm tries to construct the

optimal code bottom-up: from E1 and E2's optimal
codes, build optimal code for E1 op E2

• Dynamic programming algorithm iterates over
• number of registers used for operand evaluation
• order of evaluation of operand (when permissible)‏

16

Dynamic Programming Algorithm
For each node n in tree, compute C[n][i] which represents the minimum
cost for evaluating the subtree rooted at n using at most i registers, for
0 <= i <= k (# of registers in the target architecture) ‏
The operands for evaluating the operation at n may differ, depending
on the matching instruction
While evaluating operands of n, we may use:
• All i registers for evaluating each operand, but this requires evaluation

results to be stored in memory in order to free up registers for evaluating
other operands

• Use less than i registers so that operands can be retained in registers
• An order of evaluation that minimizes the number of registers that need to

be saved to memory

For the root node r, pick how many registers to use (may be k) ‏
Generate instructions based on the choices at each node that result in
the least cost for C[r][k]

5

17

Target
Instructions

Optimal Code

Illustration of Dynamic Programming Algorithm

