
Parsing

A.k.a. Syntax Analysis

• Recognize sentences in a language.

• Discover the structure of a document/program.

• Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the structure.

• The above tree is used later to guide translation.

Grammars

The syntactic structure of a language is defined using grammars.

• Grammars (like regular expressions) specify a set of strings over an alphabet.

• Efficient recognizers (like DFA) can be constructed to efficiently determine whether a string is in the language.

• Language heirarchy:

– Finite Languages (FL)

Enumeration

– Regular Languages (RL ⊃ FL)

Regular Expressions

– Context-free Languages (CFL ⊃ RL)

Context-free Grammars

Regular Languages

Languages represented by
regular expressions

≡
Languages recognized by
finite automata

Examples:
√ {a, b, c}
√ {ǫ, a, b, aa, ab, ba, bb, . . .}
√ {(ab)n | n ≥ 0}
× {anbn | n ≥ 0}

Grammars

Notation where recursion is explicit.
Examples:

• {ǫ, a, b, aa, ab, ba, bb, . . .}:

E −→ a

E −→ b

S −→ ǫ

S −→ ES

Notational shorthand:

E −→ a | b
S −→ ǫ | ES

1

• {an

b
n | n ≥ 0} :

S −→ ǫ

S −→ aSb

• {w | no. of a’s in w = no. of b’s in w}

Context-free Grammars

• Terminal Symbols: Tokens

• Nonterminal Symbols: set of strings made up of tokens

• Productions: Rules for constructing the set of strings associated with nonterminal symbols.

Example: Stmt −→ while Expr do Stmt

Start symbol: nonterminal symbol that represents the set of all strings in the language.

Example

E −→ E + E

E −→ E − E

E −→ E ∗ E

E −→ E / E

E −→ (E)

E −→ id

L(E) = {id, id + id, id − id, . . . , id + (id ∗ id) − id, . . .}

Context-free Grammars

Production: rule with nonterminal symbol on left hand side, and a (possibly empty) sequence of terminal or nonterminal
symbols on the right hand side.

Notations:

• Terminals: lower case letters, digits, punctuation

• Nonterminals: Upper case letters

• Arbitrary Terminals/Nonterminals: X,Y,Z

• Strings of Terminals: u, v, w

• Strings of Terminals/Nonterminals: α, β, γ

• Start Symbol: S

Context-Free Vs Other Types of Grammars

• Context-free grammar (CFG): Productions of the form NT −→ [NT |T]∗

• Context-sensitive grammar (CSG): Productions of the form [t|NT] ∗ NT [t|NT]∗ −→ [t|NT]∗

• Unrestricted grammar: Productions of the form [t|NT]∗ −→ [t|NT]∗

Examples of Non-Context-Free Languages

2

• Checking that variables are declared before use. If we simplify and abstract the problem, we see that it amounts to
recognizing strings of the form wsw

• Checking whether the number of actual and formal parameters match. Abstracts to recognizing strings of the form
anbmcndm

• In both cases, the rules are not enforced in grammar, but deferred to type-checking phase

• Note: Strings of the form wswR and anbncmdm can be described by a CFG

What types of Grammars Describe These Languages?

• Strings of 0’s and 1’s of the form xx

• Strings of 0’s and 1’s in which 011 doesn’t occur

• Strings of 0’s and 1’s in which each 0 is immediately followed by a 1

• Strings of 0’s and 1’s with equal number of 0’s and 1’s.

Language Generated by Grammars, Equivalence of Grammars

• How to show that a grammar G generates a language M? Show that

– ∀s ∈ M, show that s ∈ L(G)

– ∀s ∈ L(G), show that s ∈ M

• How to establish that two grammars G1 and G2 are equivalent?
Show that L(G1) = L(G2)

Grammar Examples

S −→ 0S1S|1S0S|ǫ

What is the language generated by this grammar?

Grammar Examples

S −→ 0A|1B|ǫ

A −→ 0AA|1S

B −→ 1BB|0S

What is the language generated by this grammar?

The Two Sides of Grammars

Specify a set of strings in a language.
Recognize strings in a given language:

• Is a given string x in the language?

Yes, if we can construct a derivation for x

• Example: Is id + id ∈ L(E)?

id + id ⇐= E + id

⇐= E + E

⇐= E

Derivations

3

Grammar:
E −→ E + E

E −→ id

E derives id + id: E =⇒ E + E

=⇒ E + id

=⇒ id + id

• αAβ =⇒ αγβ iff A −→ γ is a production in the grammar.

• α
∗

=⇒ β if α derives β in zero or more steps.

Example: E
∗

=⇒ id + id

• Sentence: A sequence of terminal symbols w such that S
+

=⇒ w (where S is the start symbol)

• Sentential Form: A sequence of terminal/nonterminal symbols α such that S
∗

=⇒ α

Derivations

• Rightmost derivation: Rightmost nonterminal is replaced first:

E =⇒ E + E

=⇒ E + id

=⇒ id + id

Written as E
∗

=⇒rm id + id

• Leftmost derivation: Leftmost nonterminal is replaced first:

E =⇒ E + E

=⇒ id + E

=⇒ id + id

Written as E
∗

=⇒lm id + id

Parse Trees

Graphical Representation of Derivations

E =⇒ E + E
=⇒ id + E
=⇒ id + id

id id

+E E

E

E =⇒ E + E
=⇒ E + id

=⇒ id + id

A Parse Tree succinctly captures the structure of a sentence.

Ambiguity

A Grammar is ambiguous if there are multiple parse trees for the same sentence.
Example: id + id ∗ id

id

+E E

E

E E

id id

* id

E

E

E

E E

id id

+

*

4

Disambiguition

Express Preference for one parse tree over others.
Example: id + id ∗ id

The usual precedence of ∗ over + means:

id

+E E

E

E E

id id

* id

E

E

E

E E

id id

+

*

Preferred

Parsing

Construct a parse tree for a given string.

S −→ (S)S

S −→ a

S −→ ǫ

(a)a (a)(a)

S

S S

a a

()

S

S S()

S

()S

a

a ε

A Procedure for Parsing

Grammar: S −→ a

procedure parse S() {
switch (input token) {

case TOKEN a:
consume(TOKEN a);
return;

default:
/* Parse Error */

}
}

Predictive Parsing

5

Grammar:
S −→ a

S −→ ǫ

procedure parse S() {
switch (input token) {

case TOKEN a: /* Production 1 */
consume(TOKEN a);
return;

case TOKEN EOF : /* Production 2 */
return;

default:
/* Parse Error */

}
}

Predictive Parsing (Contd.)

Grammar:
S −→ (S)S
S −→ a

S −→ ǫ

procedure parse S() {
switch (input token) {

case TOKEN OPEN PAREN : /* Production 1 */
consume(TOKEN OPEN PAREN);
parse S();
consume(TOKEN CLOSE PAREN);
parse S();
return;

Predictive Parsing (contd.)

Grammar:
S −→ (S)S
S −→ a

S −→ ǫ

case TOKEN a: /* Production 2 */
consume(TOKEN a);
return;

case TOKEN CLOSE PAREN :
case TOKEN EOF : /* Production 3 */

return;
default:

/* Parse Error */

Predictive Parsing: Restrictions

6

Grammar cannot be left-recursive
Example: E −→ E + E | a

procedure parse E () {
switch (input token) {

case TOKEN a: /* Production 1 */
parse E ();
consume(TOKEN PLUS);
parse E ();
return;

case TOKEN a: /* Production 2 */
consume(TOKEN a);
return;

}
}

Removing Left Recursion

A −→ A a

A −→ b

L(A) = {b, ba, baa, baaa, baaaa, . . .}

A −→ bA′

A′ −→ aA′

A′ −→ ǫ

Removing Left Recursion

More generally,

A −→ Aα1| · · · |Aαm

A −→ β1| · · · |βn

Can be transformed into

A −→ β1A
′| · · · |βnA′

A′ −→ α1A
′| · · · |αmA′|ǫ

Removing Left Recursion: An Example

E −→ E + E

E −→ id

⇓

E −→ id E ′

E ′ −→ + E E ′

E ′ −→ ǫ

7

Predictive Parsing: Restrictions

May not be able to choose a unique production

S −→ a B d

B −→ b

B −→ bc

Left-factoring can help:

S −→ a B d

B −→ bC

C −→ c|ǫ

Predictive Parsing: Restrictions

In general, though, we may need a backtracking parser:
Recursive Descent Parsing

S −→ a B d

B −→ b

B −→ bc

Recursive Descent Parsing

Grammar:
S −→ a B d

B −→ b

B −→ bc

procedure parse B() {
switch (input token) {

case TOKEN b: /* Production 2 */
consume(TOKEN b);
return;

case TOKEN b: /* Production 3 */
consume(TOKEN b);
consume(TOKEN c);
return;

}}

Nonrecursive Parsing

Instead of recursion,
use an explicit stack along with the parsing table.

Data objects:

• Parsing Table: M(A, a), a two-dimensional array, dimensions indexed by nonterminal symbols (A)
and terminal symbols (a).

• A Stack of terminal/nonterminal symbols

• Input stream of tokens

8

The above data structures manipulated using a table-driven parsing program.

Table-driven Parsing

Grammar:
A −→ a

B −→ b

S −→ A S B

S −→ ǫ

Parsing Table:
Input Symbol

Nonterminal a b EOF

S S −→ A S B S −→ ǫ S −→ ǫ

A A −→ a

B B −→ b

Table-driven Parsing Algorithm

stack initialized to EOF .
while (stack is not empty) {

X = top(stack);
if (X is a terminal symbol)

consume(X);
else /* X is a nonterminal */

if (M [X, input token] = X −→ Y1, Y2, . . . , Yk) {
pop(stack);
for i = k downto 1 do

push(stack , Yi);
}
else /* Syntax Error */

}

FIRST and FOLLOW

Grammar: S −→ (S)S | a | ǫ

• FIRST(X) = First character of any string that can be derived from X

FIRST(S) = {(, a, ǫ}.

• FOLLOW(A) = First character that, in any derivation of a string in the language, appears immediately after A.

FOLLOW(S) = {),EOF}

a

S

C

b

a ∈ FIRST(C)
b ∈ FOLLOW(C)

FIRST and FOLLOW

9

FIRST (X): First terminal in some α such
that X

∗

=⇒ α.
FOLLOW (A): First terminal in some β such

that S
∗

=⇒ αAβ.

Grammar:
A −→ a

B −→ b

S −→ A S B

S −→ ǫ

First(S) = { a, ǫ }
First(A) = { a }
First(B) = { b }

Follow(S) = { b, EOF }
Follow(A) = { a, b }
Follow(B) = { b, EOF }

Definition of FIRST

Grammar:
A −→ a
B −→ b

S −→ A S B
S −→ ǫ

FIRST (α) is the smallest set such that
α = Property of FIRST (α)

a, a terminal a ∈ FIRST (α)

A, a nonterminal
A −→ ǫ ∈ G =⇒ ǫ ∈ FIRST (α)
A −→ β ∈ G, β 6= ǫ =⇒ FIRST (β) ⊆ FIRST (α)

X1X2 · · ·Xk,
a string of
terminals and
nonterminals

FIRST (X1) − {ǫ} ⊆ FIRST (α)
FIRST (Xi) ⊆ FIRST (α) if ∀j < i ǫ ∈ FIRST (Xj)
ǫ ∈ FIRST (α) if ∀j < k ǫ ∈ FIRST (Xj)

Definition of FOLLOW

Grammar:
A −→ a

B −→ b

S −→ A S B

S −→ ǫ

FOLLOW (A) is the smallest set such that
A Property of FOLLOW (A)

= S, the start symbol
EOF ∈ FOLLOW (S)
Book notation: $ ∈ FOLLOW (S)

B −→ αAβ ∈ G FIRST (β) − {ǫ} ⊆ FOLLOW (A)
B −→ αA, or
B −→ αAβ, ǫ ∈ FIRST (β)

FOLLOW (B) ⊆ FOLLOW (A)

A Procedure to Construct Parsing Tables

procedure table construct(G) {
for each A −→ α ∈ G {

for each a ∈ FIRST (α) such that a 6= ǫ

add A −→ α to M [A, a];
if ǫ ∈ FIRST (α)

for each b ∈ FOLLOW (A)
add A −→ α to M [A, b];

}}

10

LL(1) Grammars

Grammars for which the parsing table constructed earlier has no multiple entries.

E −→ id E ′

E ′ −→ + E E ′

E ′ −→ ǫ

Input Symbol

Nonterminal id + EOF

E E −→ id E ′

E ′ E ′ −→ + E E ′ E ′ −→ ǫ

Parsing with LL(1) Grammars

Input Symbol

Nonterminal id + EOF

E E −→ id E′

E′ E′ −→ + E E′ E′ −→ ǫ

$E id + id$ E =⇒ idE′

$E′
id id + id$

$E′
+ id$ =⇒ id+EE′

$E′E+ + id$
$E′E id$ =⇒ id+idE′E′

$E′E′
id id$

$E′E′ $ =⇒ id+idE′

$E′ $ =⇒ id+id

$ $

LL(1) Derivations

Left to Right Scan of input
Leftmost Derivation

(1) look ahead 1 token at each step
Alternative characterization of LL(1) Grammars:

Whenever A −→ α | β ∈ G

1. FIRST (α) ∩ FIRST (β) = { }, and

2. if α
∗

=⇒ ǫ then FIRST (β) ∩ FOLLOW (A) = { }.

Corollary: No Ambiguous Grammar is LL(1).

Leftmost and Rightmost Derivations

E −→ E+T
E −→ T
T −→ id

Derivations for id + id:

E =⇒ E+T

=⇒ T+T

=⇒ id+T

=⇒ id+id

E =⇒ E+T

=⇒ E+id

=⇒ T+id

=⇒ id+id

LEFTMOST RIGHTMOST

11

Bottom-up Parsing

Given a stream of tokens w, reduce it to the start symbol.

E −→ E+T
E −→ T
T −→ id

Parse input stream: id + id:

id + id

T + id

E + id

E + T

E

Reduction ≡ Derivation−1.

Handles

Informally, a “handle” of a string is a substring that matches the right side of a production, and

whose reduction to the nonterminal on the left hand side of the production represents one step along the reverse
rightmost derivation.

Handles

A structure that furnishes a means to perform reductions.

E −→ E+T
E −→ T
T −→ id

Parse input stream: id + id:

id + id

T + id

E + id

E + T

E

Handles

Handles are substrings of sentential forms:

1. A substring that matches the right hand side of a production

2. Reduction using that rule can lead to the start symbol

E =⇒ E + T

=⇒ E + id

=⇒ T + id

=⇒ id + id

Handle Pruning: replace handle by corresponding LHS.

Shift-Reduce Parsing

Bottom-up parsing.

• Shift: Construct leftmost handle on top of stack

12

• Reduce: Identify handle and replace by corresponding RHS

• Accept: Continue until string is reduced to start symbol and input token stream is empty

• Error: Signal parse error if no handle is found.

Implementing Shift-Reduce Parsers

• Stack to hold grammar symbols (corresponding to tokens seen thus far).

• Input stream of yet-to-be-seen tokens.

• Handles appear on top of stack.

• Stack is initially empty (denoted by $).

• Parse is successful if stack contains only the start symbol when the input stream ends.

Shift-Reduce Parsing: An Example

S −→ aABe
A −→ Abc|b
B −→ d

To parse: a b b c d e

Shift-Reduce Parsing: An Example

E −→ E+T
E −→ T
T −→ id

Stack Input Stream Action

$ id + id $ shift
$ id + id $ reduce by T −→ id

$ T + id $ reduce by E −→ T
$ E + id $ shift
$ E + id $ shift
$ E + id $ reduce by T −→ id

$ E + T $ reduce by E −→ E+T
$ E $ ACCEPT

More on Handles

13

Handle: Let S =⇒∗

rm αAw =⇒rm αβw.
Then A −→ β is a handle for αβw at the position imeediately following α.

Notes:

• For unambiguous grammars, every right-sentential form has a unique handle.

• In shift-reduce parsing, handles always appear on top of stack, i.e., αβ is in the stack (with β at top), and w is unread
input.

Identification of Handles and Relationship to Conflicts

Case 1: With αβ on stack, don’t know if we hanve a handle on top of stack, or we need to shift some more input to get βx
which is a handle.

• Shift-reduce conflict

• Example: if-then-else

Case 2: With αβ1β2 on stack, don’t know if A −→ β2 is the handle, or B −→ β1β2 is the handle

• Reduce-reduce conflict

• Example: E −→ E − E| − E|id

Viable Prefix

Prefix of a right-sentential form that does not continue beyond the rightmost handle.
With αβw example of the previous slides, a viable prefix is something of the form αβ1 where β = β1β2

LR Parsing

• Stack contents as s0X1s1X2 · · ·Xmsm

• Its actions are driven by two tables, action and goto

Parser Configuration: (s0X1s1X2 · · ·Xmsm
︸ ︷︷ ︸

stack

, aiai+1 · · · an$
︸ ︷︷ ︸

unconsumed input

)

action[sm, ai] can be:

• shift s: new config is (s0X1s1X2 · · ·Xmsmais, ai+1 · · · an$)

• reduce A −→ β: Let |β| = r, goto[sm−r, A] = s: new config is (s0X1s1X2 · · ·Xm−rsm−rAs, aiai+1 · · · an$)

• error: perform recovery actions

• accept: Done parsing

LR Parsing

• action and goto depend only on the state at the top of the stack, not on all of the stack contents

– The si states compactly summarize the “relevant” stack content that is at the top of the stack.

• You can think of goto as the action taken by the parser on “consuming” (and shifting) nonterminals

– similar to the shift action in the action table, except that the transition is on a nonterminal rather than a terminal

• The action and goto tables define the transitions of an FSA that accepts RHS of productions!

Example of LR Parsing Table and its Use

14

• See Text book Algorithm 4.7: (follows directly from description of LR parsing actions 2 slides earlier)

• See expression grammar (Example 4.33), its associated parsing table in Fig 4.31, and the use of the table to parse
id ∗ id + id (Fig 4.32)

LR Versus LL Parsing

Intuitively:

• LL parser needs to guess the production based on the first symbol (or first few symbols) on the RHS of a production

• LR parser needs to guess the production after seeing all of the RHS

Both types of parsers can use next k input symbols as look-ahead symbols (LL(k) and LR(k) parsers)

• Implication: LL(k) ⊂ LR(k)

How to Construct LR Parsing Table?

Key idea: Construct an FSA to recognize RHS of productions

• States of FSA remember which parts of RHS have been seen already.

• We use “ · ” to separate seen and unseen parts of RHS

LR(0) item: A production with “ · ” somewhere on the RHS. Intuitively,

⊲ grammar symbols before the “ · ” are on stack;

⊲ grammar symbols after the “ · ” represent symbols in the input stream.

I0:

E ′ −→ · E

E −→ · E+T

E −→ · T

T −→ · id

How to Construct LR Parsing Table?

• If there is no way to distinguish between two different productions at some point during parsing, then the same state
should represent both.

– Closure operation: If a state s includes LR(0) item A −→ α · Bβ, and there is a production B −→ γ, then s
should include B −→ · γ

– goto operation: For a set I of items, goto[I,X] is the closure of all items A −→ αX · β for each A −→ α · Xβ
in I

Item set: A set of items that is closed under the closure operation, corresponds to a state of the parser.

Constructing Simple LR (SLR) Parsing Tables

Step 1: Construct LR(0) items (Item set construction)

Step 2: Construct a DFA for recognizing items

Step 3: Define action and goto based from the DFA

Item Set Construction

1. Augment the grammar with a rule S′ −→ S, and make S′ the new start symbol

15

2. Start with initial set I0 corresponding to the item S′ −→ · S

3. apply closure operation on I0.

4. For each item set I and grammar symbol X, add goto[I,X] to the set of items

5. Repeat previous step until no new item sets are generated.

Item Set Construction

E′ −→ E E −→ E + T | T T −→ T ∗ F | F F −→ (E) | id
I0 : E′ −→ · E

I1 : E′ −→ E ·

I2 : E −→ T ·

I3 : T −→ F ·

I4 : F −→ (· E)

I5 : F −→ id ·

Item Set Construction (Continued)

E′ −→ E E −→ E + T | T T −→ T ∗ F | F F −→ (E) | id
I6 : E −→ E + · T

I7 : T −→ T ∗ · F

I8 : F −→ (E ·)

I9 : E −→ E + T ·

I10 : T −→ T ∗ F ·

I11 : F −→ (E) ·

Item Sets for the Example

16

Constructing DFA to Recognize Viable Prefixes

SLR(1) Parse Table for the Example Grammar

17

Define action and goto tables

• Let I0, I1, . . . , In be the item sets constructed before

• Define action as follows

– If A −→ α · aβ is in Ii and there is a DFA transition to Ij from Ii on symbol a then action[i, a] = “shift j”

– If A −→ α · is in Ii then action[i, a] = “reduce A −→ α” for every a ∈ FOLLOW (A)

– If S′ −→ S · is in Ii then action[Ii, $] = “accept”

• If any conflicts arise in the above procedure, then the grammar is not SLR(1).

• goto transition for LR parsing defined directly from the DFA transitions.

• All undefined entries in the table are filled with “error”

Deficiencies of SLR Parsing

SLR(1) treats all occurrences of a RHS on stack as identical.
Only a few of these reductions may lead to a successful parse.
Example:

S −→ AaAb

S −→ BbBa

A −→ ǫ
B −→ ǫ

I0 = {[S′ → · S], [S → · AaAb], [S → · BbBa], [A → ·], [B → ·]}.
Since FOLLOW (A) = FOLLOW (B), we have reduce/reduce conflict in state 0.

LR(1) Item Sets

Construct LR(1) items of the form A −→ α · β, a, which means:

The production A −→ αβ can be applied when the next token on input stream is a.

S −→ AaAb

S −→ BbBa

A −→ ǫ
B −→ ǫ

18

An example LR(1) item set:
I0 = {[S′ → · S, $], [S → · AaAb, $], [S → · BbBa, $],

[A → · , a], [B → · , b]}.

LR(1) and LALR(1) Parsing

LR(1) parsing: Parse tables built using LR(1) item sets.

LALR(1) parsing: Look Ahead LR(1)

Merge LR(1) item sets; then build parsing table.

Typically, LALR(1) parsing tables are much smaller than LR(1) parsing table.

YACC

Yet Another Compiler Compiler:
LALR(1) parser generator.

• Grammar rules written in a specification (.y) file, analogous to the regular definitions in a lex specification file.

• Yacc translates the specifications into a parsing function yyparse().

spec.y
yacc
−−−→ spec.tab.c

• yyparse() calls yylex() whenever input tokens need to be consumed.

• bison: GNU variant of yacc.

Using Yacc

%{

... C headers (#include)

%}

... Yacc declarations:

%token ...

%union{...}

precedences

%%

... Grammar rules with actions:

Expr: Expr TOK_PLUS Expr

| Expr TOK_MINUS Expr

;

%%

... C support functions

YACC

Yet Another Compiler Compiler:
LALR(1) parser generator.

• Grammar rules written in a specification (.y) file, analogous to the regular definitions in a lex specification file.

• Yacc translates the specifications into a parsing function yyparse().

spec.y
yacc
−−−→ spec.tab.c

19

• yyparse() calls yylex() whenever input tokens need to be consumed.

• bison: GNU variant of yacc.

Using Yacc

%{

... C headers (#include)

%}

... Yacc declarations:

%token ...

%union{...}

precedences

%%

... Grammar rules with actions:

Expr: Expr TOK_PLUS Expr

| Expr TOK_MINUS Expr

;

%%

... C support functions

Conflicts and Resolution

• Operator precedence works well for resolving conflicts that involve operators

– But use it with care – only when they make sense, not for the sole purpose of
removing conflict reports

• Shift-reduce conflicts: Bison favors shift

– Except for the dangling-else problem, this strategy does not ever seem to work,
so don’t rely on it.

Reduce-Reduce Conflicts

sequence: /* empty */

{ printf ("empty sequence\n"); }

| maybeword

| sequence word

{ printf ("added word %s\n", $2); };

maybeword: /* empty */

{ printf ("empty maybeword\n"); }

| word

{ printf ("single word %s\n", $1); };

In general, grammar needs to be rewritten to eliminate conflicts.

Sample Bison File: Postfix Calculator

20

input: /* empty */

| input line

;

line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }

| exp exp ’+’ { $$ = $1 + $2; }

| exp exp ’-’ { $$ = $1 - $2; }

| exp exp ’*’ { $$ = $1 * $2; }

| exp exp ’/’ { $$ = $1 / $2; }

/* Exponentiation */

| exp exp ’^’ { $$ = pow ($1, $2); }

/* Unary minus */

| exp ’n’ { $$ = -$1; };

%%

Infix Calculator

%{

#define YYSTYPE double

#include <math.h>

#include <stdio.h>

int yylex (void);

void yyerror (char const *);

%}

/* Bison Declarations */

%token NUM

%left ’-’ ’+’

%left ’*’ ’/’

%left NEG /* negation--unary minus */

%right ’^’ /* exponentiation */

Infix Calculator (Continued)

%% /* The grammar follows. */

input: /* empty */

| input line

;

line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }

| exp ’+’ exp { $$ = $1 + $3; }

| exp ’-’ exp { $$ = $1 - $3; }

| exp ’*’ exp { $$ = $1 * $3; }

| exp ’/’ exp { $$ = $1 / $3; }

| ’-’ exp %prec NEG { $$ = -$2; }

| exp ’^’ exp { $$ = pow ($1, $3); }

| ’(’ exp ’)’ { $$ = $2; }

;

%%

21

Error Recovery

line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }

| error ’\n’ { yyerrok; };

• Pop stack contents to expose a state where error token is acceptable

• Shift error token onto the stack

• Discard input until reaching a token that can follow this error token

Error recovery strategies are never perfect — some times they lead to cascading errors, unless carefully
designed.

Left Versus Right Recursion

expseq1: exp | expseq1 ’,’ exp;

is a left-recursive definition of a sequence of exp’s, whereas

expseq1: exp | exp ’,’ expseq1;

is a right-recursive definition

• Left-recursive definitions are no-no for LL parsing, but yes-yes for LR parsing

• Right-recursive definition is bad for LR parsing as it needs to shift entire list on stack
before any reduction — increases stack usage

22

