Parsing

A k.a. Syntax Analysis

Recognize sentences in a language.

Discover the structure of a document/program.

Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the structure.

The above tree is used later to guide translation.

Grammars

The syntactic structure of a language is defined using grammars.

e Grammars (like regular expressions) specify a set of strings over an alphabet.
e Efficient recognizers (like DFA) can be constructed to efficiently determine whether a string is in the language.
e Language heirarchy:

— Finite Languages (FL)
Enumeration

— Regular Languages (RL D FL)
Regular Expressions

— Context-free Languages (CFL D RL)
Context-free Grammars

Regular Languages

Languages represented by _  Languages recognized by
regular expressions "~ finite automata
Examples:
Vv {a,b,c}

v {€ a,b,aa,ab,ba,bb,...}
v {(ab)" [n >0}

x {a™b" | n >0}

Grammars

Notation where recursion is explicit.
Examples:
e {c,a,b,aa,ab,ba,bb,...}:

EFE —

EFE —

S — €

S — ES

Notational shorthand:

E — alb
S — €|ES



{a"b" | n >0} :

S — €

S — aShb

{w | no. ofa’sinw = no. of b’s in w}

Context-free Grammars

Terminal Symbols: Tokens
Nonterminal Symbols: set of strings made up of tokens

Productions: Rules for constructing the set of strings associated with nonterminal symbols.

Example: Stmt — while Expr do Stmt

Start symbol: nonterminal symbol that represents the set of all strings in the language.

Example
F — E+F
E — E—E
E — ExE
E — E/E
EF — id

L(E) = {id,id +id,id —id, ...,id + (id xid) —id, ...}

Context-free Grammars

Production: rule with nonterminal symbol on left hand side, and a (possibly empty) sequence of terminal or nonterminal
symbols on the right hand side.
Notations:

Terminals: lower case letters, digits, punctuation
Nonterminals: Upper case letters

Arbitrary Terminals/Nonterminals: X,Y, Z
Strings of Terminals: u, v, w

Strings of Terminals/Nonterminals: «, 3,y

Start Symbol: S

Context-Free Vs Other Types of Grammars

Context-free grammar (CFG): Productions of the form NT — [NT|T]x
Context-sensitive grammar (CSG): Productions of the form [¢|NT]* NT[t|NT]* — [t|NT)x

Unrestricted grammar: Productions of the form [t|NT]* — [t|NT]x*

Examples of Non-Context-Free Languages




e Checking that variables are declared before use. If we simplify and abstract the problem, we see that it amounts to
recognizing strings of the form wsw

e Checking whether the number of actual and formal parameters match. Abstracts to recognizing strings of the form
a™bm et d™

e In both cases, the rules are not enforced in grammar, but deferred to type-checking phase

e Note: Strings of the form wsw® and a™b"c™d™ can be described by a CFG

What types of Grammars Describe These Languages?

e Strings of 0’s and 1’s of the form xx
e Strings of 0’s and 1’s in which 011 doesn’t occur
e Strings of 0’s and 1’s in which each 0 is immediately followed by a 1

e Strings of 0’s and 1’s with equal number of 0’s and 1’s.

Language Generated by Grammars, Equivalence of Grammars

e How to show that a grammar G generates a language M7 Show that

— Vs € M, show that s € L(G)
— Vs € L(G), show that s € M

e How to establish that two grammars GG; and G2 are equivalent?
Show that £(G1) = L(G2)

Grammar Examples

S — 0515]150S|e
What is the language generated by this grammar?

Grammar Examples

S — 0A|1Ble

A — 0AA|LS

B — 1BBJ0S
What is the language generated by this grammar?

The Two Sides of Grammars

Specify a set of strings in a language.
Recognize strings in a given language:

e Is a given string = in the language?

Yes, if we can construct a derivation for x
e Example: Is id +id € L(E)?

id+id < FE+id

«— E+FE
~— F
Derivations



& &

Grammar:

E+FE

—s id

FE derives id + id:

aAf = ayf iff A — ~ is a production in the grammar.

a == A if a derives 8 in zero or more steps.
Example: F = id +id

F — FEF+F
= FE+id
— id+id

Sentence: A sequence of terminal symbols w such that S == w (where S is the start symbol)

Sentential Form: A sequence of terminal /nonterminal symbols « such that S == «

Derivations

Rightmost derivation: Rightmost nonterminal is replaced first:

E =
—
=

Written as E = m id + id
Leftmost derivation: Leftmost nonterminal is replaced first:

EF =
—
—

Written as B =/,,, id + id

E+FE
E+id
id + id

E+FE
id+FE
id + id

Graphical Representation of Derivations

EF — FE+FE
— id+ FE
— id+id

Parse Trees

A Parse Tree succinctly captures the structure of a sentence.

A Grammar is ambiguous if there are multiple parse trees for the same sentence.

Ambiguity

Example: id + id * id

EF =
=
=

* E
E id
id

E+FE
E+id
id +id



Disambiguition

Express Preference for one parse tree over others.
Example: id + id * id
The usual precedence of * over + means:

Construct a parse tree for a given string.

id id id id
Preferred
Parsing
S — (8)§
S — a
S — €
(a)a (a) (a)
S
3 PIANN
//\\ ¢ 5 ) 3
C sy o5/
a ( S ) S
a a
a €

A Procedure for Parsing

Grammar:

S — «a

procedure parse_S() {
switch (input_token) {
case TOKEN _a:
consume( TOKEN_a);

return;

default:

/* Parse Error */

Predictive Parsing




H a
Grammar:
S — €

procedure parse_S() {
switch (input_token) {

case TOKEN_a: /* Production 1 */
consume( TOKEN_a);
return;

case TOKEN_EOF: /* Production 2 */
return;

default:
/* Parse Error */

Predictive Parsing (Contd.)

&
U

Grammar:

L

procedure parse_S() {
switch (input_token) {
case TOKEN_OPEN_PAREN: /* Production 1 */

consume( TOKEN_OPEN_PAREN);
parse_S();
consume( TOKEN_CLOSE_PAREN);
parse_S();
return;

Predictive Parsing (contd.)

(5)S
Grammar: a
€

L1

case TOKEN_a: /* Production 2 */
consume( TOKEN_a);
return;

case TOKEN_CLOSE_PAREN:

case TOKEN_EOF: /* Production 3 */
return;

default:
/* Parse Error */

Predictive Parsing: Restrictions
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Grammar cannot be left-recursive
Example: £ — E+FE | a
procedure parse_E() {
switch (input_token) {
case TOKEN_a: /* Production 1 */
parse_E();
consume( TOKEN_PLUS);
parse_E();
return;
case TOKEN_a: /* Production 2 */
consume( TOKEN_a);

return;

Removing Left Recursion

A — Aa
A — b

L(A) = {b, ba, baa, baaa, baaaa, . . .}

A — DA
A — aA

A — €

Removing Left Recursion

More generally,
A — Aoyl Aoy,
A — Bil-[Bn

Can be transformed into
A — BA|- B A

A — Ao Alle

Removing Left Recursion: An Example

F — E+ F
F — id

4

E — idF
EF — 4+ FEF

E — €



Predictive Parsing: Restrictions

May not be able to choose a unique production

S — aBd
B — b
B — be

Left-factoring can help:

S — aBd
B — bC
C — cle

Predictive Parsing: Restrictions

In general, though, we may need a backtracking parser:
Recursive Descent Parsing

S — aBd

B — b
B — bc

Recursive Descent Parsing

procedure parse_B() {
switch (input_token) {
case TOKEN_b: /* Production 2 */

Y consume( TOKEN_b);
return;
Grammar: g : 2 case TOKEN_b: /* Production 3 */
¢ consume( TOKEN_b);

consume( TOKEN _c);
return;

H

Nonrecursive Parsing

Instead of recursion,
use an explicit stack along with the parsing table.
Data objects:

e Parsing Table: M(A,a), a two-dimensional array, dimensions indexed by nonterminal symbols (A)
and terminal symbols (a).

e A Stack of terminal /nonterminal symbols

e Input stream of tokens



The above data structures manipulated using a table-driven parsing program.

Table-driven Parsing

Grammar: ¢ § — ASB
B — b S — ¢
Parsing Table:
INPUT SYMBOL
NONTERMINAL a \ b | EOF
S S— ASB|S—e€|S—c¢
A A—a
B B—b
Table-driven Parsing Algorithm
stack initialized to EOF.
while (stack is not empty) {
X = top(stack);
if (X is a terminal symbol)
consume(X);
else /* X is a nonterminal */
if (M[X,input_token)| =X — Y1,Ys,...,Y;) {

pop(stack);
for i = k downto 1 do
push(stack, Y;);

else /* Syntax Error */

FIRST and FOLLOW

Grammar: S — (59)S |a|e

e FIRST(X) = First character of any string that can be derived from X
FIRST(S) = {(, a, €}

e FOLLOW(A) = First character that, in any derivation of a string in the language, appears immediately after A.

FOLLOW(S) = {), EOF}

FIRST and FOLLOW

a € FIRST(C)
b € FOLLOW(C)



FIRST (X): First terminal in some a such

that X = a.
FOLLOW(A): First terminal in some (3 such

that S == aAp.

G _ A — a S — ASB
ramimar: B — b S —
First(S) = {a e}  Follow(S) = {b, EOF}
First(A) = {a} Follow(A) = {a/ b}
First(B) = {b} Follow(B) = { b, EOF }
Definition of FIRST
Grammar: A a S — ASE
’ B — b S — €
FIRST () is the smallest set such that
o= | Property of FIRST ()
a, a terminal a € FIRST («)

A—e€G=€c€ FIRST ()

A, anonterminal |y 5 ¢ 54— FIRST(S) C FIRST (o)

XX '."lef FIRST (X1) — {e} C FIRST (a)
a Sjcrlrf Od FIRST(X;) C FIRST () if Vj <i € € FIRST(X})
terminals an € € FIRST (o) if Vj <k €€ FIRST(X;)

nonterminals

Definition of FOLLOW

A — «a S — ASB

Grammar: B — b g . .

FOLLOW/(A) is the smallest set such that

A | Property of FOLLOW (A)

B EOF € FOLLOW (S)
=5, the start symbol Book notation: $ € FOLLOW(S)

B— aABeG FIRST(B) — {¢} C FOLLOW(A)

B —_— 05147 or
B aAb c € FIRST(5) | FOLLOW(B) € FOLLOW(A)

A Procedure to Construct Parsing Tables

procedure table_construct(G) {
foreach A — a e G {
for each a € FIRST («) such that a # €
add A — « to M[A,al;
if e € FIRST («v)
for each b € FOLLOW (A)
add A — o to M[A,bl;

H
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LL(1) Grammars

Grammars for which the parsing table constructed earlier has no multiple entries.
E — idF
F — +FEF

E — €

INPUT SYMBOL
NONTERMINAL id \ + | EOF
E E—idFE
E’ FF—+FEFE | E —c¢

Parsing with LL(1) Grammars

\ INPUT SYMBOL
NONTERMINAL || id [ + | EOF

E E—idFE
E’ EF —+FEFE | E —e¢

$E id+id$ | FE = idFE’

$F'id id + id$

$E’ + id$ = id+EFE

$SE'E+ + id$

$F'E id$ =  id+idE'E’

$F'E'id id$

$E'E’ $ =  id+idE’

$E’ $ = id+id

$ $

LL(1) Derivations

Left to Right Scan of input
Leftmost Derivation
(1) look ahead 1 token at each step
Alternative characterization of LL(1) Grammars:

Whenever A — a | € G
1. FIRST(a) N FIRST(B) = { }, and
2. if & == € then FIRST(3) N FOLLOW(A) = { }.
Corollary: No Ambiguous Grammar is LL(1).

Leftmost and Rightmost Derivations

E — E+T
FE — T
T — id
Derivations for id + id:
E = E+T E = E+T
— T+T — E+id
= id+T = T+id
= id+id — id+id
LEFTMOST RIGHTMOST

11



Bottom-up Parsing

Given a stream of tokens w, reduce it to the start symbol.

EF — E4+T
F — T
T — id

Parse input stream: id + id:
id + id
T +id
E +id
E+T

Reduction = Derivation—1!.

Handles

Informally, a “handle” of a string is a substring that matches the right side of a production, and

whose reduction to the nonterminal on the left hand side of the production represents one step along the reverse
rightmost derivation.

Handles

A structure that furnishes a means to perform reductions.

E — FE+T
F — T
T — id

Parse input stream: id + id:

lid] + id
| T]+id
E +[id]

E

Handles

Handles are substrings of sentential forms:
1. A substring that matches the right hand side of a production

2. Reduction using that rule can lead to the start symbol

E — |E+ T

= E+
— [T]+id
—  |id|+ id

Handle Pruning: replace handle by corresponding LHS.
Shift-Reduce Parsing

Bottom-up parsing.

e Shift: Construct leftmost handle on top of stack

12



Reduce: Identify handle and replace by corresponding RHS
Accept: Continue until string is reduced to start symbol and input token stream is empty

Error: Signal parse error if no handle is found.

Implementing Shift-Reduce Parsers

Stack to hold grammar symbols (corresponding to tokens seen thus far).
Input stream of yet-to-be-seen tokens.

Handles appear on top of stack.

Stack is initially empty (denoted by $).

Parse is successful if stack contains only the start symbol when the input stream ends.

Shift-Reduce Parsing: An Example

S — aABe
A — Abclb  To parse: abbcde
B — d

Shift-Reduce Parsing: An Example

E — FE+T

F — T

T — id
STACK | INPUT STREAM ACTION
$ id + id $ | shift
$id +id $ | reduce by T — id
$T +id $ | reduce by E — T
$ E +id $ | shift
$E+ id § | shift
$E+id $ | reduce by T — id
SE+ T $ | reduce by E — E+T
$E $ | ACCEPT

More on Handles

13



Handle: Let S =}, cAw =, afw.

Then A — [ is a handle for afw at the position imeediately following c.

Notes:

e For unambiguous grammars, every right-sentential form has a unique handle.

e In shift-reduce parsing, handles always appear on top of stack, i.e., af is in the stack (with 3 at top), and w is unread

input.

|dentification of Handles and Relationship to Conflicts

Case 1: With af on stack, don’t know if we hanve a handle on top of stack, or we need to shift some more input to get Sz

which is a handle.

e Shift-reduce conflict

e Example: if-then-else

Case 2: With o802 on stack, don’t know if A — (5 is the handle, or B — (3135 is the handle

e Reduce-reduce conflict
e Example: E — F — E| — Elid

Viable Prefix

Prefix of a right-sentential form that does not continue beyond the rightmost handle.

With afw example of the previous slides, a viable prefix is something of the form «/3; where 5 = 3132

LR Parsing

e Stack contents as 5o X151 X2 X, Sm

e Its actions are driven by two tables, action and goto

Parser Configuration: (soX151X2 - XinSm, @i@ir1---an$ )

stack unconsumed input
action[sm, a;] can be:

e shift s: new config is (5o X151 X2+ X Sma;i$, air1 -+ an$)

e reduce A — (: Let |B| = r, goto[sm—r, A] = s: new config is (5o X151 X2+ Xin—rSm—rAS,a;a;11 - a,9)

e crror: perform recovery actions

e accept: Done parsing

LR Parsing

e action and goto depend only on the state at the top of the stack, not on all of the stack contents

— The s; states compactly summarize the “relevant” stack content that is at the top of the stack.

e You can think of goto as the action taken by the parser on “consuming” (and shifting) nonterminals

— similar to the shift action in the action table, except that the transition is on a nonterminal rather than a terminal

e The action and goto tables define the transitions of an FSA that accepts RHS of productions!

Example of LR Parsing Table and its Use

14



e See Text book Algorithm 4.7: (follows directly from description of LR parsing actions 2 slides earlier)

e See expression grammar (Example 4.33), its associated parsing table in Fig 4.31, and the use of the table to parse
id * id 4+ id (Fig 4.32)

LR Versus LL Parsing

Intuitively:
e LL parser needs to guess the production based on the first symbol (or first few symbols) on the RHS of a production
e LR parser needs to guess the production after seeing all of the RHS

Both types of parsers can use next k input symbols as look-ahead symbols (LL(k) and LR(k) parsers)

e Implication: LL(k) C LR(k)

How to Construct LR Parsing Table?

Key idea: Construct an FSA to recognize RHS of productions

e States of FSA remember which parts of RHS have been seen already.

“

e We use “ -7 to separate seen and unseen parts of RHS

LR(0) item: A production with “-” somewhere on the RHS. Intuitively,

“ 2

> grammar symbols before the are on stack;

“ 7

> grammar symbols after the represent symbols in the input stream.

E— - E
I E— -E+T
0 E— - T

T — -id

How to Construct LR Parsing Table?

e If there is no way to distinguish between two different productions at some point during parsing, then the same state
should represent both.

— Closure operation: If a state s includes LR(0) item A — « - Bf, and there is a production B — =, then s
should include B — - v

— goto operation: For a set I of items, goto[I, X] is the closure of all items A — aX - ( for each A — o« - X[
in [

Item set: A set of items that is closed under the closure operation, corresponds to a state of the parser.

Constructing Simple LR (SLR) Parsing Tables

Step 1: Construct LR(0) items (Item set construction)
Step 2: Construct a DFA for recognizing items
Step 3: Define action and goto based from the DFA

[tem Set Construction

1. Augment the grammar with a rule S’ — S, and make S’ the new start symbol

15



2. Start with initial set Iy corresponding to the item S — - S

apply closure operation on Ij.

=~ W

For each item set I and grammar symbol X, add goto[I, X] to the set of items

5. Repeat previous step until no new item sets are generated.

[tem Set Construction

E—E E—E+T|T T-—T+F|F F—(E)|id
Iy:E— - FE I1:T — F-
L:F—(-E)
L,:F —E.
L:E—T- Is: F—id-
Item Set Construction (Continued)
E —E E—E+T|T T —T+F|F F— () |id

Is : EF— E+ - T
Is: F — (E-)

Is . E— E+T-

I;:T —Tx - F
IloiT—>T*F‘

I : F— (E) -

Item Sets for the Example

16



ly: E' =-E ls: F =id:

& —+E+T
E-~T I E~E+T
T = ‘TxF T = ‘T%F
I =F Tt
F - +(E) F - (E)
F —-id F - id
ly: E' ~E Iy: T =T%F
E—=E+T S
F —-id
Iy E~T:
T = T-sF ts: F—(E"
O S o
b T—~F
[9: E-E+T:
Iix FE—=(E) T - T-%F
E—-= -E+T
E=:T li: T —=TxF:
T'— T#%F
T =:F I“: F"(E)
F'= «E)
F~-d

Constructing DFA to Recognize Viable Prefixes

SLR(1) Parse Table for the Example Grammar
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action goto
STATE
id + * ( ) $ E T F

0 R s4 1 2 3
| s6 acc
2 r2 87 r2 r2
3 4 r4 r4 r4
4 $5 s4 8 2 3
5 o 16 r6 r6
6 85 s4 9 3
7 $5 s4 10
8 s6 sl
9 rl s7 rl rl

10 3 13 r3 r3

11 o S rs r5

Define action and goto tables
e Let Iy, I1,..., I, be the item sets constructed before

Define action as follows

—IfA— o - afisin I; and there is a DFA transition to I; from I; on symbol a then action[i,a] = “shift j”
— If A— « - isin I; then action[i,a] = “reduce A — «” for every a € FOLLOW (A)

— If 8 — S - isin I; then action[l;,$] = “accept”

If any conflicts arise in the above procedure, then the grammar is not SLR(1).

goto transition for LR parsing defined directly from the DFA transitions.

All undefined entries in the table are filled with “error”

Deficiencies of SLR Parsing

SLR(1) treats all occurrences of a RHS on stack as identical.
Only a few of these reductions may lead to a successful parse.
Example:

S — AaAb A— ¢
S —— BbBa B — ¢

In=A{[8"— -5],[S — - AaAb],[S — - BbBa|,|[A— -|,[B— -]}.
Since FOLLOW (A) = FOLLOW (B), we have reduce/reduce conflict in state 0.

LR(1) Item Sets

Construct LR(1) items of the form A — « - (8, a, which means:

The production A — «a can be applied when the next token on input stream is a.

S — AaAb A—ce€
S — BbBa B —¢
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An example LR(1) item set:
IO = {[S/ — . S, $], [S — . AaAb7$], [S . BbBa’$]7
[A— -.a,[B— -,b]}.

LR(1) and LALR(1) Parsing

LR(1) parsing: Parse tables built using LR(1) item sets.

LALR(1) parsing: Look Ahead LR(1)
Merge LR(1) item sets; then build parsing table.
Typically, LALR(1) parsing tables are much smaller than LR(1) parsing table.

YACC

Yet Another Compiler Compiler:
LALR(1) parser generator.

e Grammar rules written in a specification (.y) file, analogous to the regular definitions in a lex specification file.

e Yacc translates the specifications into a parsing function yyparse().

yacc
spec.y ——— spec.tab.c

yyparse () calls yylex() whenever input tokens need to be consumed.

e bison: GNU variant of yacc.

Using Yacc

A
. C headers (#include)

h}

. Yacc declarations:
%token ...
%union{...}
precedences

%ot

. Grammar rules with actions:

Expr: Expr TOK_PLUS Expr
| Expr TOK_MINUS Expr
e

. C support functions

YACC

Yet Another Compiler Compiler:
LALR(1) parser generator.

e Grammar rules written in a specification (.y) file, analogous to the regular definitions in a lex specification file.

e Yacc translates the specifications into a parsing function yyparse().

yacc
spec.y ——— spec.tab.c
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e yyparse() calls yylex() whenever input tokens need to be consumed.

e bison: GNU variant of yacc

Using Yacc

YAl

. C headers (#include)
%t
. Yacc declarations:

Y%token ...
Y%union{...}
precedences

YA

. Grammar rules with actions:

Expr: Expr TOK_PLUS Expr
| Expr TOK_MINUS Expr
o

. C support functions

Conflicts and Resolution

e Operator precedence works well for resolving conflicts that involve operators

— But use it with care — only when they make sense, not for the sole purpose of
removing conflict reports

e Shift-reduce conflicts: Bison favors shift
— Except for the dangling-else problem, this strategy does not ever seem to work,

so don’t rely on it.

Reduce-Reduce Conflicts

sequence: /* empty */
{ printf ("empty sequence\n"); }
| maybeword
| sequence word
{ printf ("added word %s\n", $2); };

maybeword: /* empty */
{ printf ("empty maybeword\n"); }
| word
{ printf ("single word %s\n", $1); I};

In general, grammar needs to be rewritten to eliminate conflicts

Sample Bison File: Postfix Calculator

20



input: /* empty */
| input line

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); %}
exp: NUM { 88 = 81, }
| exp exp ’+’ { $$ = $1 + $2; }
| exp exp =2 { $$ = $1 - $2; +
| exp exp %> { $$ = $1 * $2; +
| exp exp /> { $% = $1 / $2; i
/* Exponentiation */
| exp exp °77  { $$ = pow ($1, $2); }
/* Unary minus */
| exp ’n’ { 8% = -81; I

Yoo

Infix Calculator

hi

#define YYSTYPE double

#include <math.h>

#include <stdio.h>

int yylex (void);

void yyerror (char const *);

h}

/* Bison Declarations */

Jtoken NUM

%1eft Y 4

%left )% J/J

hleft NEG /* negation--unary minus */
hright *°° /* exponentiation */

Infix Calculator (Continued)

%% /* The grammar follows. */
input: /* empty */
| input line

line: ’\n’
| exp ’\n’> { printf ("\t%.10g\n", $1); }

exp: NUM { 83 = $1; }

| exp ’+’ exp { 8% = $1 + $3; }

| exp ’-’ exp { %% = $1 - $3; }

| exp ’#*’ exp { 3% = $1 = $3; }

| exp ’/’ exp { $8 = $1 / $3; }

| >’ exp ‘prec NEG { $$ = -$2; }

| exp ’"7 exp { 88 = pow (81, $3); }

| 2 exp ?)’ { $% = $2; }
YA
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Error Recovery

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; };

e Pop stack contents to expose a state where error token is acceptable
e Shift error token onto the stack
e Discard input until reaching a token that can follow this error token

Error recovery strategies are never perfect — some times they lead to cascading errors, unless carefully
designed.

Left Versus Right Recursion

expseql: exp | expseql ’,’ exp;
is a left-recursive definition of a sequence of exp’s, whereas
expseql: exp | exp ’,’ expseql;
is a right-recursive definition
e Left-recursive definitions are no-no for LL parsing, but yes-yes for LR parsing

e Right-recursive definition is bad for LR parsing as it needs to shift entire list on stack
before any reduction — increases stack usage
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