Phases of Syntax Analysis

1. Identify the words: **Lexical Analysis**.
 Converts a stream of characters (input program) into a stream of tokens.
 Also called *Scanning* or *Tokenizing*.

2. Identify the sentences: **Parsing**.
 Derive the structure of sentences: construct *parse trees* from a stream of tokens.

Lexical Analysis

Convert a stream of characters into a stream of *tokens*.

- **Simplicity**: Conventions about “words” are often different from conventions about “sentences”.
- **Efficiency**: Word identification problem has a much more efficient solution than sentence identification problem.
- **Portability**: Character set, special characters, device features.

Terminology

- **Token**: Name given to a family of words.
 - e.g., `integer_constant`
- **Lexeme**: Actual sequence of characters representing a word.
 - e.g., 32894
- **Pattern**: Notation used to identify the set of lexemes represented by a token.
 - e.g., `[0-9]+`

A few more examples:

<table>
<thead>
<tr>
<th>Token</th>
<th>Sample Lexemes</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>while</code></td>
<td><code>while</code></td>
<td><code>while</code></td>
</tr>
<tr>
<td><code>integer_constant</code></td>
<td><code>32894, -1093, 0</code></td>
<td><code>[0-9]+</code></td>
</tr>
<tr>
<td><code>identifier</code></td>
<td><code>buffer_size</code></td>
<td><code>[a-zA-Z]+</code></td>
</tr>
</tbody>
</table>

Patterns

How do we *compactly* represent the set of all lexemes corresponding to a token?

For instance:

The token `integer_constant` represents the set of all integers: that is, all sequences of digits (0–9), preceded by an optional sign (+ or −).

Obviously, we cannot simply enumerate all lexemes.

Use **Regular Expressions**.

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ.

- **a**: stands for the set `{a}` that contains a single string `a`.
Analogous to *Union*.

- *ab*: stands for the set \{ab\} that contains a single string `ab`.
 - Analogous to *Product*.
 - \((a|b)(a|b)\): stands for the set \{aa, ab, ba, bb\}.

- \(a^*\): stands for the set \{\(\epsilon, a, aa, aaa, \ldots\)\} that contains all strings of zero or more `a`'s.
 - Analogous to *closure* of the product operation.

Regular Expressions

Examples of Regular Expressions over \{a, b\}:

- \((a|b)^*\): Set of strings with zero or more `a`'s and zero or more `b`'s:
 \[\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}\]

- \((a^*b)^*\): Set of strings with zero or more `a`'s and zero or more `b`'s such that all `a`'s occur before any `b`:
 \[\{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, \ldots\}\]

- \((a^*b^*)^*\): Set of strings with zero or more `a`'s and zero or more `b`'s:
 \[\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}\]

Language of Regular Expressions

Let \(R\) be the set of all regular expressions over \(\Sigma\). Then,

- Empty String: \(\epsilon \in R\)
- Unit Strings: \(\alpha \in \Sigma \Rightarrow \alpha \in R\)
- Concatenation: \(r_1, r_2 \in R \Rightarrow r_1r_2 \in R\)
- Alternative: \(r_1, r_2 \in R \Rightarrow (r_1 \mid r_2) \in R\)
- Kleene Closure: \(r \in R \Rightarrow r^* \in R\)

Regular Expressions

Example: \((a \mid b)^*\)

\[
\begin{align*}
L_0 &= \{\epsilon\} \\
L_1 &= L_0 \cdot \{a, b\} \\
&= \{\epsilon\} \cdot \{a, b\} \\
&= \{a, b\} \\
L_2 &= L_1 \cdot \{a, b\} \\
&= \{a, b\} \cdot \{a, b\} \\
&= \{aa, ab, ba, bb\} \\
L_3 &= L_2 \cdot \{a, b\} \\
&= \ldots \\
L &= \bigcup_{i=0}^{\infty} L_i = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}
\end{align*}
\]

Semantics of Regular Expressions
Semantic Function \mathcal{L}: Maps regular expressions to sets of strings.

\[
\begin{align*}
\mathcal{L}(\varepsilon) &= \{\varepsilon\} \\
\mathcal{L}(\alpha) &= \{\alpha\} \quad (\alpha \in \Sigma) \\
\mathcal{L}(r_1 | r_2) &= \mathcal{L}(r_1) \cup \mathcal{L}(r_2) \\
\mathcal{L}(r_1 \cdot r_2) &= \mathcal{L}(r_1) \cdot \mathcal{L}(r_2) \\
\mathcal{L}(r^*) &= \{\varepsilon\} \cup (\mathcal{L}(r) \cdot \mathcal{L}(r^*))
\end{align*}
\]

Computing the Semantics

\[
\begin{align*}
\mathcal{L}(a) &= \{a\} \\
\mathcal{L}(a | b) &= \mathcal{L}(a) \cup \mathcal{L}(b) \\
&= \{a\} \cup \{b\} \\
&= \{a, b\} \\
\mathcal{L}(ab) &= \mathcal{L}(a) \cdot \mathcal{L}(b) \\
&= \{a\} \cdot \{b\} \\
&= \{ab\} \\
\mathcal{L}((a | b)(a | b)) &= \mathcal{L}(a | b) \cdot \mathcal{L}(a | b) \\
&= \{a, b\} \cdot \{a, b\} \\
&= \{aa, ab, ba, bb\}
\end{align*}
\]

Computing the Semantics of Closure

Example: $\mathcal{L}((a | b)^*)$
\[
= \{\varepsilon\} \cup (\mathcal{L}(a | b) \cdot \mathcal{L}((a | b)^*))
\]

\[
\begin{align*}
L_0 &= \{\varepsilon\} & \text{Base case} \\
L_1 &= \{\varepsilon\} \cup (\{a, b\} \cdot L_0) \\
&= \{\varepsilon\} \cup (\{a, b\} \cdot \{\varepsilon\}) \\
&= \{\varepsilon, a, b\} \\
L_2 &= \{\varepsilon\} \cup (\{a, b\} \cdot L_1) \\
&= \{\varepsilon\} \cup (\{a, b\} \cdot \{\varepsilon, a, b\}) \\
&= \{\varepsilon, a, b, aa, ab, ba, bb\} \\
&\vdots
\end{align*}
\]

$\mathcal{L}((a | b)^*) = L_\infty = \{\varepsilon, a, b, aa, ab, ba, bb, \ldots\}$

Another Example

$\mathcal{L}((a^*b^*)^*)$:

\[
\begin{align*}
\mathcal{L}(a^*) &= \{\varepsilon, a, aa, \ldots\} \\
\mathcal{L}(b^*) &= \{\varepsilon, b, bb, \ldots\} \\
\mathcal{L}(a^*b^*) &= \{\varepsilon, a, b, aa, ab, bb, \\
&\qquad\quad\quad\quad aab, abb, bbb, \ldots\} \\
\mathcal{L}((a^*b^*)^*) &= \{\varepsilon\} \\
&\cup \{\varepsilon, a, b, aa, ab, bb, \\
&\qquad\quad\quad\quad aab, abb, bbb, \ldots\} \\
&\cup \{\varepsilon, a, b, aa, ab, ba, bb, \\
&\qquad\quad\quad\quad aab, aba, abb, baa, bab, bba, bbb, \ldots\} \\
&\vdots
\end{align*}
\]
Regular Definitions

Assign “names” to regular expressions.
For example,

\[
\begin{align*}
\text{digit} & \rightarrow 0 \mid 1 \cdots 9 \\
\text{natural} & \rightarrow \text{digit digit}^* \\
\end{align*}
\]

SHORTHANDS:

- \(a^+\): Set of strings with one or more occurrences of \(a\).
- \(a?\): Set of strings with zero or one occurrences of \(a\).

Example:

\[
\text{integer} \rightarrow (+|−)?\text{digit}^+ \\
\]

Regular Definitions: Examples

\[
\begin{align*}
\text{float} & \rightarrow \text{integer} \cdot \text{fraction} \\
\text{integer} & \rightarrow (+|−)?\text{no_leading_zero} \\
\text{no_leading_zero} & \rightarrow (\text{nonzero_digit} \text{digit}^*) | 0 \\
\text{fraction} & \rightarrow \text{no_trailing_zero} \text{exponent}^* \\
\text{no_trailing_zero} & \rightarrow (\text{digit}^* \text{nonzero_digit}) | 0 \\
\text{exponent} & \rightarrow (E | e) \text{integer} \\
\text{digit} & \rightarrow 0 | 1 \cdots 9 \\
\text{nonzero_digit} & \rightarrow 1 | 2 \cdots 9 \\
\end{align*}
\]

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

- They can hence be used to specify the set of lexemes associated with a token.
 - Used as the pattern language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Using Regular Definitions for Lexical Analysis

Q: Is \(\text{ababbaabb}\) in \(\mathcal{L}((a^*b^*)^*)\)?
A: Hm. Well. Let’s see.

\[
\mathcal{L}((a^*b^*)^*) = \{\epsilon\} \\
\cup \{\epsilon, a, b, aa, ab, bb, \\
\quad \text{aaa, aab, abb, bbb, \ldots}\} \\
\cup \{\epsilon, a, b, aa, ab, ba, bb, \\
\quad \text{aaa, aab, aba, abb, baa, bab, bba, bbb, \ldots}\} \\
\vdots \\
\mathcal{L}((a^*b^*)^*) = ???
\]

Recognizers

Construct automata that recognize strings belonging to a language.

- Finite State Automata \(\Rightarrow\) Regular Languages
• Push Down Automata ⇒ Context-free Languages
 ▶ Stack is used to maintain counter, but only one counter can go arbitrarily high.

Recognizing Finite Sets of Strings

Identifying words from a small, finite, fixed vocabulary is straightforward.
For instance, consider a stack machine with push, pop, and add operations with two constants: 0 and 1.
We can use the automaton:

Finite State Automata

Represented by a labeled directed graph.
• A finite set of states (vertices).
• Transitions between states (edges).
• Labels on transitions are drawn from Σ ∪ {ε}.
• One distinguished start state.
• One or more distinguished final states.

Finite State Automata: An Example

Consider the Regular Expression \((a \mid b)^*a(a \mid b)\).
\(L((a \mid b)^*a(a \mid b)) = \{aa, ab, aaa, aab, baa, bab, aaaa, aaab, abaa, abab, baaa, \ldots\}\).
The following automaton determines whether an input string belongs to \(L((a \mid b)^*a(a \mid b))\):

Determinism

\((a \mid b)^*a(a \mid b)\):
Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string \(x \)

... if beginning from the start state

... we can trace some path through the automaton

... such that the sequence of edge labels spells \(x \)

... and end in a final state.

Recognition with an NFA

Is \(abab \in \mathcal{L}((a | b)^*a(a | b)) \)?

\[
\begin{array}{c}
\text{Input:} & a & b & a & b \\
\text{Path 1:} & 1 & 1 & 1 & 1 & 1 \\
\text{Path 2:} & 1 & 1 & 1 & 2 & 3 & \text{Accept} \\
\text{Path 3:} & 1 & 2 & 3 & \bot & \bot \\
\end{array}
\]

Accept

Recognition with an NFA

Is \(abab \in \mathcal{L}((a | b)^*a(a | b)) \)?

\[
\begin{array}{c}
\text{Input:} & a & b & a & b \\
\text{Path 1:} & 1 & 1 & 1 & 1 & 1 \\
\text{Path 2:} & 1 & 1 & 1 & 2 & 3 & \text{Accept} \\
\text{Path 3:} & 1 & 2 & 3 & \bot & \bot \\
\end{array}
\]

Accept

Recognition with a DFA

Is \(abab \in \mathcal{L}((a | b)^*a(a | b)) \)?

\[
\begin{array}{c}
\text{Input:} & a & b & a & b \\
\text{Path 1:} & 1 & 1 & 1 & 1 & 1 \\
\text{Path 2:} & 1 & 1 & 1 & 2 & 3 & \text{Accept} \\
\text{Path 3:} & 1 & 2 & 3 & \bot & \bot \\
\end{array}
\]

Accept
NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by ϵ.
 (Spontaneous transitions)
- All transition labels in a DFA belong to Σ.
- For some string x, there may be many accepting paths in an NFA.
- For all strings x, there is one unique accepting path in a DFA.
- Usually, an input string can be recognized faster with a DFA.
- NFAs are typically smaller than the corresponding DFAs.

Regular Expressions to NFA

Thompson’s Construction: For every regular expression r, derive an NFA $N(r)$ with unique start and final states.

- ϵ
- $\alpha \in \Sigma$
- $r_1 \mid r_2$
- r^*

Example

$(a \mid b)^*a(a \mid b)$:
Recognition with an NFA

Is $abab \in L((a | b)^*a(a | b))$?

Input: $a \ b \ a \ b$
Path 1: 1 1 1 1 1
Path 2: 1 1 1 2 3 Accept
Path 3: 1 2 3 ⊥ ⊥

All Paths: {1} {1,2} {1,3} {1,2} {1,3} Accept

Recognition with an NFA (contd.)

Is $aaab \in L((a | b)^*a(a | b))$?

Input: $a \ a \ a \ b$
Path 1: 1 1 1 1 1
Path 2: 1 1 1 1 2
Path 3: 1 1 1 2 3
Path 4: 1 1 2 3 ⊥
Path 5: 1 2 3 ⊥ ⊥

All Paths: {1} {1,2} {1,2,3} {1,2,3} {1,2,3} Accept

Recognition with an NFA (contd.)

Is $aabb \in L((a | b)^*a(a | b))$?

Input: $a \ a \ a \ b$
Path 1: 1 1 1 1 1
Path 2: 1 1 2 3 ⊥
Path 3: 1 2 3 ⊥ ⊥

All Paths: {1} {1,2} {1,2,3} {1,2,3} {1,2,3} REJECT

Converting NFA to DFA

Subset construction
Given a set S of NFA states,

- compute $S_\epsilon = \epsilon$-closure(S): S_ϵ is the set of all NFA states reachable by zero or more ϵ-transitions from S.
- compute $S_\alpha = \text{goto}(S, \alpha)$:
 - S' is the set of all NFA states reachable from S by taking a transition labeled α.
 - $S_\alpha = \epsilon$-closure(S').

Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA.
Start state of DFA = ϵ-closure(start state of NFA).
From a state s in DFA that corresponds to a set of states S in NFA:
add a transition labeled α to state s' that corresponds to a non-empty S' in NFA, such that $S' = \text{goto}(S, \alpha)$.

ε-closure($\{1\}$) = $\{1\}$

goto($\{1\}, a$) = $\{1, 2\}$

goto($\{1\}, b$) = $\{1\}$

goto($\{1, 2\}, a$) = $\{1, 2, 3\}$

goto($\{1, 2\}, b$) = $\{1, 3\}$

goto($\{1, 2, 3\}, a$) = $\{1, 2, 3\}$

\[\vdots\]

goto($\{1, 2, 3\}$, b) = $\{1\}$

goto($\{1, 3\}, a$) = $\{1, 2\}$

goto($\{1, 3\}, b$) = $\{1\}$

\[\vdots\]

$R = \text{Size of Regular Expression}$

$N = \text{Length of Input String}$

<table>
<thead>
<tr>
<th></th>
<th>NFA</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of Automaton</td>
<td>$O(R)$</td>
<td>$O(2^R)$</td>
</tr>
</tbody>
</table>

\[\text{NFA vs. DFA}\]
Lexical Analysis

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a token.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an action: emit the corresponding token.

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

```
[0-9]+ { emit(INTEGER_CONSTANT); }
[0-9]+.""[0-9]+ { emit(FLOAT_CONSTANT); }
```

Lex

Tool for building lexical analyzers.
Input: lexical specifications (.l file)
Output: C function (yylex) that returns a token on each invocation.

```
%%
[0-9]+ { return(INTEGER_CONSTANT); }
[0-9]+.""[0-9]+ { return(FLOAT_CONSTANT); }
```

Tokens are simply integers (#define’s).

Lex Specifications

```
%
C header statements for inclusion
%

Regular Definitions e.g.:
  digit [0-9]
%

Token Specifications e.g.:
  {digit}+ { return(INTEGER_CONSTANT); }
%

Support functions in C
```

Regular Expressions in Lex
• Range: \([0-7]\): Integers from 0 through 7 (inclusive)
 \([a-nx-zA-Q]\): Letters \(a\) thru \(n\), \(x\) thru \(z\) and \(A\) thru \(Q\).
• Exception: \([^/]\): Any character other than \(/\).
• Definition: \(\{\text{digit}\}\): Use the previously specified regular definition \(\text{digit}\).
• Special characters: Connectives of regular expression, convenience features.
 e.g.:

 \(|\ast\|^\sim\)

Special Characters in Lex

\(|\ast\ast\ast\|^\sim\)

Same as in regular expressions

[]

Enclose ranges and exceptions

\(\{\}\)

Enclose “names” of regular definitions

\(^\sim\)

Used to negate a specified range (in Exception)

\(.\)

Match any single character except newline

\(\n, \t\)

Newline and Tab

For literal matching, enclose special characters in double quotes ("") e.g.: "*"

Or use \(\backslash\) to escape. e.g.: "\n"

Examples

<table>
<thead>
<tr>
<th>for</th>
<th>Sequence of (f, o, r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>"</td>
<td></td>
</tr>
<tr>
<td>(\ast)</td>
<td>Sequence of non-newline characters</td>
</tr>
<tr>
<td>[^//]+</td>
<td>Sequence of characters except (\ast) and (/)</td>
</tr>
<tr>
<td>"[^"]"</td>
<td>Sequence of non-quote characters beginning and ending with a quote</td>
</tr>
<tr>
<td>({\text{letter}}</td>
<td>"_"{\text{letter}}</td>
</tr>
</tbody>
</table>

A Complete Example

```
%
#include <stdio.h>
#include "tokens.h"
%
digit [0-9]
hexdigit [0-9a-f]
%
"\+" { return(PLUS); }
"\-" { return(MINUS); }
\{digit\}+ { return(INTEGER_CONSTANT); }
\{digit\}+"\."\{digit\}+ { return(FLOAT_CONSTANT); }
. { return(SYNTAX_ERROR); }
%
```

Actions

Actions are attached to final states.

• Distinguish the different final states.
• Can be used to set *attribute values*.
• Fragment of C code (blocks enclosed by ‘{’ and ‘}’).

Attributes

Additional information about a token’s lexeme.

• Stored in variable `yy1val`
• Type of attributes (usually a union) specified by `YYSTYPE`
• Additional variables:
 – `yytext`: Lexeme (*Actual text string*)
 – `yyleng`: length of string in `yytext`
 – `yylineno`: Current line number (number of ‘\n’ seen thus far)
 * enabled by `%option yylineno`

Priority of matching

What if an input string matches more than one pattern?

```
"if" { return(TOKEN_IF); }
{letter}+ { return(TOKEN_ID); }
"while" { return(TOKEN_WHILE); }
```

• A pattern that matches the longest string is chosen.
 Example: `if1` is matched with an identifier, not the keyword `if`.
• Of patterns that match strings of same length, the first (from the top of file) is chosen.
 Example: `while` is matched as an identifier, not the keyword `while`.

Constructing Scanners using (f)lex

• Scanner specifications: `specifications.l`
  ```
  (f)lex
  specifications.l ———> lex.yy.c
  ```
• Generated scanner in `lex.yy.c`
  ```
  (g)cc
  lex.yy.c ———> executable
  ```
 – `yywrap()`: hook for signalling end of file.
 – Use `-lf1` (flex) or `-ll` (lex) flags at link time to include default function `yywrap()` that always returns 1.

Implementing a Scanner

```
transition : state × Σ → state

algorithm scanner() {
  current_state = start state;
  while (1) {
    c = getc(); /* on end of file, ... */
    if defined(transition(current_state, c))
      current_state = transition(current_state, c);
    else
      return s;
  }
}
```
Implementing a Scanner (contd.)

Implementing the transition function:

- Simplest: 2-D array.

 Space inefficient.

- Traditionally compressed using row/column equivalence. (default on (f)lex)

 Good space-time tradeoff.

- Further table compression using various techniques:

 - Example: RDM (Row Displacement Method):

 Store rows in overlapping manner using 2 1-D arrays.

 Smaller tables, but longer access times.

Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with symbol (name) table.