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@ Often, we need to find closed form solutions of a series

e Applications arise in algorithm analysis, data analysis, financial applications, etc.

e Examples

:
1+2+3+--~+n:@
1 — x"1
T+x+x"+- +x"=
1—x

@ Sometimes, we are interested in products, and in reasonable approximations

n n
Sterling’s approximation: n! = +/2mn (—)
e

o Interestingly, m and e appear in what is ultimately an integer!

o Approximation error is just 1% for n = 6, decreasing to 0.1% at n = 100
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@ You won the a large cash award. (Congratulations!)

@ You are given the option of either one large payout of $20M, or annual payments of

$1M per year for ever.

@ Which one should you take?
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e To make an informed decision, you need to consider:

o the interest your lump sum payment will earn

@ Let us assume you can earn 6% with very safe investments

e Compare what you will have after, say, 100 years in each case
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e Key idea: $1M you receive next year is worth only $1/1.06M worth today
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Alternative: Current Value of Future Money

e Key idea: $1M you receive next year is worth only $1/1.06M worth today
o Reason: At 6% interest, $1/1.06 will become $1/1.06 * (1 + 0.06) = 1M next year

@ So, current value of all monies you will get
= 1+1/1.06 +1/1.06* + 1/1.06> + - - -

o0
; 1
= E x' where x = —
- 1.06
=0
1 _ oo

X ) . .
e using the formula for geometric series
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Current Price of Future Cash Flow

e This is how annuities are priced
o Retirees often purchase annuities using part (or all) of their retirement savings
e Financial institutions calculate the price to charge using a calculation similar to the above

@ Annuities are paid only while the purchaser is alive
o Modify calculation to use finite rather than infinite sum

@ Pensions are also calculated in a similar way
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@ Let us use the above calculation to price a 20-year annuity:

= 14 1/1.06 + 1/1.06* + 1/1.06° + - - - 1/1.06"

1.06

i=0

1— 20
= using the formula for geometric series

1120
_ 1-(w)
— 1
T 106
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Summation Techniques: Perturbation Method

Find a “perturbation” that can cancel out most terms:
o letS=T+x+x"+---+x"
@ Compute xS = x+ x> + - -+ + x" 4 x"*'

Subtract one from the other:

Simplifying, we get:

Voila! We have derived the formula for sum of geomeric series!
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Perturbing An Arithmetic Progression

Find a “perturbation” that makes all terms identical:

o letS=+2+3+---+n

o Create another instance of S by reversing the order of terms
s = 1 4+ 2 + 3 + + o
S = n + (n=1) 4+ (n—=2) + -+ + 1
28 = (n+1) + (n+1) + (n+1) + + (n+71)

Simplifying, we get S = n(n+ 1)/2
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@ Sometimes, you perturb a seemingly unrelated sequence in order to get your sum
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Alternative Perturbation for Arithmetic Progression

@ Sometimes, you perturb a seemingly unrelated sequence in order to get your sum

@ Start with sum of squares, and perturb by subtracting sum on
i i? = ? + 2 4+ -+ (n—1)2 +

i=1

S (i—1)? = 0 + 1 + 22 + -+ + (n—1)

27:1 (iz_(i_1)2) = n?
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Alternative Perturbation for Arithmetic Progression

@ Sometimes, you perturb a seemingly unrelated sequence in order to get your sum

@ Start with sum of squares, and perturb by subtracting sum on

i i = 2 4+ 2 4+ o 4+ (n=1)?2 4+
27:1 (i — 1)2 = 02 + 12 + 22 4+ ... 4+ (n— 1)2
Y (B=(i=1)?%) = ©

@ Simplifying Ihs using the identity a*> — b*> = (a — b)(a + b), we get

zn:iz—(i—1)2:zn:(i—(i—1 i+i—1) 221—1 —221—21—2(

n
il —
i—1

i=1 i=1 -
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Alternative Perturbation for Arithmetic Progression

@ Sometimes, you perturb a seemingly unrelated sequence in order to get your sum

@ Start with sum of squares, and perturb by subtracting sum on

i i = 2 4+ 2 4+ o 4+ (n=1)?2 4+
27:1 (i — 1)2 = 02 + 12 + 22 4+ ... 4+ (n— 1)2
Y (B=(i=1)?%) = ©

@ Simplifying Ihs using the identity a*> — b*> = (a — b)(a + b), we get

zn:,'z_(i_1)2:zn:(i—(i—1 i+i—1) 221—1—221—21—2<ni>—

i=1 i=1 -

@ Setting this equal to the rhs and then simplifying, we get: 2(3>.7_, i) — n = n?

. n . _ n?+n _ n(n+1)
9 ie, E =5 =5
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Summation of i¥

@ Forany > ik, you can use the same method! Let us examine > /2
POy 2 = P+ 2+ 0+ (n=1)P7 + 9
Py (i—1)3 =0 + 1B + 2 + - + (n—1)°
Yim (P=(i=1)) = n’
@ Simplifying |hs using the identity a®> — b®> = (a — b)(a® + b* + ab), we get
Y P = (=1 = YL (== 0)) P+ (=) +i(i 1))
= Y0 .37 =3i+1
= 3P =3 i+ =n
@ Further simplifying, >-7_ i = (0 —n+3Y."_,i)/3

@ Substituting for > 7, i from previous slide into rhs and simplifying:

iiz _ n(n+ 1)6(2n+ 1)
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Perturbing By Differentiation: Arithmetico Geometric Prog.

e How do you find the following sum?
n—1
Zixi:x+2x2+3x3—{—---(n— 1)x"
i=1
@ This looks kind of similar to geometric progression, so start with that:

n—1 1— x"
Zx’:x+x2—|—x3+-~~x”’1:

i=1

1T—x
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Perturbing By Differentiation: Arithmetico Geometric Prog.

e How do you find the following sum?
n—1
Zixi:x+2x2+3x3—{—---(n— 1)x"
i=1
@ This looks kind of similar to geometric progression, so start with that:

n—1 n
i 2 3 n—1 1—x

E X =X+x +x +---x =

i=1

1T—x

@ Each term ix’ in AGP seems like it’s obtained by differentiating the term x'*' in GP!
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Perturbing By Differentiation: Arithmetico Geometric Prog.

d [~ p d [(1—X"
a(ZX) - ==

S —nx" (1= x) = (=1)(1 = x")
IZ_;IX = (-
="+ (n—1)x"
N (1—x)?
 (n=1)x" = nx""T 1
S (P

The AGP we want is not exactly the lhs here. But if we multiply both sides by x, we

will be there:
n—1

Z,, (n—1)x"" — nx" 4+ x
ix' =
— (1 — x)?
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for i=2 to ndo {
for j=2to Vido {
if (j perfectly divides i)
continue; /* Not a prime, skip to next i */

}

. DI . 9
print 1, " is prime’;
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A Program for Computing Prime Numbers

for i=2 to ndo {
for j=2 to v/i do {
if (j perfectly divides i)
continue; /* Not a prime, skip to next i */
}
print i, “ is prime”;
}

@ How long does this program take to execute?

o Let us say that only the division operation takes significant time.

e How many divisions are needed, as a function of n?

21/38



Integration: The Master Technique for Approximating Sums

o Consider > Vi

e We can’t use any tricks here — in fact, no closed from expression is known for this

summation.

@ I/dea: Approximate using integration
o Integral [\ f(x) dx yields the area under the curve f(x) between x = 1and x = n

o Can we relate it to the discrete sum >_"_, f(x)?
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Pictorial representation of Discrete Sum

o The discrete sum represents the area of the shaded region:
fn) —
fin=1)—

f3) -
Q) -
fay =

0 1 2 3 n—2 n—1 n
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Pictorial Comparison of Discrete Sum and Integral

@ The integral f1 ) dx represents the area of the shaded region:

fin) —
fin—=1)—

Sx)

f3) -
Q) -
Ay =

| | | | | | |
0 1 2 3 n—2 n—1 n

@ Unshaded region within the boxes represents the difference between the integral
and discrete sum Z": f(x)

e So, > "_. f(x) )+ f1 ) dx is an under-approximation of the discrete sum.
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Pictorial Comparison of Discrete Sum and Integral

@ Let us shift f one unit to the left, i.e., plot f(x + 1) instead.

fn) -
fin—1)— fx+1)

13~
@ -
-

o > f(x) n) + f1 ) dx is an over-approximation in this case.

25/38



Dotting the i’s ...

Weakly Increasing and Decreasing Functions
A function f : R™ — R is weakly increasing iff x < y — f(x) < f(y).
A function f : RT — R is weakly decreasing iff x < y — f(x) > f(y).

Summation By Integration
Let f : RT — R™, and let S and [ be defined as follows:

Su= Zf(l) [ = /;f(x)dx

o If f is weakly increasing then I + f(1) < § < [+ f(n)

o If f is weakly decreasing then I + f(1) > S > I+ f(n)
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Back to the Square Root Example ...

o Integral:
3/2

2. 30
/\/_dx— 32 —3(n/ -1

@ So, the actual value is bounded between the under and over approximations:

14 2@ <D VRS VA X )

x=1
(Note: The square root function is weakly increasing.)

e For larger n values, n*/> dominates over 1/n, so the approximation is pretty good.

o e.g., the error is about 1/n,
e i.e. about 10% for n > 10, about 1% for n > 100, etc.
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Can we turn this into a summation?
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Approximating Factorial ...

Can we turn this into a summation?
n
In n! :|n1—i—|n2—|—---|nn:Z|ni
i=0

Now we can apply our integration trick! But first we need to integrate In x:

/1n|n(x)dx:x|n(x)—x::nln(n)—n—ﬂﬁﬁ’)+1 =nln(n) —n+1
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Approximating Factorial ...

Using the formula for approximating sums using integration,

Inf1) + nln(n —n+1<Z|n ) < nin(n) — n+ 1+ In(n)

Let us take the average of the two bounds as our estimate:(n + 0.5) In(n) — n+ 1

Now, take the exponent of every term so as to get rid of the In operations.

Our result: n! = — = eyv/n (—) Sterling’s approx: n! = v/2mw+/n <E>
e e
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center of mass

NN 2=
table\\ |
N\




How much overhang do you get with nth block?

M N center of mass top n books

of topn books
center of mass | 7 |

of all n+1 books

table\\ 2(n+l)
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172

1/4
1/6
Table 1/8
Th ti d: + - ! + c+ Z
e summation we need: — = = _
2 4

The sum )7 | 1 is called the n" h Harmonic number H,. But how do we compute it?
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Integration to the Rescue ...

We need to integrate 1/x. Specifically:

/1)1( dx = Inx)| = In(n) — Infy

Noting that f(1) = 1and f(n) = 1/n, we have the bound:

1 "1
— 4+ < - < 1
n+”(”)—;i— n(n) +

'Since 1/x is a decreasing function, so we need to use the bound I+ f(n) < S < I+ f(1)
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Integration to the Rescue ...

We need to integrate 1/x. Specifically:

/1:—( dx = Inx)| = In(n) — Infy

Noting that f(1) = 1and f(n) = 1/n, we have the bound:

——l—ln <Z <In(n

@ The maximum overhang is infinite!

@ We get overhang longer than one full block when n =4

'Since 1/x is a decreasing function, so we need to use the bound I+ f(n) < S < I+ f(1)
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Summary of Summation Techniques

@ Perturbation Method

o Example 1: Geometric Progression: ) 7 x' = X';:TT
o Example 2: Arithmetic Progression: ) 7 i = @
o Example 3: Sum of i*: 77 | = w 2

e Using differentiation

o Example 4: Arithmetico Geometric Progression: » ;| ! ixi=

@ Using integration

- (o0’

(n 1)x"—nx"" 141

(1=x)?

o Example5: 1+ 2(n*2—1) < |37 /x| < /n+3(n*/2-1)
+1 <

o Example 6: Factorial: nln(n) —n

YoioIn(i)| < nin(n) —n+1+In(n)

o Example 7: Hanging blocks: 1 +In(n) < |37, 1| <lIn(n)+1

36/38



37/38



38/38



