Series and Summations (Textbook §13.1 to §13.5)

R. Sekar

- Often, we need to find closed form solutions of a series
- Applications arise in algorithm analysis, data analysis, financial applications, etc.
- Examples

$$
\begin{aligned}
& 1+2+3+\cdots+n=\frac{n(n+1)}{2} \\
& 1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}
\end{aligned}
$$

- Sometimes, we are interested in products, and in reasonable approximations

$$
\text { Sterling's approximation: } n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

- Interestingly, π and e appear in what is ultimately an integer!
- Approximation error is just 1% for $n=6$, decreasing to 0.1% at $n=100$

Prize Payout Question

- You won the a large cash award. (Congratulations!)
- You are given the option of either one large payout of $\$ 20 \mathrm{M}$, or annual payments of \$1M per year for ever.
- Which one should you take?

Future Value of Money

- To make an informed decision, you need to consider:
- the interest your lump sum payment will earn
- Let us assume you can earn 6% with very safe investments
- Compare what you will have after, say, 100 years in each case

Alternative: Current Value of Future Money

- Key idea: $\$ 1 \mathrm{M}$ you receive next year is worth only $\$ 1 / 1.06 \mathrm{M}$ worth today

Alternative: Current Value of Future Money

- Key idea: \$1M you receive next year is worth only $\$ 1 / 1.06 \mathrm{M}$ worth today
- Reason: At 6% interest, $\$ 1 / 1.06$ will become $\$ 1 / 1.06 *(1+0.06)=1 \mathrm{M}$ next year
- So, current value of all monies you will get

$$
\begin{aligned}
& =1+1 / 1.06+1 / 1.06^{2}+1 / 1.06^{3}+\cdots \\
& =\sum_{i=0}^{\infty} x^{i} \text { where } x=\frac{1}{1.06} \\
& =\frac{1-x^{\infty}}{1-x} \text { using the formula for geometric series } \\
& =\frac{1-\left(\frac{1}{1.06}\right)^{\infty}}{1-\frac{1}{1.06}}=\frac{1}{1-\frac{1}{1.06}} \\
& =17.7 \mathrm{M}
\end{aligned}
$$

Current Price of Future Cash Flow

- This is how annuities are priced
- Retirees often purchase annuities using part (or all) of their retirement savings
- Financial institutions calculate the price to charge using a calculation similar to the above
- Annuities are paid only while the purchaser is alive
- Modify calculation to use finite rather than infinite sum
- Pensions are also calculated in a similar way

Annuity Based on Expected Lifetime

- Let us use the above calculation to price a 20-year annuity:

$$
\begin{aligned}
& =1+1 / 1.06+1 / 1.06^{2}+1 / 1.06^{3}+\cdots 1 / 1.06^{19} \\
& =\sum_{i=0}^{19} x^{i} \text { where } x=\frac{1}{1.06} \\
& =\frac{1-x^{20}}{1-x} \text { using the formula for geometric series } \\
& =\frac{1-\left(\frac{1}{1.06}\right)^{20}}{1-\frac{1}{1.06}} \\
& =12.16 \mathrm{M}
\end{aligned}
$$

Summation Techniques: Perturbation Method

- Find a "perturbation" that can cancel out most terms:
- Let $S=1+x+x^{2}+\cdots+x^{n}$
- Compute $x S=x+x^{2}+\cdots+x^{n}+x^{n+1}$
- Subtract one from the other:

$$
x S-S=x^{n+1}-1
$$

- Simplifying, we get:

$$
S=\frac{x^{n+1}-1}{x-1}
$$

Voila! We have derived the formula for sum of geomeric series!

Perturbing An Arithmetic Progression

- Find a "perturbation" that makes all terms identical:
- Let $S=+2+3+\cdots+n$
- Create another instance of S by reversing the order of terms

$$
\begin{array}{rcccccccccc}
S & = & 1 & + & 2 & + & 3 & + & \cdots & + & n \\
S & = & n & + & (n-1) & + & (n-2) & + & \cdots & + & 1 \\
\hline 2 S & = & (n+1) & + & (n+1) & + & (n+1) & + & \cdots & + & (n+1)
\end{array}
$$

- Simplifying, we get $S=n(n+1) / 2$

Alternative Perturbation for Arithmetic Progression

- Sometimes, you perturb a seemingly unrelated sequence in order to get your sum

Alternative Perturbation for Arithmetic Progression

- Sometimes, you perturb a seemingly unrelated sequence in order to get your sum
- Start with sum of squares, and perturb by subtracting sum on

$$
\begin{array}{lclccc}
\sum_{i=1}^{n} & i^{2} & 1^{2}+2^{2}+\cdots+(n-1)^{2}+n^{2} \\
\sum_{i=1}^{n}(i-1)^{2} & =0^{2}+1^{2}+2^{2}+\cdots+(n-1)^{2} & \\
\hline \sum_{i=1}^{n}\left(i^{2}-(i-1)^{2}\right) & = & \cdots & n^{2}
\end{array}
$$

Alternative Perturbation for Arithmetic Progression

- Sometimes, you perturb a seemingly unrelated sequence in order to get your sum
- Start with sum of squares, and perturb by subtracting sum on

$$
\begin{array}{lclccc}
\sum_{i=1}^{n} & i^{2} & 1^{2}+2^{2}+\cdots+(n-1)^{2}+n^{2} \\
\sum_{i=1}^{n}(i-1)^{2} & =0^{2}+1^{2}+2^{2}+\cdots+(n-1)^{2} & \\
\hline \sum_{i=1}^{n}\left(i^{2}-(i-1)^{2}\right) & = & \cdots & n^{2}
\end{array}
$$

- Simplifying lhs using the identity $a^{2}-b^{2}=(a-b)(a+b)$, we get

$$
\sum_{i=1}^{n} i^{2}-(i-1)^{2}=\sum_{i=1}^{n}(i-(i-1))(i+i-1)=\sum_{i=1}^{n} 2 i-1=2 \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1=2\left(\sum_{i=1}^{n} i\right)-n
$$

Alternative Perturbation for Arithmetic Progression

- Sometimes, you perturb a seemingly unrelated sequence in order to get your sum
- Start with sum of squares, and perturb by subtracting sum on

$$
\begin{array}{lclccc}
\sum_{i=1}^{n} & i^{2} & 1^{2}+2^{2}+\cdots+(n-1)^{2}+n^{2} \\
\sum_{i=1}^{n}(i-1)^{2} & =0^{2}+1^{2}+2^{2}+\cdots+(n-1)^{2} & \\
\hline \sum_{i=1}^{n}\left(i^{2}-(i-1)^{2}\right) & = & \cdots & n^{2}
\end{array}
$$

- Simplifying lhs using the identity $a^{2}-b^{2}=(a-b)(a+b)$, we get

$$
\sum_{i=1}^{n} i^{2}-(i-1)^{2}=\sum_{i=1}^{n}(i-(i-1))(i+i-1)=\sum_{i=1}^{n} 2 i-1=2 \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1=2\left(\sum_{i=1}^{n} i\right)-n
$$

- Setting this equal to the rhs and then simplifying, we get: $2\left(\sum_{i=1}^{n} i\right)-n=n^{2}$
- i.e., $\sum_{i=1}^{n} i=\frac{n^{2}+n}{2}=\frac{n(n+1)}{2}$

Summation of i^{k}

- For any $\sum i^{k}$, you can use the same method! Let us examine $\sum i^{2}$

$$
\begin{array}{cc}
\sum_{i=1}^{n} i^{3}=1^{3}+2^{3}+\cdots+(n-1)^{3}+n^{3} \\
\sum_{i=1}^{n}(i-1)^{3}=0^{3}+1^{3}+2^{3}+\cdots+(n-1)^{3} \\
\hline \sum_{i=1}^{n}\left(i^{3}-(i-1)^{3}\right)= & \cdots
\end{array}
$$

- Simplifying lhs using the identity $a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)$, we get

$$
\begin{array}{rlr}
\sum_{i=1}^{n} i^{3}-(i-1)^{3} & =\sum_{i=1}^{n}(i-(i-1))\left(i^{2}+(i-1)^{2}+i(i-1)\right) \\
& =\sum_{i=1}^{n} 3 i^{2}-3 i+1 \\
& =3 \sum_{i=1}^{n} i^{2}-3 \sum_{i=1}^{n} i+\sum_{i=1}^{n} 1 & =n^{3}
\end{array}
$$

- Further simplifying, $\sum_{i=1}^{n} i^{2}=\left(n^{3}-n+3 \sum_{i=1}^{n} i\right) / 3$
- Substituting for $\sum_{i=1}^{n} i$ from previous slide into rhs and simplifying:

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Perturbing By Differentiation: Arithmetico Geometric Prog.

- How do you find the following sum?

$$
\sum_{i=1}^{n-1} i x^{i}=x+2 x^{2}+3 x^{3}+\cdots(n-1) x^{n-1}
$$

- This looks kind of similar to geometric progression, so start with that:

$$
\sum_{i=1}^{n-1} x^{i}=x+x^{2}+x^{3}+\cdots x^{n-1}=\frac{1-x^{n}}{1-x}
$$

Perturbing By Differentiation: Arithmetico Geometric Prog.

- How do you find the following sum?

$$
\sum_{i=1}^{n-1} i x^{i}=x+2 x^{2}+3 x^{3}+\cdots(n-1) x^{n-1}
$$

- This looks kind of similar to geometric progression, so start with that:

$$
\sum_{i=1}^{n-1} x^{i}=x+x^{2}+x^{3}+\cdots x^{n-1}=\frac{1-x^{n}}{1-x}
$$

- Each term $i x^{i}$ in AGP seems like it's obtained by differentiating the term x^{i+1} in GP!

Perturbing By Differentiation: Arithmetico Geometric Prog.

$$
\frac{d}{d x}\left(\sum_{i=1}^{n-1} x^{i}\right)=\frac{d}{d x}\left(\frac{1-x^{n}}{1-x}\right)
$$

Perturbing By Differentiation: Arithmetico Geometric Prog.

$$
\begin{aligned}
\frac{d}{d x}\left(\sum_{i=1}^{n-1} x^{i}\right) & =\frac{d}{d x}\left(\frac{1-x^{n}}{1-x}\right) \\
\sum_{i=1}^{n-1} i x^{i-1} & =\frac{-n x^{n-1}(1-x)-(-1)\left(1-x^{n}\right)}{(1-x)^{2}} \\
& =\frac{1-n x^{n-1}+(n-1) x^{n}}{(1-x)^{2}} \\
& =\frac{(n-1) x^{n}-n x^{n-1}+1}{(1-x)^{2}}
\end{aligned}
$$

The AGP we want is not exactly the lhs here. But if we multiply both sides by x, we will be there:

$$
\sum_{i=1}^{n-1} i x^{i}=\frac{(n-1) x^{n+1}-n x^{n}+x}{(1-x)^{2}}
$$

A Program for Computing Prime Numbers

```
for i=2 to n do {
    for j=2 to }\sqrt{}{i}\mathrm{ do {
        if (j perfectly divides i)
        continue; /* Not a prime, skip to next i */
    }
    print i," is prime";
}
```


A Program for Computing Prime Numbers

```
for i=2 to n do {
    for j=2 to }\sqrt{}{i}\mathrm{ do {
        if (j perfectly divides i)
        continue; /* Not a prime, skip to next i */
    }
    print i," is prime";
}
- How long does this program take to execute?
- Let us say that only the division operation takes significant time.
- How many divisions are needed, as a function of \(n\) ?
```


Integration: The Master Technique for Approximating Sums

- Consider $\sum_{i=1}^{n} \sqrt{i}$.
- We can't use any tricks here - in fact, no closed from expression is known for this summation.
- Idea: Approximate using integration
- Integral $\int_{1}^{n} f(x) d x$ yields the area under the curve $f(x)$ between $x=1$ and $x=n$
- Can we relate it to the discrete sum $\sum_{x=1}^{n} f(x)$?

Pictorial representation of Discrete Sum

- The discrete sum represents the area of the shaded region:

Pictorial Comparison of Discrete Sum and Integral

- The integral $\int_{1}^{n} f(x) d x$ represents the area of the shaded region:

- Unshaded region within the boxes represents the difference between the integral and discrete sum $\sum_{x=1}^{n} f(x)$
- So, $\sum_{x=1}^{n} f(x) \approx f(1)+\int_{1}^{n} f(x) d x$ is an under-approximation of the discrete sum.

Pictorial Comparison of Discrete Sum and Integral

- Let us shift f one unit to the left, i.e., plot $f(x+1)$ instead.

- $\sum_{x=1}^{n} f(x) \approx f(n)+\int_{1}^{n} f(x) d x$ is an over-approximation in this case.

Dotting the i's ...

Weakly Increasing and Decreasing Functions

A function $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$is weakly increasing iff $x<y \rightarrow f(x) \leq f(y)$.
A function $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$is weakly decreasing iff $x<y \rightarrow f(x) \geq f(y)$.

Summation By Integration

Let $f: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$, and let S and I be defined as follows:

$$
S::=\sum_{i=1}^{n} f(i) \quad I::=\int_{x=1}^{n} f(x) d x
$$

- If f is weakly increasing then $I+f(1) \leq S \leq I+f(n)$
- If f is weakly decreasing then $I+f(1) \geq S \geq I+f(n)$

Back to the Square Root Example ...

- Integral:

$$
\int_{1}^{n} \sqrt{x} d x=\frac{\left.x^{3 / 2}\right|_{1} ^{n}}{3 / 2}=\frac{2}{3}\left(n^{3 / 2}-1\right)
$$

- So, the actual value is bounded between the under and over approximations:

$$
1+\frac{2}{3}\left(n^{3 / 2}-1\right) \leq \sum_{x=1}^{n} \sqrt{x} \leq \sqrt{n}+\frac{2}{3}\left(n^{3 / 2}-1\right)
$$

(Note: The square root function is weakly increasing.)

- For larger n values, $n^{3 / 2}$ dominates over \sqrt{n}, so the approximation is pretty good.
- e.g., the error is about $1 / n$,
- i.e. about 10% for $n \geq 10$, about 1% for $n \geq 100$, etc.

Approximating Factorial ...

$$
n!=1 \cdot 2 \cdot 3 \cdots n=\prod_{i=1}^{n} i
$$

Can we turn this into a summation?

Approximating Factorial ...

$$
n!=1 \cdot 2 \cdot 3 \cdots \cdot n=\prod_{i=1}^{n} i
$$

Can we turn this into a summation?

$$
\ln n!=\ln 1+\ln 2+\cdots \ln n=\sum_{i=0}^{n} \ln i
$$

Now we can apply our integration trick! But first we need to integrate $\ln x$:

$$
\int_{1}^{n} \ln (x) d x=x \ln (x)-\left.x\right|_{1} ^{n}=n \ln (n)-n-1 \ln (\Psi)+1=n \ln (n)-n+1
$$

Approximating Factorial ...

Using the formula for approximating sums using integration,

Let us take the average of the two bounds as our estimate: $(n+0.5) \ln (n)-n+1$ Now, take the exponent of every term so as to get rid of the In operations.

Our result: $\quad n!=\frac{n^{n+0.5}}{e^{n-1}}=e \sqrt{n}\left(\frac{n}{e}\right)^{n} \quad$ Sterling's approx: $n!=\sqrt{2 \pi} \sqrt{n}\left(\frac{n}{e}\right)^{n}$

Hanging Blocks

How much overhang do you get with nth block?

Hanging Blocks: The Final Picture

The summation we need: $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\cdots=\frac{1}{2} \sum_{i=1}^{n} \frac{1}{i}$
The sum $\sum_{i=1}^{n} \frac{1}{i}$ is called the $n^{\text {th }}$ Harmonic number H_{n}. But how do we compute it?

Integration to the Rescue ...

We need to integrate $1 / x$. Specifically:

$$
\int_{1}^{n} \frac{1}{x} d x=\left.\ln (x)\right|_{1} ^{n}=\ln (n)-\ln (\nmid)
$$

Noting that $f(1)=1$ and $f(n)=1 / n$, we have the bound ${ }^{1}$:

$$
\frac{1}{n}+\ln (n) \leq \sum_{i=1}^{n} \frac{1}{i} \leq \ln (n)+1
$$

${ }^{1}$ Since $1 / x$ is a decreasing function, so we need to use the bound $I+f(n) \leq S \leq I+f(1)$

Integration to the Rescue ...

We need to integrate $1 / x$. Specifically:

$$
\int_{1}^{n} \frac{1}{x} d x=\left.\ln (x)\right|_{1} ^{n}=\ln (n)-\ln (\nmid)
$$

Noting that $f(1)=1$ and $f(n)=1 / n$, we have the bound ${ }^{1}$:

$$
\frac{1}{n}+\ln (n) \leq \sum_{i=1}^{n} \frac{1}{i} \leq \ln (n)+1
$$

- The maximum overhang is infinite!
- We get overhang longer than one full block when $n=4$
${ }^{1}$ Since $1 / x$ is a decreasing function, so we need to use the bound $I+f(n) \leq S \leq I+f(1)$

Summary of Summation Techniques

- Perturbation Method
- Example 1: Geometric Progression: $\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}$
- Example 2: Arithmetic Progression: $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
- Example 3: Sum of $i^{k}: \sum_{i=1}^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \sum_{i=1}^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$
- Using differentiation
- Example 4: Arithmetico Geometric Progression: $\sum_{i=1}^{n-1} i x^{i-1}=\frac{(n-1) x^{n}-n x^{n-1}+1}{(1-x)^{2}}$
- Using integration
- Example 5: $1+\frac{2}{3}\left(n^{3 / 2}-1\right) \leq \sum_{x=1}^{n} \sqrt{x} \leq \sqrt{n}+\frac{2}{3}\left(n^{3 / 2}-1\right)$
- Example 6: Factorial: $n \ln (n)-n+1 \leq \sum_{i=0}^{n} \ln (i) \leq n \ln (n)-n+1+\ln (n)$
- Example 7: Hanging blocks: $\frac{1}{n}+\ln (n) \leq \sum_{i=1}^{n} \frac{1}{i} \leq \ln (n)+1$

