Relations on a Set (Textbook Ch. 9)

- A relation *R* from a set to itself is often more interesting than a relation from one set to another.
 - *R* can be composed with itself
 - can be represented using a *directed graph* or *digraph*.

Digraph

- A Digraph G = (V, E) where
 - V is the set of vertices or nodes, and
 - *E* is a set of directed edges of the form (u, v) where $u, v \in V$.

Digraph

- A Digraph G = (V, E) where
 - V is the set of vertices or nodes, and
 - *E* is a set of directed edges of the form (u, v) where $u, v \in V$.
 - *u* is called the *tail* and *v* the *head* of the edge.
 - An edge with the same head and tail is called a *self-loop*.
- Sometimes we call these V(G) and E(G).

Digraph

- A Digraph G = (V, E) where
 - V is the set of *vertices* or *nodes*, and
 - *E* is a set of directed edges of the form (u, v) where $u, v \in V$.
 - *u* is called the *tail* and *v* the *head* of the edge.
 - An edge with the same head and tail is called a *self-loop*.
- Sometimes we call these V(G) and E(G).

- *G* is nothing but a relation from *V* to *V*
- In fact, we have already called the "arrows" in visual representation of relations as graphs!

Degree: number of arrows coming into ("in" degree) or the number of arrows going out ("out" degree)

Property of Degrees in a Graph

$$\sum_{v \in V(G)} indeg(v) = \sum_{v \in V} outdeg(v)$$

Walks and Paths

- A walk in a graph G is a sequence of vertices v_1, v_2, \ldots, v_n such that
 - Every $v_i \in V(G)$, and
 - $(v_j, v_{j+1}) \in E(G)$
 - We say that the walk starts at v_1 and ends at v_n
 - The *length* of the walk is n 1

Walks and Paths

- A walk in a graph G is a sequence of vertices v_1, v_2, \ldots, v_n such that
 - Every $v_i \in V(G)$, and
 - $(v_j, v_{j+1}) \in E(G)$
 - We say that the walk starts at v_1 and ends at v_n
 - The *length* of the walk is n 1
- A *closed walk* is a walk with $v_1 = v_n$.
- A *path* is a walk where all the vertices are distinct.
- A *cycle* is a closed walk where $v_1, ..., v_{n-1}$ form a path.

Walks and Paths

Some Properties of Walks

Theorem

- The shortest walk between two vertices *u* and *v* is a path.
- The shortest closed walk through a vertex *v* is a cycle.

Some Properties of Walks

Theorem

- The shortest walk between two vertices *u* and *v* is a path.
- The shortest closed walk through a vertex v is a cycle.

dist(u, v): is the shortest path between u and v.

Some Properties of Walks

Theorem

- The shortest walk between two vertices *u* and *v* is a path.
- The shortest closed walk through a vertex v is a cycle.

dist(u, v): is the shortest path between u and v.

The Triangle Inequality

 $dist(u, v) \leq dist(u, w) + dist(w, v)$

Euler Tour: A closed walk that visits every edge in the graph exactly once.

• See Wikipedia for examples and history. (Look only at the paragraphs before table of content.)

Hamiltonian Tour: A cycle that visits every vertex exactly once.

• Also known as Traveling Salesman Problem

Euler Tour: Necessary and Sufficient Condition

 $\forall v \in V \ indeg(v) = outdeg(v)$

Thinking About Relations Using Graphs

- Think of *E* as defining a relation from *V* to *V*
 - What do walks of length 2 denote?
 - What about walks of length *n*?

Reflexive: $\forall a \ aRa$

- Graph has self-loops at every vertex
- Irreflexive: $\forall a \ a \not R a$
 - No self-loops

Symmetric: $\forall a, b \ aRb \rightarrow bRa$

• Edges come in pairs: we can merge them into one and remove arrows, leading to undirected graphs

Anti-symmetric: $\forall a, b \ aRb \rightarrow (a = b \ \lor \ b \not R a)$

Transitive: $\forall a, b, c \ aRb \land bRc \rightarrow aRc$

• Any vertex *b* reachable from *a* is reachable in a single step.

- **Reflexive**: $\forall a \ aRa$
- Irreflexive: $\forall a \ a \ R a$
- Symmetric: $\forall a, b \ aRb \rightarrow bRa$
- Anti-symmetric: $\forall a, b \ aRb \rightarrow (a = b \ \lor \ b \not R a)$
- **Transitive:** $\forall a, b, c \ aRb \land bRc \rightarrow aRc$

Closure Operations

- Start with a relation, introduce additional edges implied by properties discussed before:
 - Reflexive closure
 - Symmetric closure
 - Transitive closure

Reflexive Closure

• Add self-loops at every vertex

Symmetric Closure

• Add edge from *b* to *a* whenever there is an edge from *a* to *b*

• Add edge from *a* to *c* iff there is an edge from *a* to *b* and another edge from *b* to *c*.

Properties of a Relations

- Partial Orders: Anti-symmetric and transitive. Forms Directed Acyclic Graphs (DAGs)
- Linear order: Partial order where every pair of elements is comparable
 - i.e., either *aRb* or *bRa* holds.

DAGs, Dependencies, Topological Sort and Scheduling ...

See Textbook Section 9.5

Properties of a Relations: Equivalence Relations

- Reflexive, Symmetric and Transitive
- Partition a domain into *Equivalence Classes*

 $EC(a) = \{b|aRb\}$

- Examples
 - aRb iff $a, b \in \mathbb{N}$, $a \mod n = b \mod n$
 - Connected components of a graph