Informally, a set is a collection of things:

- $A = \{Alex, Tippy, Shells, Shadow\}$
- $B = \{red, blue, yellow\}$

Pet names Primary colors A set of sets

 $C = \{\{a, b\}, \{b, c\}, \{a, d\}, \{a, b, c\}\}$

Informally, a set is a collection of things:

- $A = \{Alex, Tippy, Shells, Shadow\}$
- $B = \{red, blue, yellow\}$ Primary colors
- $C = \{\{a, b\}, \{b, c\}, \{a, d\}, \{a, b, c\}\}$ A set of sets
- The order of elements is irrelevant a set is an unordered collection

Pet names

• There are no repeated elements in a set

Infinite Sets and Set Builder Notation

Here is an example of an infinite set:

$$T ::= \{0, 3, 6, 9, 12, \ldots\}$$

Here is an example of an infinite set:

$$\bar{} ::= \{0, 3, 6, 9, 12, \ldots\}$$

We can state this more precisely as

$$\mathcal{T} ::= \{x \in \mathbb{N} | x ext{ is a multiple of 3} \}$$

Here is an example of an infinite set:

$$T ::= \{0, 3, 6, 9, 12, \ldots\}$$

We can state this more precisely as

$$\mathcal{T} ::= \{x \in \mathbb{N} | x ext{ is a multiple of 3} \}$$

or more compactly as:

$$T ::= \{3n | n \in \mathbb{N}\}$$

Predefined Sets

Ø	The empty set
\mathbb{N}	The set of natural numbers, i.e., $\{0, 1, 2, 3, \ldots\}$
\mathbb{Z}	The set of integers, i.e., $\{0, -1, 1, -2, 2,\}$
Q	The set of rational numbers
\mathbb{R}	The set of real numbers
\mathbb{C}	The set of Complex numbers

Operation	Operator	Definition/Example
"belongs to"	∈	$2\in\mathbb{N},\sqrt{5} otin\mathbb{Q}$

Operation	Operator	Definition/Example
"belongs to"	E	$2 \in \mathbb{N}, \sqrt{5} \notin \mathbb{Q}$
Union	U	$A \cup B = \{x x \in A \text{ or } x \in B\}$

Operation	Operator	Definition/Example
"belongs to"	€	$2\in\mathbb{N},\sqrt{5} otin\mathbb{Q}$
Union	U	$A \cup B = \{x x \in A \text{ or } x \in B\}$
Intersection	\cap	$A \cap B = \{x x \in A \text{ and } x \in B\}$

Operation	Operator	Definition/Example
"belongs to"	E	$2 \in \mathbb{N}, \sqrt{5} \notin \mathbb{Q}$
Union	U	$A \cup B = \{x x \in A \text{ or } x \in B\}$
Intersection	\cap	$A \cap B = \{x x \in A \text{ and } x \in B\}$
Difference	—	$A-B=\{x x\in A \text{ and } x\notin B\}$

Operation	Operator	Definition/Example
"belongs to"	E	$2\in\mathbb{N},\sqrt{5} otin\mathbb{Q}$
Union	U	$A \cup B = \{x x \in A \text{ or } x \in B\}$
Intersection	\cap	$A \cap B = \{x x \in A \text{ and } x \in B\}$
Difference	_	$A-B=\{x x\in A \text{ and } x\notin B\}$
Subset	\subseteq	$A \subseteq B$ iff for all $x \in A, x \in B$

Operation	Operator	Definition/Example
"belongs to"	E	$2\in\mathbb{N},\sqrt{5} otin\mathbb{Q}$
Union	U	$A \cup B = \{x x \in A \text{ or } x \in B\}$
Intersection	\cap	$A \cap B = \{x x \in A \text{ and } x \in B\}$
Difference	_	$A - B = \{x x \in A \text{ and } x \notin B\}$
Subset	\subseteq	$A \subseteq B$ iff for all $x \in A, x \in B$
Proper Subset	С	$A \subset B$ iff $A \subseteq B$ and $A \neq B$

Showing Two Sets A and B are Equal

- Show that $x \in A$ implies $x \in B$ and vice-versa
- Show $A \subseteq B$ and $B \subseteq A$

Universal Set and Complement

• If all the sets being considered are a subset of a larger set *U*, we call that a *universal* set

Universal Set and Complement

- If all the sets being considered are a subset of a larger set *U*, we call that a *universal* set
- In the presence of a universal set, we can define a *complement* \overline{A} as follows: $\overline{A} = U - A$

Alternatively:

$$\overline{A} = \{x \in U | x \notin A\}$$

Some properties of Set Operators

- \cup and \cap are commutative and associative
 - Follows from the definition of these operators, and the fact that the boolean connectives

or and and are both associative and commutative

Some properties of Set Operators

- \cup and \cap are commutative and associative
 - Follows from the definition of these operators, and the fact that the boolean connectives or and and are both associative and commutative
- ullet \cup distributes over \cap and vice-versa

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

• Can be established from the definition of \cup and \cap

Some properties of Set Operators

- \cup and \cap are commutative and associative
 - Follows from the definition of these operators, and the fact that the boolean connectives or and and are both associative and commutative
- ullet \cup distributes over \cap and vice-versa

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- Can be established from the definition of \cup and \cap
- De Morgan's Law

$$\overline{\overline{A \cup B}} = \overline{\overline{A}} \cap \overline{\overline{B}}$$
$$\overline{\overline{A} \cap \overline{B}} = \overline{\overline{A}} \cup \overline{\overline{B}}$$

19/25

Given a set A, the *power set* of A, denoted $\wp(A)$ is $\wp(A) = \{x | x \subseteq A\}$

- A powerset always includes \emptyset
- $\wp(A)$ always includes A

Size of Power Set

If the size of *A*, denoted |A|, is *n*, what is the size of $\wp(A)$?

Cartesian Product of sets A and B: $A \times B = \{(a, b) | a \in A, b \in B\}$

Example: Let $A = \{1, 4, 9\}, B = \{a, e, i, o, u\}$

Cartesian Product of sets A and B: $A \times B = \{(a, b) | a \in A, b \in B\}$

Example: Let $A = \{1, 4, 9\}, B = \{a, e, i, o, u\}$

$$A \times B = \{ (1, a), (1, e), (1, i), (1, o), (1, u), (4, a), (4, e), (4, i), (4, o), (4, u), (9, a), (9, e), (9, i), (9, o), (9, u) \}$$

- (x, y) is called an (ordered) *pair*
- (x, y, z) is a *triple*
- More generally, $(x_1, x_2, ..., x_n)$ is an *n*-tuple, or just a *tuple*
- Unlike sets, the order of components is important in a tuple. $A \times B \neq B \times A$
- Aⁿ is short hand for

$$\underbrace{A \times A \times \cdots \times A}_{n \text{ times}}$$

Sets: Summary

- Definition of sets
- Set builder notation
- Set operators: membership, subset, union, intersection, difference
 - Properties of set operators: commutativity, associativity, distributivity
- Set equality
- Universal set, set complement and De Morgan's Laws
- Power Set
- Cartesian Product and Tuples