Sets (Textbook §4.1)

Informally, a set is a collection of things:

$$
\begin{array}{rlr}
A & =\{\text { Alex, Tippy, Shells, Shadow }\} & \text { Pet names } \\
B & =\{\text { red, blue, yellow }\} & \text { Primary colors } \\
C & =\{\{a, b\},\{b, c\},\{a, d\},\{a, b, c\}\} & \text { A set of sets }
\end{array}
$$

Sets (Textbook §4.1)

Informally, a set is a collection of things:

$$
\begin{array}{llr}
A=\{\text { Alex, Tippy, Shells, Shadow }\} & \text { Pet names } \\
B=\{\text { red, blue, yellow }\} & \text { Primary colors } \\
C=\{\{a, b\},\{b, c\},\{a, d\},\{a, b, c\}\} & \text { A set of sets }
\end{array}
$$

- The order of elements is irrelevant - a set is an unordered collection
- There are no repeated elements in a set

Infinite Sets and Set Builder Notation

Here is an example of an infinite set:

$$
T::=\{0,3,6,9,12, \ldots\}
$$

Infinite Sets and Set Builder Notation

Here is an example of an infinite set:

$$
T::=\{0,3,6,9,12, \ldots\}
$$

We can state this more precisely as

$$
T::=\{x \in \mathbb{N} \mid x \text { is a multiple of } 3\}
$$

Infinite Sets and Set Builder Notation

Here is an example of an infinite set:

$$
T::=\{0,3,6,9,12, \ldots\}
$$

We can state this more precisely as

$$
T::=\{x \in \mathbb{N} \mid x \text { is a multiple of } 3\}
$$

or more compactly as:

$$
T::=\{3 n \mid n \in \mathbb{N}\}
$$

Predefined Sets

\emptyset	The empty set
\mathbb{N}	The set of natural numbers, i.e., $\{0,1,2,3, \ldots\}$
\mathbb{Z}	The set of integers, i.e., $\{0,-1,1,-2,2, \ldots\}$
\mathbb{Q}	The set of rational numbers
\mathbb{R}	The set of real numbers
\mathbb{C}	The set of Complex numbers

Set Operators

Operation	Operator	Definition/Example
"belongs to"	\in	$2 \in \mathbb{N}, \sqrt{5} \notin \mathbb{Q}$

Set Operators

Operation	Operator	Definition/Example
"belongs to"	\in	$2 \in \mathbb{N}, \sqrt{5} \notin \mathbb{Q}$
Union	\cup	$A \cup B=\{x \mid x \in A$ or $x \in B\}$

Set Operators

Operation	Operator	Definition/Example
"belongs to"	\in	$2 \in \mathbb{N}, \sqrt{5} \notin \mathbb{Q}$
Union	\cup	$A \cup B=\{x \mid x \in A$ or $x \in B\}$
Intersection	\cap	$A \cap B=\{x \mid x \in A$ and $x \in B\}$

Set Operators

Operation	Operator	Definition/Example
"belongs to"	\in	$2 \in \mathbb{N}, \sqrt{5} \notin \mathbb{Q}$
Union	\cup	$A \cup B=\{x \mid x \in A$ or $x \in B\}$
Intersection	\cap	$A \cap B=\{x \mid x \in A$ and $x \in B\}$
Difference	-	$A-B=\{x \mid x \in A$ and $x \notin B\}$

Set Operators

Operation	Operator	Definition/Example
"belongs to"	\in	$2 \in \mathbb{N}, \sqrt{5} \notin \mathbb{Q}$
Union	\cup	$A \cup B=\{x \mid x \in A$ or $x \in B\}$
Intersection	\cap	$A \cap B=\{x \mid x \in A$ and $x \in B\}$
Difference	-	$A-B=\{x \mid x \in A$ and $x \notin B\}$
Subset	\subseteq	$A \subseteq B$ iff for all $x \in A, x \in B$

Set Operators

Operation	Operator	Definition/Example
"belongs to"	\in	$2 \in \mathbb{N}, \sqrt{5} \notin \mathbb{Q}$
Union	\cup	$A \cup B=\{x \mid x \in A$ or $x \in B\}$
Intersection	\cap	$A \cap B=\{x \mid x \in A$ and $x \in B\}$
Difference	-	$A-B=\{x \mid x \in A$ and $x \notin B\}$
Subset	\subseteq	$A \subseteq B$ iff for all $x \in A, x \in B$
Proper Subset	\subset	$A \subset B$ iff $A \subseteq B$ and $A \neq B$

Showing Two Sets A and B are Equal

- Show that $x \in A$ implies $x \in B$ and vice-versa
- Show $A \subseteq B$ and $B \subseteq A$

Universal Set and Complement

- If all the sets being considered are a subset of a larger set U, we call that a universal set

Universal Set and Complement

- If all the sets being considered are a subset of a larger set U, we call that a universal set
- In the presence of a universal set, we can define a complement \bar{A} as follows:

$$
\bar{A}=U-A
$$

Alternatively:

$$
\bar{A}=\{x \in U \mid x \notin A\}
$$

Some properties of Set Operators

- \cup and \cap are commutative and associative
- Follows from the definition of these operators, and the fact that the boolean connectives or and and are both associative and commutative

Some properties of Set Operators

- \cup and \cap are commutative and associative
- Follows from the definition of these operators, and the fact that the boolean connectives or and and are both associative and commutative
- \cup distributes over \cap and vice-versa

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

- Can be established from the definition of \cup and \cap

Some properties of Set Operators

- \cup and \cap are commutative and associative
- Follows from the definition of these operators, and the fact that the boolean connectives or and and are both associative and commutative
- \cup distributes over \cap and vice-versa

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

- Can be established from the definition of \cup and \cap
- De Morgan's Law

$$
\begin{aligned}
& \overline{A \cup B}=\bar{A} \cap \bar{B} \\
& \overline{A \cap B}=\bar{A} \cup \bar{B}
\end{aligned}
$$

Power Set

Given a set A, the power set of A, denoted $\wp(A)$ is

$$
\wp(A)=\{x \mid x \subseteq A\}
$$

- A powerset always includes \emptyset
- $\wp(A)$ always includes A

Size of Power Set

If the size of A, denoted $|A|$, is n, what is the size of $\wp(A)$?

Products and Tuples

Cartesian Product of sets A and $B: \quad A \times B=\{(a, b) \mid a \in A, b \in B\}$
Example: Let $A=\{1,4,9\}, \quad B=\{a, e, i, o, u\}$

Products and Tuples

Cartesian Product of sets A and $B: \quad A \times B=\{(a, b) \mid a \in A, b \in B\}$
Example: Let $A=\{1,4,9\}, \quad B=\{a, e, i, o, u\}$

$$
\begin{aligned}
& A \times B=\{\quad(1, a),(1, e),(1, i),(1, o),(1, u), \\
& (4, a),(4, e),(4, i),(4, o),(4, u) \text {, } \\
& (9, a),(9, e),(9, i),(9, o),(9, u)\}
\end{aligned}
$$

Products and Tuples

- (x, y) is called an (ordered) pair
- (x, y, z) is a triple
- More generally, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an n-tuple, or just a tuple
- Unlike sets, the order of components is important in a tuple. $A \times B \neq B \times A$
- A^{n} is short hand for

$$
\underbrace{A \times A \times \cdots \times A}_{n \text { times }}
$$

Sets: Summary

- Definition of sets
- Set builder notation
- Set operators: membership, subset, union, intersection, difference
- Properties of set operators: commutativity, associativity, distributivity
- Set equality
- Universal set, set complement and De Morgan's Laws
- Power Set
- Cartesian Product and Tuples

