Functions (Textbook §4.3)

A function associates each element of a set A with a unique element of another set B.

$$
f: A \longrightarrow B
$$

Example: $f(x)=x^{2}$ defines a function from $f: \mathbb{N} \longrightarrow \mathbb{N}$.
Pictorial representation:

Functions: Terminology

- For a function $f: A \longrightarrow B$, the set A is called the domain, while B is called codomain.
- Elements of A with an outgoing arrow are called the support of f.
- Elements of B that have an incoming arrow are called the range.

Functions: Terminology

- For a function $f: A \longrightarrow B$, the set A is called the domain, while B is called codomain.
- Elements of A with an outgoing arrow are called the support of f.
- Elements of B that have an incoming arrow are called the range.
- Partial function: Value of f is undefined for some arguments. In other words, the support set is not the entire domain.
- Total function: $f(x)$ is defined $\forall x \in A$. In other words, the support set is A itself.

Functions: Terminology

- For a function $f: A \longrightarrow B$, the set A is called the domain, while B is called codomain.
- Elements of A with an outgoing arrow are called the support of f.
- Elements of B that have an incoming arrow are called the range.
- Partial function: Value of f is undefined for some arguments. In other words, the support set is not the entire domain.
- Total function: $f(x)$ is defined $\forall x \in A$. In other words, the support set is A itself.
- For a set $S \subseteq A$, we define $f(s)=\{f(x) \mid x \in S\}$. This set is called the image of S.

Functions: More Examples

$$
f: \mathbb{N} \longrightarrow \mathbb{N} \text { where } f(x)=\sqrt{x}
$$

- What is the domain?
- What is the codomain?

Functions: More Examples

$$
f: \mathbb{N} \longrightarrow \mathbb{N} \text { where } f(x)=\sqrt{x}
$$

- What is its support set?
- What is the range?

Functions: More Examples

$$
f: \mathbb{N} \longrightarrow \mathbb{N} \text { where } f(x)=\sqrt{x}
$$

- Is f total or partial?
- What is the image of $\{9,36,4,324,1024\}$?

Function Composition

Given $f: A \longrightarrow B$ and $g: B \longrightarrow C$, their composition, denoted $g \circ f$ is given by:

$$
(g \circ f)(x)=g(f(x))
$$

Examples:

- $f(x)=2 x, g(x)=3 x$
- $f(x)=x^{2}, g(y)=\sqrt{y}$

Functions with Multiple Arguments

Example: $f(x, y)=x+y$

- Instead of saying f takes two arguments, we say it takes one argument that is a pair.

$$
f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}
$$

Functions with Multiple Arguments

Example: $f(x, y)=x+y$

- Instead of saying f takes two arguments, we say it takes one argument that is a pair.

$$
f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}
$$

- We can extend to any number of arguments:

$$
g: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
$$

is a function that takes 4-tuple argument (all real numbers) and returns one value, as given by $f(x, y, z, u)=x^{2}+y^{2}+z^{2}+u^{2}$.

Functions with Multiple Arguments

Example: $f(x, y)=x+y$

- Instead of saying f takes two arguments, we say it takes one argument that is a pair.

$$
f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}
$$

- We can extend to any number of arguments:

$$
g: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}
$$

is a function that takes 4-tuple argument (all real numbers) and returns one value, as given by $f(x, y, z, u)=x^{2}+y^{2}+z^{2}+u^{2}$.

- $f(p, q, r)=p \wedge(q \vee r)$ is $f: B \times B \times B \longrightarrow B$
- Here, B stands for the set $\{\mathbf{T}, \mathbf{F}\}$ of boolean values.

Binary Relations

- Like functions, relations associate elements of set A with elements of set B.
- Unlike a function, the same element $a \in A$ may be associated with multiple elements of B.

$$
\text { Example: } \quad \leq: \mathbb{N} \longrightarrow \mathbb{N}
$$

Binary Relations

- Like functions, relations associate elements of set A with elements of set B.
- Unlike a function, the same element $a \in A$ may be associated with multiple elements of B.

$$
\text { Example: } \quad \leq: \mathbb{N} \longrightarrow \mathbb{N}
$$

- Relations are typically specified using a predicate.
- Like functions, relations can represent associations between multiple sets, but we are most interested in binary relations.
- We treat n-ary relations as binary relations over product sets

Binary Relations: Terminology

A relation $R: A \longrightarrow B$ is said to be "between A and B." If $A=B$, we say R is a relation on A.

Binary Relations: Terminology

A relation $R: A \longrightarrow B$ is said to be "between A and B." If $A=B$, we say R is a relation on A.

Domain: the set A
Codomain: the set B
$a R b$: denotes that $a \in A$ and $b \in B$ are related by R.

Binary Relations: Terminology

A relation $R: A \longrightarrow B$ is said to be "between A and B." If $A=B$, we say R is a relation on A.

Domain: the set A
Codomain: the set B
$a R b$: denotes that $a \in A$ and $b \in B$ are related by R.
Image of set $C \subseteq A$: Similar to images for functions:

$$
\{b \mid b \in B \text { and } \exists c \in C \quad c R b\}
$$

Binary Relations: Terminology

A relation $R: A \longrightarrow B$ is said to be "between A and B."
If $A=B$, we say R is a relation on A.
Domain: the set A
Codomain: the set B
$a R b$: denotes that $a \in A$ and $b \in B$ are related by R.
Image of set $C \subseteq A$: Similar to images for functions:

$$
\{b \mid b \in B \text { and } \exists c \in C \subset R b\}
$$

Graph: A subset of $A \times B$ that consists of all a, b such that $a R b$.

- This graph can be visualized using an arrow from a to b whenever $a R b$.

Examples of Graphs (Representing Relations)

Examples of Graphs (Representing Functions)

Relational Composition and Inverse

Composition: For $R: A \longrightarrow B$ and $S: B \longrightarrow C$,

$$
a(R \circ S) c::=\exists b \in B \quad a R b \wedge b S c
$$

Relational Composition and Inverse

Composition: For $R: A \longrightarrow B$ and $S: B \longrightarrow C$,

$$
a(R \circ S) c::=\exists b \in B \quad a R b \wedge b S c
$$

Inverse: The inverse of a relation R, denoted R^{-1}, is given by

$$
b R^{-1} a \text { iff } a R b
$$

- Inverse of functions can be defined in the same way.
- But, the inverse of a function f may not always be a function

Relational Composition and Inverse

Composition: For $R: A \longrightarrow B$ and $S: B \longrightarrow C$,

$$
a(R \circ S) c::=\exists b \in B \quad a R b \wedge b S c
$$

Inverse: The inverse of a relation R, denoted R^{-1}, is given by

$$
b R^{-1} a \text { iff } a R b
$$

- Inverse of functions can be defined in the same way.
- But, the inverse of a function f may not always be a function
- f^{-1} is a function iff f is injective

Classifying Relations Based on its Graph

function: if it has [≤ 1 arrow out] property
total: if it has [≥ 1 arrow out] property
surjective: if it has [≥ 1 arrow in] property
injective: if it has [≤ 1 arrow in] property
bijective: if it has all of the above properties i.e., it has $[=1$ arrow out $]$ and $[=1$ arrow in].

Using Injection and Surjection to Relate Set Cardinalities

A surj B iff there is a surjective function from A to B
A inj B iff there is a injective, total function from A to B
A bij B iff there is a bijection from A to B

Using Injection and Surjection to Relate Set Cardinalities

A surj B iff there is a surjective function from A to B
A inj B iff there is a injective, total function from A to B
A bij B iff there is a bijection from A to B

For finite sets

- $|A| \geq|B|$ iff A surj B
- $|A| \leq|B|$ iff A inj B
- $|A|=|B|$ iff A bij B

Counting Using Bijections: Power Set Size Revisited

Counting Infinite Sets (Textbook §8.1)

Can we use the same ideas as finite sets?

- $|A| \geq|B|$ iff A surj B
- $|A| \leq|B|$ iff $A \operatorname{inj} B$
- $|A|=|B|$ iff A bij B

Counting Infinite Sets (Textbook §8.1)

Can we use the same ideas as finite sets?

- $|A| \geq|B|$ iff A surj B
- $|A| \leq|B|$ iff A inj B
- $|A|=|B|$ iff A bij B

Basically. But:

- There are some unintuitive things about the "size" of infinite sets
- We don't know how to say one set is stricly larger
- We don't know how to measure the size of an infinite set.

We will ignore the third problem, and just talk about comparing sizes.

Infinite Sets are Different ...

For finite sets, adding an element strictly increases its size

- i.e., if A is finite, and $b \notin A$, there is no bijection from A to $A \cup\{b\}$

Infinite Sets are Different ...

For finite sets, adding an element strictly increases its size

- i.e., if A is finite, and $b \notin A$, there is no bijection from A to $A \cup\{b\}$

This is not true for infinite sets

Infinite Sets are Different ...

For finite sets, adding an element strictly increases its size

- i.e., if A is finite, and $b \notin A$, there is no bijection from A to $A \cup\{b\}$

This is not true for infinite sets In fact:
A set A is infinite iff there is a bijection from A to $A \cup\{b\}$

