Recurrences and Recursion

R. Sekar

Intro

- Recursion is one of the most versatile techniques in programming as well as algorithm design
- Closely related to induction:
- Consists of a base case and recursive case, similar to base and inductive steps.
- Correctness of recursive algorithms is proved by induction
- Example: Computing Fibonacci numbers:

Base case(s): $F(0)=0, F(1)=1$
Recursive case: $F(n)=F(n-1)+F(n-2)$

Uses of Recursion

Recurrences: Typically used in the context of algorithm analysis
Base Case: $\quad T(0)=1$
Recursive Case: $T(n)=2 T(n / 2)+n$

Uses of Recursion

Recurrences: Typically used in the context of algorithm analysis
Base Case: $\quad T(0)=1$
Recursive Case: $T(n)=2 T(n / 2)+n$
Recursive functions: Used in programming
Base Case:
$\operatorname{sum}(0)=0$
Recursive Case: $\operatorname{sum}(n)=n+\operatorname{sum}(n-1)$

Uses of Recursion

Recurrences: Typically used in the context of algorithm analysis
Base Case: $\quad T(0)=1$
Recursive Case: $\quad T(n)=2 T(n / 2)+n$
Recursive functions: Used in programming
Base Case: $\operatorname{sum}(0)=0$
Recursive Case: $\operatorname{sum}(n)=n+\operatorname{sum}(n-1)$
Recursive data types: e.g., lists, trees,...
Base Case: empty list (for lists), leaf (for trees),. . .
Recursive Case: pair of element and rest of list, pair of trees, etc.

Recurrences: Tower of Hanoi Problem

Goal: Move all disks from one post to another.
Rules:

- Only the top-most disk can be moved.
- No disk can be placed on a smaller disk.

Questions:

- How do you solve the puzzle?
- How many moves will be needed?

Tower of Hanoi Problem: Example with Three Disks

Tower of Hanoi Problem: Example with Three Disks

Tower of Hanoi Problem: Example with Three Disks

Tower of Hanoi Problem: Example with Three Disks

A Recursive Algorithm for Tower of Hanoi Problem

A Recursive Algorithm for Tower of Hanoi Problem

MoveStack (n, 1, 3):

- MoveStack($n-1,1,2$)
- MoveDisk(n, 1, 3)
- MoveStack(n-1,2,3)

A Recursive Algorithm for Tower of Hanoi Problem

MoveStack (n, 1, 3):

- MoveStack(n-1, 1, 2)
- MoveDisk(n, 1, 3)
- MoveStack(n-1,2,3)

Base Case:
MoveStack (1, x, y)

- MoveDisk(1, $x, y)$

A Recurrence for the Runtime of Towers of Hanoi Algorithm

MoveStack(n, 1, 3):

- MoveStack(n-1,1,2)
- MoveDisk(n, 1, 3)
- MoveStack($n-1,2,3$)

$$
T(n)=2 T(n-1)+1
$$

A Recurrence for the Runtime of Towers of Hanoi Algorithm

MoveStack (n, 1, 3):

- MoveStack($n-1,1,2$)
- MoveDisk(n, 1, 3)
- MoveStack($n-1,2,3$)

$$
T(n)=2 T(n-1)+1
$$

$$
\begin{aligned}
& \text { Base Case: } \\
& \text { MoveStack }(1, x, y) \\
& \qquad \begin{array}{l}
\text { MoveDisk }(1, x, y) \\
\\
\quad T(1)=1
\end{array}
\end{aligned}
$$

Solving Recurrences: Plug and Chug

- Expand the recurrence out for a few steps
- Identify the pattern
- Guess a solution based on the pattern
- Check the solution for a few small values of n
- Verify using induction

Plug and Chug for Tower of Hanoi Recurrence

$$
T(n)=2 T(n-1)+1, \quad T(1)=1
$$

Examples of Recurrences for Runtimes: Exponentiation

$$
\exp (x, n)= \begin{cases}1, & \text { if } n=0 \\ x * \exp (x, n-1), & \text { otherwise }\end{cases}
$$

Examples of Recurrences for Runtimes: Exponentiation

$$
\exp (x, n)= \begin{cases}1, & \text { if } n=0 \\ x * \exp (x, n-1), & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(n-1)+1
\end{aligned}
$$

Examples of Recurrences for Runtimes: Fast Exponentiation

$$
f \exp (x, n)= \begin{cases}1, & \text { if } n=0 \\ x, & \text { if } n=1 \\ f \exp (x * x, n / 2), & \text { if } n \text { is even } \\ f \exp (x * x, n / 2) * x, & \text { if } n \text { is odd }\end{cases}
$$

Examples of Recurrences for Runtimes: Fast Exponentiation

$$
f \exp (x, n)=\left\{\begin{array}{lll}
1, & \text { if } n=0 & \\
x, & \text { if } n=1 & T(1)=1 \\
f \exp (x * x, n / 2), & \text { if } n \text { is even } & T(n)=T(n / 2)+1 \\
f \exp (x * x, n / 2) * x, & \text { if } n \text { is odd } &
\end{array}\right.
$$

Solving Linear Recurrences

- Homogeneous linear recurrences are of the form

$$
f(n)=\sum_{i=1}^{d} a_{i} f(n-i)
$$

- Example: Fibonacci series $F(n)=F(n-1)+F(n-2)$

Solving Linear Recurrences

- Homogeneous linear recurrences are of the form

$$
f(n)=\sum_{i=1}^{d} a_{i} f(n-i)
$$

- Example: Fibonacci series $F(n)=F(n-1)+F(n-2)$
- They are known to have an exponential solution $f(n)=x^{n}$ for some x
- Substitute this solution into the recurrence and solve for x :

Solving Linear Recurrences

- Homogeneous linear recurrences are of the form

$$
f(n)=\sum_{i=1}^{d} a_{i} f(n-i)
$$

- Example: Fibonacci series $F(n)=F(n-1)+F(n-2)$
- They are known to have an exponential solution $f(n)=x^{n}$ for some x
- Substitute this solution into the recurrence and solve for x :

$$
\begin{aligned}
x^{n} & =\sum_{i=1}^{d} a_{i} x^{n-i} \\
x^{d} & =\sum_{i=1}^{d} a_{i} x^{d-i} \quad\left(\text { Dividing all terms by } x^{n-d}\right)
\end{aligned}
$$

$$
\sum_{i=0}^{d} a_{i} x^{d-i}=0
$$

(Rearrange terms to arrive at a polynomial, with $a_{0}=1$)

Solving Homogeneous Linear Recurrences (Contd.)

- Find the roots r_{1}, \ldots, r_{d} of of this polynomial $\sum_{i=0}^{d} a_{i} X^{d-i}=0$

Solving Homogeneous Linear Recurrences (Contd.)

- Find the roots r_{1}, \ldots, r_{d} of of this polynomial $\sum_{i=0}^{d} a_{i} x^{d-i}=0$
- The general solution to the recurrence is

$$
f(n)=\sum_{i=1}^{d} k_{i} r_{i}^{n}
$$

Solving Homogeneous Linear Recurrences (Contd.)

- Find the roots r_{1}, \ldots, r_{d} of of this polynomial $\sum_{i=0}^{d} a_{i} x^{d-i}=0$
- The general solution to the recurrence is

$$
f(n)=\sum_{i=1}^{d} k_{i} r_{i}^{n}
$$

- Solve for k_{i} using known values for $f(0)$ through $f(d-1)$.

Solving Homogeneous Linear Recurrences (Contd.)

- Find the roots r_{1}, \ldots, r_{d} of of this polynomial $\sum_{i=0}^{d} a_{i} x^{d-i}=0$
- The general solution to the recurrence is

$$
f(n)=\sum_{i=1}^{d} k_{i} r_{i}^{n}
$$

- Solve for k_{i} using known values for $f(0)$ through $f(d-1)$.
- Note: if the polynomial has fewer than d roots, the general form of the solution gets more complicated - we will ignore this case here.

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

1. Substitute $f(n)=x^{n}$ in this equation, simplify to get characteristic equation $x^{2}=x+1$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

1. Substitute $f(n)=x^{n}$ in this equation, simplify to get characteristic equation $x^{2}=x+1$
2. Solve this quadratic equation to obtain roots $p=\frac{1+\sqrt{5}}{2}$ and $q=\frac{1-\sqrt{5}}{2}$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

1. Substitute $f(n)=x^{n}$ in this equation, simplify to get characteristic equation $x^{2}=x+1$
2. Solve this quadratic equation to obtain roots $p=\frac{1+\sqrt{5}}{2}$ and $q=\frac{1-\sqrt{5}}{2}$
3. By the homogeneous linear recurrence method, the general solution is $f(n)=k_{1} p^{n}+k_{2} q^{n}$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

1. Substitute $f(n)=x^{n}$ in this equation, simplify to get characteristic equation $x^{2}=x+1$
2. Solve this quadratic equation to obtain roots $p=\frac{1+\sqrt{5}}{2}$ and $q=\frac{1-\sqrt{5}}{2}$
3. By the homogeneous linear recurrence method, the general solution is $f(n)=k_{1} p^{n}+k_{2} q^{n}$
4. Plug in $f(0)=0$ and $f(1)=1$ to obtain the following equations:

- $k_{1} p^{0}+k_{2} q^{0}=f(0)=0$
- $k_{1} p^{1}+k_{2} q^{1}=k_{1}\left(\frac{1+\sqrt{5}}{2}\right)+k_{2}\left(\frac{1-\sqrt{5}}{2}\right)=f(1)=1$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

1. Substitute $f(n)=x^{n}$ in this equation, simplify to get characteristic equation $x^{2}=x+1$
2. Solve this quadratic equation to obtain roots $p=\frac{1+\sqrt{5}}{2}$ and $q=\frac{1-\sqrt{5}}{2}$
3. By the homogeneous linear recurrence method, the general solution is $f(n)=k_{1} p^{n}+k_{2} q^{n}$
4. Plug in $f(0)=0$ and $f(1)=1$ to obtain the following equations:

- $k_{1} p^{0}+k_{2} q^{0}=k_{1}+k_{2}=f(0)=0$ which means $k_{2}=-k_{1}$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

1. Substitute $f(n)=x^{n}$ in this equation, simplify to get characteristic equation $x^{2}=x+1$
2. Solve this quadratic equation to obtain roots $p=\frac{1+\sqrt{5}}{2}$ and $q=\frac{1-\sqrt{5}}{2}$
3. By the homogeneous linear recurrence method, the general solution is $f(n)=k_{1} p^{n}+k_{2} q^{n}$
4. Plug in $f(0)=0$ and $f(1)=1$ to obtain the following equations:

- $k_{1} p^{0}+k_{2} q^{0}=k_{1}+k_{2}=f(0)=0$ which means $k_{2}=-k_{1}$
- $k_{1} p^{1}+k_{2} q^{1}=k_{1}\left(\frac{1+\sqrt{5}}{2}\right)+k_{2}\left(\frac{1-\sqrt{5}}{2}\right)=\left(k_{1}+k_{2}\right) / 2+\sqrt{5}\left(k_{1}-k_{2}\right) / 2=f(1)=1$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

1. Substitute $f(n)=x^{n}$ in this equation, simplify to get characteristic equation $x^{2}=x+1$
2. Solve this quadratic equation to obtain roots $p=\frac{1+\sqrt{5}}{2}$ and $q=\frac{1-\sqrt{5}}{2}$
3. By the homogeneous linear recurrence method, the general solution is $f(n)=k_{1} p^{n}+k_{2} q^{n}$
4. Plug in $f(0)=0$ and $f(1)=1$ to obtain the following equations:

- $k_{1} p^{0}+k_{2} q^{0}=k_{1}+k_{2}=f(0)=0$ which means $k_{2}=-k_{1}$
- $k_{1} p^{1}+k_{2} q^{1}=k_{1}\left(\frac{1+\sqrt{5}}{2}\right)+k_{2}\left(\frac{1-\sqrt{5}}{2}\right)=\left(k_{1}+k_{2}\right) / 2+\sqrt{5}\left(k_{1}-k_{2}\right) / 2=f(1)=1$
- Substituting $k_{2}=-k_{1}$ in this equation and simplifying, we get $k_{1}=1 / \sqrt{5}$.

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n)=f(n-1)+f(n-2)
$$

1. Substitute $f(n)=x^{n}$ in this equation, simplify to get characteristic equation $x^{2}=x+1$
2. Solve this quadratic equation to obtain roots $p=\frac{1+\sqrt{5}}{2}$ and $q=\frac{1-\sqrt{5}}{2}$
3. By the homogeneous linear recurrence method, the general solution is $f(n)=k_{1} p^{n}+k_{2} q^{n}$
4. Plug in $f(0)=0$ and $f(1)=1$ to obtain the following equations:

- $k_{1} p^{0}+k_{2} q^{0}=k_{1}+k_{2}=f(0)=0$ which means $k_{2}=-k_{1}$
- $k_{1} p^{1}+k_{2} q^{1}=k_{1}\left(\frac{1+\sqrt{5}}{2}\right)+k_{2}\left(\frac{1-\sqrt{5}}{2}\right)=\left(k_{1}+k_{2}\right) / 2+\sqrt{5}\left(k_{1}-k_{2}\right) / 2=f(1)=1$
- Substituting $k_{2}=-k_{1}$ in this equation and simplifying, we get $k_{1}=1 / \sqrt{5}$.

5. Thus, the solution is

$$
f(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Observations about Fibonacci Recurrence Solution

- All Fibonacci numbers are integers - it is mind-boggling that its closed form solution contains not just fractions, but irrational numbers!
- No wonder that this solution was unknown for six centuries!

Observations about Fibonacci Recurrence Solution

- All Fibonacci numbers are integers - it is mind-boggling that its closed form solution contains not just fractions, but irrational numbers!
- No wonder that this solution was unknown for six centuries!
- Note that $|q|=\left|\frac{1-\sqrt{5}}{2}\right|=0.6180<1$ so q^{n} rapidly approaches zero. For instance, $q^{20} \approx 0.00006$, and the error in $f(n)$ due to ignoring q is less than one in 10^{-8}.

Observations about Fibonacci Recurrence Solution

- All Fibonacci numbers are integers - it is mind-boggling that its closed form solution contains not just fractions, but irrational numbers!
- No wonder that this solution was unknown for six centuries!
- Note that $|q|=\left|\frac{1-\sqrt{5}}{2}\right|=0.6180<1$ so q^{n} rapidly approaches zero. For instance, $q^{20} \approx 0.00006$, and the error in $f(n)$ due to ignoring q is less than one in 10^{-8}.
- So, for larger $n, f(n)$ is determined almost entirely by the first term $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$
- $p^{n} / \sqrt{5}$ is very close to an integer value, although p is irrational!

Observations about Fibonacci Recurrence Solution

- All Fibonacci numbers are integers - it is mind-boggling that its closed form solution contains not just fractions, but irrational numbers!
- No wonder that this solution was unknown for six centuries!
- Note that $|q|=\left|\frac{1-\sqrt{5}}{2}\right|=0.6180<1$ so q^{n} rapidly approaches zero. For instance, $q^{20} \approx 0.00006$, and the error in $f(n)$ due to ignoring q is less than one in 10^{-8}.
- So, for larger $n, f(n)$ is determined almost entirely by the first term $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$ - $p^{n} / \sqrt{5}$ is very close to an integer value, although p is irrational!
- The ratio between successive Fibonacci numbers converges to $p=1.618$, which is called the golden ratio

Asymptotic Complexity

- Expressing complexity in terms of "number of steps" is a simplification
- Each such operation may in fact take a different amount of time
- But it is too complex to worry about the details, esp. because they differ across programming languages, processor types, etc.

Asymptotic Complexity

- Expressing complexity in terms of "number of steps" is a simplification
- Each such operation may in fact take a different amount of time
- But it is too complex to worry about the details, esp. because they differ across programming languages, processor types, etc.
- Why not simplify further?
- Capture just the growth rate of $T(n)$ as a function of n
- Ignore constant factors
- No need to count operations in a loop (their number should be bounded by a constant)
- Ignore exceptions from the formula for small values of n

Asymptotic Complexity: Big-O notation

Definition

Given functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$, we say $f=O(g)$, i.e., "f grows no faster than g," iff

$$
\lim _{x \rightarrow \infty} f(x) / g(x)<c \text { for some constant } c
$$

Big-O notation: Examples

- $10 n=O(n)$
- $0.0001 n^{3}+n=O\left(n^{3}\right)$
- $2^{n}+10^{n}+n^{2}+2=O\left(10^{n}\right)$
- $0.0001 n \log n+10000 n=O(n \log n)$

Solving Divide-and-Conquer Recurrences: Master Theorem

If $T(n)=a T\left(\frac{n}{b}\right)+O\left(n^{d}\right)$ for constants $a>0, b>1$, and $d \geq 0$, then

$$
T(n)= \begin{cases}O\left(n^{d}\right), & \text { if } d>\log _{b} a \\ O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\ O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
$$

Solving Recurrences: Examples Using Master Theorem

$$
T(n)=2 T(n / 2)+n
$$

$$
\begin{gathered}
T(n)=a T\left(\frac{n}{b}\right)+O\left(n^{d}\right) \\
T(n)= \begin{cases}O\left(n^{d}\right), & \text { if } d>\log _{b} a \\
O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\
O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
\end{gathered}
$$

Solving Recurrences: Examples Using Master Theorem

$$
T(n)=4 T(n / 2)+n^{3}
$$

$$
\begin{gathered}
T(n)=a T\left(\frac{n}{b}\right)+O\left(n^{d}\right) \\
T(n)= \begin{cases}O\left(n^{d}\right), & \text { if } d>\log _{b} a \\
O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\
O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
\end{gathered}
$$

Solving Recurrences: Examples Using Master Theorem

$$
T(n)=3 T(n / 2)+n
$$

$$
\begin{gathered}
T(n)=a T\left(\frac{n}{b}\right)+O\left(n^{d}\right) \\
T(n)= \begin{cases}O\left(n^{d}\right), & \text { if } d>\log _{b} a \\
O\left(n^{d} \log n\right) & \text { if } d=\log _{b} a \\
O\left(n^{\log _{b} a}\right) & \text { if } d<\log _{b} a\end{cases}
\end{gathered}
$$

