R. Sekar

1/49

Intro

@ Recursion is one of the most versatile techniques in programming as well as

algorithm design

@ Closely related to induction:
e Consists of a base case and recursive case, similar to base and inductive steps.

o Correctness of recursive algorithms is proved by induction
e Example: Computing Fibonacci numbers:

Base case(s): F(0) =0, F(1) =1

Recursive case: F(n) = F(n— 1)+ F(n—2)

2/49

Recurrences: Typically used in the context of algorithm analysis
Base Case: T(0) = 1
Recursive Case: T(n) = 2T(n/2)+n

3/49

Recurrences: Typically used in the context of algorithm analysis
Base Case: T(0) = 1
Recursive Case: T(n) = 2T(n/2)+n

Recursive functions: Used in programming

Base Case: sum(0) = 0

Recursive Case: sum(n) = n+ sum(n—1)

4/49

Uses of Recursion

Recurrences: Typically used in the context of algorithm analysis
Base Case: T(0) = 1

Recursive Case: T(n) = 2T(n/2)+n
Recursive functions: Used in programming

Base Case: sum(0) = 0

Recursive Case: sum(n) = n+ sum(n—1)
Recursive data types: e.g., lists, trees,. ..

Base Case: empty list (for lists), leaf (for trees),. . .

Recursive Case: pair of element and rest of list, pair of trees, etc.

5/49

Recurrences: Tower of Hanoi Problem

Goal: Move all disks from one post to another.

Rules:

@ Only the top-most disk can be moved.

@ No disk can be placed on a smaller disk.

Questions:
e How do you solve the puzzle?

e How many moves will be needed?

6/49

all Al

—
AN
|—

Iz

9/49

Tower of Hanoi Problem: Example with Three Disks

r

10/49

ARt At o o of o Pk
Al . 1A

AL LA

A Recursive Algorithm for Tower of Hanoi Problem

MoveStack(n, 1, 3):
% “ “ % H @ MoveStack(n—1,1,2)
1 @ MoveDisk(n, 1, 3)

AL A

12/49

A Recursive Algorithm for Tower of Hanoi Problem

MoveStack(n, 1, 3):
% @ MoveStack(n—1,1,2)
1 @ MoveDisk(n, 1, 3)

@ MoveStack(n—1,2,3)

Base Case:

2
/ MoveStack(1, x, y)
@ MoveDisk(1,x,y)
3

13/49

A Recurrence for the Runtime of Towers of Hanoi Algorithm

il

LA

MoveStack(n, 1, 3):

@ MoveStack(n—1,1,2)
@ MoveDisk(n, 1,3)

@ MoveStack(n—1,2,3)

[T(n) =2T(n—1)+1]

Base Case:
MoveStack(1, x, y)
@ MoveDisk(1,x,y)

14/49

A Recurrence for the Runtime of Towers of Hanoi Algorithm

MoveStack(n, 1, 3):
@ MoveStack(n—1,1,2)

@ MoveDisk(n, 1, 3)
@ MoveStack(n—1,2,3)
1

[T(n) =2T(n—1)+1]

Base Case:

2
/ MoveStack(1, x,y)
ﬂ é i ﬂ ﬂ é @ MoveDisk(1,x,y)
: 3 _. T(1) =1

15/49

Expand the recurrence out for a few steps

Identify the pattern
Guess a solution based on the pattern
Check the solution for a few small values of n

Verify using induction

16/49

T(n)=2T(n—1)+1, T(1)=1

17/49

1, ifn=10

exp(x,n) =
x x exp(x,n— 1), otherwise

18/49

1, ifn=10 T(1) = 1
x x exp(x,n— 1), otherwise T(n) = T(n—1)+1

exp(x,n) =

19/49

1, ifn=10

X, ifn=1
fexp(x, n) = <
fexp(x * x, n/2), if nis even

| fexp(x * x,n/2) x x, if nis odd

20/49

1, ifn=10
fexp(x, n) = { X’ =1) =1
’ fexp(x * x, n/2), if nis even T(n) = T(n/2)+1
| fexp(x * x,n/2) x x, if nis odd

21/49

@ Homogeneous linear recurrences are of the form
d

f(n) =" aif(n—i)

i=1

o Example: Fibonacci series F(n) = F(n— 1) + F(n — 2)

22/49

@ Homogeneous linear recurrences are of the form
d

f(n) =" aif(n—i)

i=1

o Example: Fibonacci series F(n) = F(n— 1) + F(n — 2)
@ They are known to have an exponential solution f(n) = x" for some x
o Substitute this solution into the recurrence and solve for x:

23/49

Solving Linear Recurrences

@ Homogeneous linear recurrences are of the form
d

fln) =2 af(n—1i)
i=1
o Example: Fibonacci series F(n) = F(n— 1) + F(n — 2)
@ They are known to have an exponential solution f(n) = x" for some x

e Substitute this solution into the recurrence and solve for x:
d

x" = E aix"!

i=1
d

x? = Z aix~" (Dividing all terms by x"~%)

i=1
Z ax?™" = 0 (Rearrange terms to arrive at a polynomial, with ap = 1)

24/49

e Find the roots ry, ..., ry of of this polynomial Zj’:o ax? =0

25/49

e Find the roots ry, ..., ry of of this polynomial Z?’:o ax? =0

@ The general solution to the recurrence is

d
f(n) = Zk,-ri”

26/49

Solving Homogeneous Linear Recurrences (Contd.)

e Find the roots ry, ..., rq of of this polynomial Z;j:o ax? =0

@ The general solution to the recurrence is

@ Solve for k; using known values for £(0) through f(d — 1).

27/49

Solving Homogeneous Linear Recurrences (Contd.)

e Find the roots ry, ..., rq of of this polynomial Z;j:o ax? =0

@ The general solution to the recurrence is

@ Solve for k; using known values for £(0) through f(d — 1).

@ Note: if the polynomial has fewer than d roots, the general form of the solution gets

more complicated — we will ignore this case here.

28/49

f(n) =f(n=1)+f(n-2)

29/49

f(n) =f(n=1)+f(n-2)

1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1

30/49

f(n) =f(n=1)+f(n-2)

1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1

1+\/' 1— \/_

2. Solve this quadratic equation to obtain roots p = and g =

31/49

Solving Homogeneous Linear Recurrences: Fibonacci Example

f(n) =f(n=1)+f(n-2)

1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1

1+\f 1— \f

2. Solve this quadratic equation to obtain roots p = and g =

3. By the homogeneous linear recurrence method, the general solution is f(n) = kip” + kq"

32/49

Solving Homogeneous Linear Recurrences: Fibonacci Example

f(n) =f(n=1)+f(n-2)

1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1

2. Solve this quadratic equation to obtain roots p = H\[and ¢ = = ‘[

3. By the homogeneous linear recurrence method, the general solution is f(n) = kip” + kq"

4. Plugin f(0) = 0 and f(1) = 1 to obtain the following equations:
o kip’ + kg’ = f(0) =0
°k1p1+k2q1:k1<1+\[)+k<1 \[) f(1):‘]

33/49

Solving Homogeneous Linear Recurrences: Fibonacci Example

f(n)=f(n—=1)+f(n-2)
1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1
1+\f \/5

2. Solve this quadratic equation to obtain roots p = and g =
3. By the homogeneous linear recurrence method, the general solution is f(n) = kip" + kq"

4. Plugin f(0) = 0 and f(1) = 1 to obtain the following equations:
o kip’ + kog” = ki + ko = f(0) = 0 which means k, = —k;

34/49

Solving Homogeneous Linear Recurrences: Fibonacci Example

f(n)=f(n—=1)+f(n-2)
1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1

1+\f and g = ! \/5

2. Solve this quadratic equation to obtain roots p =
3. By the homogeneous linear recurrence method, the general solution is f(n) = kip" + kq"

4. Plugin f(0) = 0 and f(1) = 1 to obtain the following equations:
o kip’ + kog” = ki + ko = f(0) = 0 which means k, = —k;
° k1p1 + kzq1 = ki (%) + ky (1 f) (k1 +/<2)/2+ \[(Iﬁ - k2)/2 = () =1

35/49

Solving Homogeneous Linear Recurrences: Fibonacci Example

f(n)=f(n—=1)+f(n-2)
1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1

1+\f \/5

2. Solve this quadratic equation to obtain roots p = and g =
3. By the homogeneous linear recurrence method, the general solution is f(n) = kip" + kq"

4. Plugin f(0) = 0 and f(1) = 1 to obtain the following equations:
o kip’ + kog” = ki + ko = f(0) = 0 which means k, = —k;
° k1p1 + kzq1 = ki (#) + ky (1 f) (k1 +/<2)/2+ \[(Iﬁ - k2)/2 = () =1

o Substituting k, = —k; in this equation and simplifying, we get k; = 1/+/5.

36/49

Solving Homogeneous Linear Recurrences: Fibonacci Example

f(n)=f(n—=1)+f(n-2)
1. Substitute f(n) = x" in this equation, simplify to get characteristic equation x* = x + 1
1+\f \/5

2. Solve this quadratic equation to obtain roots p = and g =
3. By the homogeneous linear recurrence method, the general solution is f(n) = kip" + kq"

4. Plugin f(0) = 0 and f(1) = 1 to obtain the following equations:
o kip’ + kog” = ki + ko = f(0) = 0 which means k, = —k;
o kip'+ koq' = k (%) + ky (1 \[) (ki + ko) /2 4+ V/5(ki — ky) /2 = (1) =1
o Substituting k, = —k; in this equation and simplifying, we get k; = 1/+/5.

o= 55 55

5. Thus, the solution is

37/49

Observations about Fibonacci Recurrence Solution

@ All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

e No wonder that this solution was unknown for six centuries!

38/49

Observations about Fibonacci Recurrence Solution

@ All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

e No wonder that this solution was unknown for six centuries!

e Note that |g| = |%§| = 0.6180 < 1so ¢" rapidly approaches zero. For instance,
g*° =~ 0.00006, and the error in f(n) due to ignoring g is less than one in 1075,

39/49

Observations about Fibonacci Recurrence Solution

@ All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

e No wonder that this solution was unknown for six centuries!
e Note that |g| = |%§| = 0.6180 < 1so ¢" rapidly approaches zero. For instance,
g*° =~ 0.00006, and the error in f(n) due to ignoring g is less than one in 1075,

@ So, for larger n, f(n) is determined almost entirely by the first term —- (#)

o p"/+/5 is very close to an integer value, although p is irrational!

40/49

Observations about Fibonacci Recurrence Solution

@ All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

e No wonder that this solution was unknown for six centuries!

e Note that |q| = |%§| = 0.6180 < 1so ¢" rapidly approaches zero. For instance,
g*° =~ 0.00006, and the error in f(n) due to ignoring g is less than one in 1075,

1+xﬁ>n

@ So, for larger n, f(n) is determined almost entirely by the first term \/ig (5

o p"/+/5 is very close to an integer value, although p is irrational!

@ The ratio between successive Fibonacci numbers converges to p = 1.618, which is

called the golden ratio

41/49

Asymptotic Complexity

e Expressing complexity in terms of “number of steps” is a simplification

e Each such operation may in fact take a different amount of time
e But it is too complex to worry about the details, esp. because they differ across

programming languages, processor types, etc.

42/49

Asymptotic Complexity

e Expressing complexity in terms of “number of steps” is a simplification
e Each such operation may in fact take a different amount of time
e But it is too complex to worry about the details, esp. because they differ across

programming languages, processor types, etc.

e Why not simplify further?

o Capture just the growth rate of T(n) as a function of n

e lIgnore constant factors
@ No need to count operations in a loop (their number should be bounded by a constant)

e Ignore exceptions from the formula for small values of n

43/49

Given functions f, g : R — R, we say
f = 0(g), i.e, “f grows no faster than g,
iff

lim f(x)/8(x) < c for some constant c

2n+20

44/ 49

e 10n= O(n)

@ 0.0001° + n = O(n?)
@ 2"+ 10"+ n* 4+ 2 = 0(10")
@ 0.0001nlog n+ 10000n = O(nlog n)

45/49

If T(n) = aT (2) + O(n“) for constants a > 0,b > 1, and d > 0, then

o(n?), if d > log, a
T(n) = O(n?logn) ifd=log,a
O(n'°&%) ifd < log, a

46/49

T(n)=2T(n/2)+n
T(n) = aT (4) 4+ O(n")

o(n), if d > log, a
T(n) = ¢ O(nlogn) ifd=log,a
O(n'°&%) ifd < log, a

47 /49

T(n) =4T(n/2) +
T(n) = aT (4) 4+ O(n")

o(n), if d > log, a
T(n) = ¢ O(nlogn) ifd=log,a
O(n'°&%) ifd < log, a

48 /49

T(n)=3T(n/2)+n
T(n) = aT (4) 4+ O(n")

o(n), if d > log, a
T(n) = ¢ O(nlogn) ifd=log,a
O(n'°&%) ifd < log, a

49/49

