
Recurrences and Recursion

R. Sekar

1 / 49



Intro

Recursion is one of the most versatile techniques in programming as well as
algorithm design

Closely related to induction:

Consists of a base case and recursive case, similar to base and inductive steps.

Correctness of recursive algorithms is proved by induction

Example: Computing Fibonacci numbers:

Base case(s): F (0) = 0, F (1) = 1
Recursive case: F (n) = F (n− 1) + F (n− 2)

2 / 49



Uses of Recursion

Recurrences: Typically used in the context of algorithm analysis
Base Case: T (0) = 1
Recursive Case: T (n) = 2T (n/2) + n

Recursive functions: Used in programming
Base Case: sum(0) = 0
Recursive Case: sum(n) = n+ sum(n− 1)

Recursive data types: e.g., lists, trees,. . .

Base Case: empty list (for lists), leaf (for trees),. . .
Recursive Case: pair of element and rest of list, pair of trees, etc.

3 / 49



Uses of Recursion

Recurrences: Typically used in the context of algorithm analysis
Base Case: T (0) = 1
Recursive Case: T (n) = 2T (n/2) + n

Recursive functions: Used in programming
Base Case: sum(0) = 0
Recursive Case: sum(n) = n+ sum(n− 1)

Recursive data types: e.g., lists, trees,. . .

Base Case: empty list (for lists), leaf (for trees),. . .
Recursive Case: pair of element and rest of list, pair of trees, etc.

4 / 49



Uses of Recursion

Recurrences: Typically used in the context of algorithm analysis
Base Case: T (0) = 1
Recursive Case: T (n) = 2T (n/2) + n

Recursive functions: Used in programming
Base Case: sum(0) = 0
Recursive Case: sum(n) = n+ sum(n− 1)

Recursive data types: e.g., lists, trees,. . .

Base Case: empty list (for lists), leaf (for trees),. . .
Recursive Case: pair of element and rest of list, pair of trees, etc.

5 / 49



Recurrences: Tower of Hanoi Problem“mcs” — 2017/6/5 — 19:42 — page 705 — #713

16.4. Solving Linear Recurrences 705

Figure 16.1 The initial configuration of the disks in the Towers of Hanoi problem.

16.4.2 The Towers of Hanoi

According to legend, there is a temple in Hanoi with three posts and 64 gold disks
of different sizes. Each disk has a hole through the center so that it fits on a post.
In the misty past, all the disks were on the first post, with the largest on the bottom
and the smallest on top, as shown in Figure 16.1.

Monks in the temple have labored through the years since to move all the disks
to one of the other two posts according to the following rules:

� The only permitted action is removing the top disk from one post and drop-
ping it onto another post.

� A larger disk can never lie above a smaller disk on any post.

So, for example, picking up the whole stack of disks at once and dropping them on
another post is illegal. That’s good, because the legend says that when the monks
complete the puzzle, the world will end!

To clarify the problem, suppose there were only 3 gold disks instead of 64. Then
the puzzle could be solved in 7 steps as shown in Figure 16.2.

The questions we must answer are, “Given sufficient time, can the monks suc-
ceed?” If so, “How long until the world ends?” And, most importantly, “Will this
happen before the final exam?”

A Recursive Solution

The Towers of Hanoi problem can be solved recursively. As we describe the pro-
cedure, we’ll also analyze the minimum number tn of steps required to solve the
n-disk problem. For example, some experimentation shows that t1 D 1 and t2 D 3.
The procedure illustrated above uses 7 steps, which shows that t3 is at most 7.

The recursive solution has three stages, which are described below and illustrated
in Figure 16.3. For clarity, the largest disk is shaded in the figures.

Stage 1. Move the top n�1 disks from the first post to the second using the solution
for n � 1 disks. This can be done in tn�1 steps.

Goal: Move all disks from one post to another.

Rules:

Only the top-most disk can be moved.
No disk can be placed on a smaller disk.

Questions:

How do you solve the puzzle?
How many moves will be needed?

6 / 49



Tower of Hanoi Problem: Example with Three Disks
“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

7 / 49



Tower of Hanoi Problem: Example with Three Disks“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

8 / 49



Tower of Hanoi Problem: Example with Three Disks

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

9 / 49



Tower of Hanoi Problem: Example with Three Disks

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

10 / 49



A Recursive Algorithm for Tower of Hanoi Problem

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

MoveStack(n, 1, 3):

MoveStack(n− 1, 1, 2)

MoveDisk(n, 1, 3)

MoveStack(n− 1, 2, 3)

Base Case:

MoveStack(1, x, y)

MoveDisk(1, x, y)

11 / 49



A Recursive Algorithm for Tower of Hanoi Problem

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

MoveStack(n, 1, 3):

MoveStack(n− 1, 1, 2)

MoveDisk(n, 1, 3)

MoveStack(n− 1, 2, 3)

Base Case:

MoveStack(1, x, y)

MoveDisk(1, x, y)

12 / 49



A Recursive Algorithm for Tower of Hanoi Problem

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

MoveStack(n, 1, 3):

MoveStack(n− 1, 1, 2)

MoveDisk(n, 1, 3)

MoveStack(n− 1, 2, 3)

Base Case:

MoveStack(1, x, y)

MoveDisk(1, x, y)

13 / 49



A Recurrence for the Runtime of Towers of Hanoi Algorithm

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

MoveStack(n, 1, 3):

MoveStack(n− 1, 1, 2)

MoveDisk(n, 1, 3)

MoveStack(n− 1, 2, 3)

T (n) = 2T (n− 1) + 1

Base Case:

MoveStack(1, x, y)

MoveDisk(1, x, y)

14 / 49



A Recurrence for the Runtime of Towers of Hanoi Algorithm

“mcs” — 2017/6/5 — 19:42 — page 706 — #714

Chapter 16 Generating Functions706

1

2

3

4

5

6

7

Figure 16.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 16.3 A recursive solution to the Towers of Hanoi problem.

MoveStack(n, 1, 3):

MoveStack(n− 1, 1, 2)

MoveDisk(n, 1, 3)

MoveStack(n− 1, 2, 3)

T (n) = 2T (n− 1) + 1

Base Case:

MoveStack(1, x, y)

MoveDisk(1, x, y)

T (1) = 1

15 / 49



Solving Recurrences: Plug and Chug

Expand the recurrence out for a few steps

Identify the pattern

Guess a solution based on the pattern

Check the solution for a few small values of n

Verify using induction

16 / 49



Plug and Chug for Tower of Hanoi Recurrence

T (n) = 2T (n− 1) + 1, T (1) = 1

17 / 49



Examples of Recurrences for Runtimes: Exponentiation

exp(x, n) =

1, if n = 0

x ∗ exp(x, n− 1), otherwise

T (1) = 1
T (n) = T (n− 1) + 1

18 / 49



Examples of Recurrences for Runtimes: Exponentiation

exp(x, n) =

1, if n = 0

x ∗ exp(x, n− 1), otherwise

T (1) = 1
T (n) = T (n− 1) + 1

19 / 49



Examples of Recurrences for Runtimes: Fast Exponentiation

fexp(x, n) =


1, if n = 0

x, if n = 1

fexp(x ∗ x, n/2), if n is even

fexp(x ∗ x, n/2) ∗ x, if n is odd

T (1) = 1
T (n) = T (n/2) + 1

20 / 49



Examples of Recurrences for Runtimes: Fast Exponentiation

fexp(x, n) =


1, if n = 0

x, if n = 1

fexp(x ∗ x, n/2), if n is even

fexp(x ∗ x, n/2) ∗ x, if n is odd

T (1) = 1
T (n) = T (n/2) + 1

21 / 49



Solving Linear Recurrences
Homogeneous linear recurrences are of the form

f (n) =
d∑

i=1

aif (n− i)

Example: Fibonacci series F (n) = F (n− 1) + F (n− 2)

They are known to have an exponential solution f (n) = xn for some x
Substitute this solution into the recurrence and solve for x :

xn =
d∑

i=1

aixn−i

xd =
d∑

i=1

aixd−i (Dividing all terms by xn−d )

d∑
i=0

aixd−i = 0 (Rearrange terms to arrive at a polynomial, with a0 = 1)

22 / 49



Solving Linear Recurrences
Homogeneous linear recurrences are of the form

f (n) =
d∑

i=1

aif (n− i)

Example: Fibonacci series F (n) = F (n− 1) + F (n− 2)
They are known to have an exponential solution f (n) = xn for some x
Substitute this solution into the recurrence and solve for x :

xn =
d∑

i=1

aixn−i

xd =
d∑

i=1

aixd−i (Dividing all terms by xn−d )

d∑
i=0

aixd−i = 0 (Rearrange terms to arrive at a polynomial, with a0 = 1)

23 / 49



Solving Linear Recurrences
Homogeneous linear recurrences are of the form

f (n) =
d∑

i=1

aif (n− i)

Example: Fibonacci series F (n) = F (n− 1) + F (n− 2)
They are known to have an exponential solution f (n) = xn for some x
Substitute this solution into the recurrence and solve for x :

xn =
d∑

i=1

aixn−i

xd =
d∑

i=1

aixd−i (Dividing all terms by xn−d )

d∑
i=0

aixd−i = 0 (Rearrange terms to arrive at a polynomial, with a0 = 1)

24 / 49



Solving Homogeneous Linear Recurrences (Contd.)

Find the roots r1, ..., rd of of this polynomial
∑d

i=0 aix
d−i = 0

The general solution to the recurrence is

f (n) =
d∑

i=1

kirni

Solve for ki using known values for f (0) through f (d − 1).

Note: if the polynomial has fewer than d roots, the general form of the solution gets
more complicated — we will ignore this case here.

25 / 49



Solving Homogeneous Linear Recurrences (Contd.)

Find the roots r1, ..., rd of of this polynomial
∑d

i=0 aix
d−i = 0

The general solution to the recurrence is

f (n) =
d∑

i=1

kirni

Solve for ki using known values for f (0) through f (d − 1).

Note: if the polynomial has fewer than d roots, the general form of the solution gets
more complicated — we will ignore this case here.

26 / 49



Solving Homogeneous Linear Recurrences (Contd.)

Find the roots r1, ..., rd of of this polynomial
∑d

i=0 aix
d−i = 0

The general solution to the recurrence is

f (n) =
d∑

i=1

kirni

Solve for ki using known values for f (0) through f (d − 1).

Note: if the polynomial has fewer than d roots, the general form of the solution gets
more complicated — we will ignore this case here.

27 / 49



Solving Homogeneous Linear Recurrences (Contd.)

Find the roots r1, ..., rd of of this polynomial
∑d

i=0 aix
d−i = 0

The general solution to the recurrence is

f (n) =
d∑

i=1

kirni

Solve for ki using known values for f (0) through f (d − 1).

Note: if the polynomial has fewer than d roots, the general form of the solution gets
more complicated — we will ignore this case here.

28 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example

f (n) = f (n− 1) + f (n− 2)

29 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = f (0) = 0

k1p1 + k2q1 = k1
(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= f (1) = 1

30 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = f (0) = 0

k1p1 + k2q1 = k1
(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= f (1) = 1

31 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = f (0) = 0

k1p1 + k2q1 = k1
(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= f (1) = 1

32 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = f (0) = 0

k1p1 + k2q1 = k1
(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= f (1) = 1

33 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = k1 + k2 = f (0) = 0 which means k2 = −k1

k1p1 + k2q1 = k1
(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= (k1 + k2)/2+

√
5(k1 − k2)/2 = f (1) = 1

Substituting k2 = −k1 in this equation and simplifying, we get k1 = 1/
√
5.

5. Thus, the solution is

f (n) =
1√
5

(
1+

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

34 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = k1 + k2 = f (0) = 0 which means k2 = −k1
k1p1 + k2q1 = k1

(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= (k1 + k2)/2+

√
5(k1 − k2)/2 = f (1) = 1

Substituting k2 = −k1 in this equation and simplifying, we get k1 = 1/
√
5.

5. Thus, the solution is

f (n) =
1√
5

(
1+

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

35 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = k1 + k2 = f (0) = 0 which means k2 = −k1
k1p1 + k2q1 = k1

(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= (k1 + k2)/2+

√
5(k1 − k2)/2 = f (1) = 1

Substituting k2 = −k1 in this equation and simplifying, we get k1 = 1/
√
5.

5. Thus, the solution is

f (n) =
1√
5

(
1+

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

36 / 49



Solving Homogeneous Linear Recurrences: Fibonacci Example
f (n) = f (n− 1) + f (n− 2)

1. Substitute f (n) = xn in this equation, simplify to get characteristic equation x2 = x + 1

2. Solve this quadratic equation to obtain roots p = 1+
√
5

2 and q = 1−
√
5

2

3. By the homogeneous linear recurrence method, the general solution is f (n) = k1pn + k2qn

4. Plug in f (0) = 0 and f (1) = 1 to obtain the following equations:
k1p0 + k2q0 = k1 + k2 = f (0) = 0 which means k2 = −k1
k1p1 + k2q1 = k1

(
1+

√
5

2

)
+ k2

(
1−

√
5

2

)
= (k1 + k2)/2+

√
5(k1 − k2)/2 = f (1) = 1

Substituting k2 = −k1 in this equation and simplifying, we get k1 = 1/
√
5.

5. Thus, the solution is

f (n) =
1√
5

(
1+

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

37 / 49



Observations about Fibonacci Recurrence Solution

All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

No wonder that this solution was unknown for six centuries!

Note that |q| = | 1−
√
5

2 | = 0.6180 < 1 so qn rapidly approaches zero. For instance,
q20 ≈ 0.00006, and the error in f (n) due to ignoring q is less than one in 10−8.

So, for larger n, f (n) is determined almost entirely by the first term 1√
5

(
1+

√
5

2

)n

pn/
√
5 is very close to an integer value, although p is irrational!

The ratio between successive Fibonacci numbers converges to p = 1.618, which is
called the golden ratio

38 / 49



Observations about Fibonacci Recurrence Solution

All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

No wonder that this solution was unknown for six centuries!

Note that |q| = | 1−
√
5

2 | = 0.6180 < 1 so qn rapidly approaches zero. For instance,
q20 ≈ 0.00006, and the error in f (n) due to ignoring q is less than one in 10−8.

So, for larger n, f (n) is determined almost entirely by the first term 1√
5

(
1+

√
5

2

)n

pn/
√
5 is very close to an integer value, although p is irrational!

The ratio between successive Fibonacci numbers converges to p = 1.618, which is
called the golden ratio

39 / 49



Observations about Fibonacci Recurrence Solution

All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

No wonder that this solution was unknown for six centuries!

Note that |q| = | 1−
√
5

2 | = 0.6180 < 1 so qn rapidly approaches zero. For instance,
q20 ≈ 0.00006, and the error in f (n) due to ignoring q is less than one in 10−8.

So, for larger n, f (n) is determined almost entirely by the first term 1√
5

(
1+

√
5

2

)n

pn/
√
5 is very close to an integer value, although p is irrational!

The ratio between successive Fibonacci numbers converges to p = 1.618, which is
called the golden ratio

40 / 49



Observations about Fibonacci Recurrence Solution

All Fibonacci numbers are integers — it is mind-boggling that its closed form
solution contains not just fractions, but irrational numbers!

No wonder that this solution was unknown for six centuries!

Note that |q| = | 1−
√
5

2 | = 0.6180 < 1 so qn rapidly approaches zero. For instance,
q20 ≈ 0.00006, and the error in f (n) due to ignoring q is less than one in 10−8.

So, for larger n, f (n) is determined almost entirely by the first term 1√
5

(
1+

√
5

2

)n

pn/
√
5 is very close to an integer value, although p is irrational!

The ratio between successive Fibonacci numbers converges to p = 1.618, which is
called the golden ratio

41 / 49



Asymptotic Complexity

Expressing complexity in terms of “number of steps” is a simplification

Each such operation may in fact take a different amount of time

But it is too complex to worry about the details, esp. because they differ across

programming languages, processor types, etc.

Why not simplify further?

Capture just the growth rate of T (n) as a function of n
Ignore constant factors
No need to count operations in a loop (their number should be bounded by a constant)

Ignore exceptions from the formula for small values of n

42 / 49



Asymptotic Complexity

Expressing complexity in terms of “number of steps” is a simplification

Each such operation may in fact take a different amount of time

But it is too complex to worry about the details, esp. because they differ across

programming languages, processor types, etc.

Why not simplify further?

Capture just the growth rate of T (n) as a function of n
Ignore constant factors
No need to count operations in a loop (their number should be bounded by a constant)

Ignore exceptions from the formula for small values of n

43 / 49



Asymptotic Complexity: Big-O notation

Definition
Given functions f , g : R −→ R, we say
f = O(g), i.e., “f grows no faster than g,”

iff

lim
x→∞

f (x)/g(x) < c for some constant c

Figure 0.2Which running time is better?

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

n

2n+20 

n2 

Now another algorithm comes along, one that uses f3(n) = n + 1 steps. Is this better
than f2? Certainly, but only by a constant factor. The discrepancy between f2 and f3 is tiny
compared to the huge gap between f1 and f2. In order to stay focused on the big picture, we
treat functions as equivalent if they differ only by multiplicative constants.
Returning to the definition of big-O, we see that f2 = O(f3):

f2(n)

f3(n)
=

2n + 20

n + 1
≤ 20,

and of course f3 = O(f2), this time with c = 1.

Just as O(·) is an analog of ≤, we can also define analogs of ≥ and = as follows:

f = Ω(g) means g = O(f)

f = Θ(g) means f = O(g) and f = Ω(g).

In the preceding example, f2 = Θ(f3) and f1 = Ω(f3).

Big-O notation lets us focus on the big picture. When faced with a complicated function
like 3n2 + 4n + 5, we just replace it with O(f(n)), where f(n) is as simple as possible. In this
particular example we’d use O(n2), because the quadratic portion of the sum dominates the
rest. Here are some commonsense rules that help simplify functions by omitting dominated
terms:

1. Multiplicative constants can be omitted: 14n2 becomes n2.

2. na dominates nb if a > b: for instance, n2 dominates n.

3. Any exponential dominates any polynomial: 3n dominates n5 (it even dominates 2n).

16

44 / 49



Big-O notation: Examples

10n = O(n)

0.0001n3 + n = O(n3)

2n + 10n + n2 + 2 = O(10n)

0.0001n log n+ 10000n = O(n log n)

45 / 49



Solving Divide-and-Conquer Recurrences: Master Theorem

If T (n) = aT
(
n
b

)
+ O(nd) for constants a > 0, b > 1, and d ≥ 0, then

T (n) =


O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

46 / 49



Solving Recurrences: Examples Using Master Theorem

T (n) = aT
(
n
b

)
+ O(nd)

T (n) =


O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

T (n) = 2T (n/2) + n

47 / 49



Solving Recurrences: Examples Using Master Theorem

T (n) = aT
(
n
b

)
+ O(nd)

T (n) =


O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

T (n) = 4T (n/2) + n3

48 / 49



Solving Recurrences: Examples Using Master Theorem

T (n) = aT
(
n
b

)
+ O(nd)

T (n) =


O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

T (n) = 3T (n/2) + n

49 / 49


