Recurrences and Algorithmic Complexity

R. Sekar

Solving Recurrences

Solving Recurrences: Plug and Chug

- Expand the recurrence out for a few steps
- Identify the pattern
- Guess a solution based on the pattern
- Check the solution for a few small values of *n*
- Verify using induction

Plug and Chug for Tower of Hanoi Recurrence

$$
T(n) = 2T(n-1) + 1, \qquad T(0) = 0
$$

Solving Linear Recurrences

• Homogeneous linear recurrences are of the form

$$
f(n) = \sum_{i=1}^d a_i f(n-i)
$$

- Example: Fibonacci series $F(n) = F(n-1) + F(n-2)$
- They are known to have an *exponential* solution $f(n) = x^n$ for some x
	- Substitute this solution into the recurrence and solve for x :

$$
x^n = \sum_{i=1}^d a_i x^{n-i}
$$

\n
$$
x^d = \sum_{i=1}^d a_i x^{d-i}
$$
 (Dividing all terms by x^{n-d})
\n
$$
\sum_{i=0}^d a_i x^{d-i} = 0
$$
 (Rearrange terms to arrive at a polynomial, with $a_0 = 1$)

Solving Homogeneous Linear Recurrences (Contd.)

- Find the roots $r_1, ..., r_d$ of of this polynomial $\sum_{i=0}^d a_i x^{d-i} = 0$
- The general solution to the recurrence is

$$
f(n) = \sum_{i=1}^d k_i r_i^n
$$

- Solve for k_i using known values for $f(0)$ through $f(d-1)$.
- \bullet Note: if the polynomial has fewer than d roots, the general form of the solution gets more complicated $-$ we will ignore this case here.

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n) = f(n-1) + f(n-2)
$$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n) = f(n-1) + f(n-2)
$$

1. Substitute $f(n) = x^n$ in this equation, simplify to get *characteristic equation* $x^2 = x + 1$

- 2. Solve this quadratic equation to obtain roots $p = \frac{1+\sqrt{5}}{2}$ $\frac{1-\sqrt{5}}{2}$ and $q = \frac{1-\sqrt{5}}{2}$ 2
- 3. By the homogeneous linear recurrence method, the general solution is $f(n) = k_1p^n + k_2q^n$
- 4. Plug in $f(0) = 0$ and $f(1) = 1$ to obtain the following equations:

•
$$
k_1p^0 + k_2q^0 = f(0) = 0
$$

\n• $k_1p^1 + k_2q^1 = k_1\left(\frac{1+\sqrt{5}}{2}\right) + k_2\left(\frac{1-\sqrt{5}}{2}\right) = f(1) = 1$

Solving Homogeneous Linear Recurrences: Fibonacci Example

$$
f(n) = f(n-1) + f(n-2)
$$

1. Substitute $f(n) = x^n$ in this equation, simplify to get *characteristic equation* $x^2 = x + 1$

- 2. Solve this quadratic equation to obtain roots $p = \frac{1+\sqrt{5}}{2}$ $\frac{1-\sqrt{5}}{2}$ and $q = \frac{1-\sqrt{5}}{2}$ 2
- 3. By the homogeneous linear recurrence method, the general solution is $f(n) = k_1p^n + k_2q^n$
- 4. Plug in $f(0) = 0$ and $f(1) = 1$ to obtain the following equations:

•
$$
k_1p^0 + k_2q^0 = k_1 + k_2 = f(0) = 0
$$
 which means $k_2 = -k_1$

- $k_1p^1 + k_2q^1 = k_1 \left(\frac{1+\sqrt{5}}{2} \right)$ $\frac{1-\sqrt{5}}{2}$ + k_2 $\left(\frac{1-\sqrt{5}}{2}\right)$ $\left(\frac{\sqrt{5}}{2}\right) = (k_1 + k_2)/2 +$ $5(k_1 - k_2)/2 = f(1) = 1$
- Substituting $k_2 = -k_1$ in this equation and simplifying, we get $k_1 = 1/\sqrt{5}$.
- 5. Thus, the solution is

$$
f(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n
$$

Observations about Fibonacci Recurrence Solution

- All Fibonacci numbers are integers it is mind-boggling that its closed form solution contains not just fractions, but irrational numbers!
	- No wonder that this solution was unknown for six centuries!
- Note that $|q| = |\frac{1-\sqrt{5}}{2}|$ $\left|\frac{\sqrt{5}}{2}\right|=0.6180 < 1$ so q^n rapidly approaches zero. For instance, q^{20} ≈ 0.00006, and the error in $f(n)$ due to ignoring q is less than one in 10⁻⁸.
- So, for larger *n*, $f(n)$ is determined almost entirely by the first term $\frac{1}{\sqrt{2}}$ 5 $\sqrt{\frac{1+\sqrt{5}}{2}}$ 2 \bigwedge^n $p^{n}/\sqrt{5}$ is very close to an integer value, although p is irrational! √
- The ratio between successive Fibonacci numbers converges to $p = 1.618$, which is called the golden ratio

Asymptotic Complexity

- Expressing complexity in terms of "number of steps" is a simplification
	- Each such operation may in fact take a different amount of time
	- But it is too complex to worry about the details, esp. because they differ across programming languages, processor types, etc.

Asymptotic Complexity

- Expressing complexity in terms of "number of steps" is a simplification
	- Each such operation may in fact take a different amount of time
	- But it is too complex to worry about the details, esp. because they differ across programming languages, processor types, etc.
- Why not simplify further?
	- Capture just the growth rate of $T(n)$ as a function of n
	- Ignore constant factors
		- No need to count operations in a loop (their number should be bounded by a constant)
	- Ignore exceptions from the formula for small values of n

Asymptotic Complexity: Big-O notation

Definition

Given functions $f, g : \mathbb{R} \longrightarrow \mathbb{R}$, we say $f = O(g)$, i.e., "f grows no faster than g," iff $\displaystyle \lim_{x \to \infty} f(x)/g(x) < c$ for some constant c

Big-O notation: Examples

- $10n = O(n)$
- $0.0001n^3 + n = O(n^3)$
- $2^n + 10^n + n^2 + 2 = O(10^n)$
- $0.0001n \log n + 10000n = O(n \log n)$

Solving Divide-and-Conquer Recurrences: Master Theorem

If $T(n) = aT \left(\frac{n}{b}\right)$ $\frac{b}{b}$ $+$ $O(n^d)$ for constants a $>$ 0, b $>$ 1, and d \geq 0, then

$$
T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}
$$

Solving Recurrences: Examples Using Master Theorem

$$
T(n)=2T(n/2)+n
$$

$$
T(n) = aT\left(\frac{n}{b}\right) + O(n^d)
$$

$$
T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}
$$

Solving Recurrences: Examples Using Master Theorem

$$
T(n) = 4T(n/2) + n^3
$$

$$
T(n) = aT\left(\frac{n}{b}\right) + O(n^d)
$$

$$
T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}
$$

Solving Recurrences: Examples Using Master Theorem

$$
T(n)=3T(n/2)+n
$$

$$
T(n) = aT\left(\frac{n}{b}\right) + O(n^d)
$$

$$
T(n) = \begin{cases} O(n^d), & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}
$$

- **•** Recursion and induction
	- Examples
- **Recurrence Solving Techniques**
	- Plug-and-Chug
	- Homogeneous linear equations
- Recurrences for algorithm runtimes
- Asymptotic complexity
	- Divide-and-Conquer recurrences and Master theorem