
Intro English to Logic Equivalence Proofs Strategies Digital circuits Summary Propositions and conjectures Operators Conditionals Inverse, converse, etc.

Propositions (Textbook Chapter 1)

A proposition is a statement that is either true or false

Non-propositions

Sky is beautiful!

Tomorrow will be sunny.

Examples of propositions

2+ 3 = 5

n2 + n+ 41 is always prime
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Claims, Conjectures and Theorems (all propositions)

Conjecture: a4 + b4 + c4 = d4 has no solutions if a, b, c and d are all positive integers [Euler]

Shown false after 200+ years for a = 95800 ,b = 217519, c = 414560 and d = 422481.

Four color theorem: Every map can be colored with at most 4 colors while ensuring that no
two adjacent regions have the same color.

Shown to be true using software1.

Fermat’s Theorem: xn + yn = zn has no integral solutions for n > 2.

Fermat omitted the proof in 1630 because “it did not fit in the margin”
Remained unproven for 300+ years2.

Goldbach’s Conjecture: Every even integer greater than 2 is the sum of two primes.

Holds for numbers up to 1018, but unknown if it is always true

1“Four Colors Suffice. How the Map Problem was Solved,” Robin Wilson, Princeton Univ. Press, 2003.
2“Fermat’s Enigma,” Simon Singh, Walker & Company, 1997.
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Logical Formulas (Textbook Chapter 3)

Obtained by combining propositions using logical connectives (aka logical
operators)
∧ (“and” operation)
∨ (“or” operation)
¬ (“not” operation)
→ (“implies” operation)
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English to Logic Formulas

If humans are mortal and Greeks are human then Greeks are mortal
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Conditional statement (P → Q)

P is the hypothesis/premise/antecendent, Q is the conclusion/consequence

P → Q is also called:

“if P , then Q” “P implies Q”

“P only if Q” “if P , Q”

“Q follows from P” “Q, provided that P”

“not P unless Q” “Q if/when/whenever Q”

“P is sufficient for Q” “a sufficient condition for Q is P”

“Q is necessary for P” “a necessary condition for P is Q”
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Understanding Conditionals

What is the intuitive meaning of P → Q?

Conditional statement is like a promise

Under what circumstances is the promise kept/broken?

Example: “If tomorrow is sunny, I will take you to the beach.”

P Q P → Q

Tomorrow is sunny Go to the beach Promise is kept (T)

Tomorrow is sunny Did not go to the beach Promise is broken (F)

Tomorrow is not sunny Go to the beach Promise is not broken (T)

Tomorrow is not sunny Did not go to the beach Promise is not broken (T)

P → Q being true because P is false is called vacuously true or true by default
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Contrapositive, Inverse and Converse
Definitions

Contrapositive of P → Q is ¬q → ¬p

Converse of P → Q is q → p

Inverse of P → Q is ¬p → ¬q

Identities

Conditional ≡ Contrapositive ▷ Useful for proofs

Conditional ̸≡ Converse

Conditional ̸≡ Inverse

Converse ≡ Inverse
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Examples of Contrapositive, Inverse and Converse

Conditional ≡ Contrapositive.
“If tomorrow is sunny, we will go to the beach.”
“If we don’t go to the beach tomorrow, then it is not sunny.”

Converse ≡ Inverse.
“If we go to the beach tomorrow, then it is sunny.”
“If tomorrow is not sunny, then we will not go to the beach.”

Conditional ≡ Contrapositive.
“If x > 2, then x2 > 4.” ▷ True
“If x2 ≤ 4, then x ≤ 2.” ▷ True

Converse ≡ Inverse.
“If x2 > 4, then x > 2.” ▷ False
“If x ≤ 2, then x2 ≤ 4.” ▷ False

15 / 77



Intro English to Logic Equivalence Proofs Strategies Digital circuits Summary Propositions and conjectures Operators Conditionals Inverse, converse, etc.

Necessary and Sufficient Conditions

P is a sufficient condition for Q means P → Q

P is a necessary condition for Q means ¬P → ¬Q

P only if Q means P → Q

Equivalently, if P then Q

For real x , x = 1 is a sufficient condition for x2 = 1
i.e., If x = 1 then x2 = 1 ▷ True

For real x , x2 = 1 is a necessary condition for x = 1
i.e., If x2 ̸= 1 then x ̸= 1 ▷ True

For real x , x = 1 only if x2 = 1
i.e., If x2 ̸= 1, then x ̸= 1 ▷ True
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English to Logic Formulas

P ::= “you get an A in the final exam”

Q ::= “you do every problem in the book”

R ::= “you get an A in the course”

If you do every problem in the book, you will get an A in the final exam

You got an A in the course but you did not do every problem in the book

To get an A in the class, it is necessary to get an A on the final.
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Modeling Problems in Propositional Logic

You can’t locate your glasses. You know the following statements are true:

(a) If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table.

(b) If my glasses are on the kitchen table, then I saw them at breakfast.

(c) I did not see my glasses at breakfast.

(d) I was reading the newspaper in the living room or the kitchen.

(e) If I was reading the newspaper in the living room then my glasses are on the coffee table.

Where are the glasses?

18 / 77



Intro English to Logic Equivalence Proofs Strategies Digital circuits Summary English to propositions Reasoning by modeling in logic

Modeling Problems in Propositional Logic

Let:

RK = I was reading the newspaper in the kitchen.

GK = My glasses are on the kitchen table.

SB = I saw my glasses at breakfast.

RL = I was reading the newspaper in the living room.

GC = My glasses are on the coffee table.
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Modeling Problems in Propositional Logic

(a) If I was reading the newspaper in the kitchen, then my glasses are on the kitchen table: RK → GK

(b) If my glasses are on the kitchen table, then I saw them at breakfast: GK→ SB

(c) I did not see my glasses at breakfast: ¬ SB

(d) I was reading the newspaper in the living room or the kitchen: RL ∨ RK

(e) If I was reading the newspaper in the living room then my glasses are on the coffee table: RL→ GC

¬ SB

From GK→ SB, conclude ¬SB → ¬GK

From the above two, conclude ¬GK

Use (a) in a similar manner: from ¬ GK and RG→ GK, conclude ¬ RK.

From RL ∨ RK and ¬ RK, conclude RL.

From RL and (e), conclude GC. So, look on the coffee table!
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Example: Truth tellers and liars

There is an island that consists of liars and truth tellers:

Liars always lie.

Truth who always tell the truth

You visit the island and are approached by two natives A and B:

A says: B is a truth teller.

B says: A and I are of opposite types.

What are A and B?
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Truth tellers and liars: Logical Reasoning

Suppose A is a truth teller.
What A says is true. ▷ by definition of truth teller
So B is also a truth teller. ▷ That’s what A said.
So, what B says is true. ▷ by definition of truth teller
So, A and B are of opposite types. ▷ That’s what B said.
Contradiction: A and B are both truth tellers and A and B are of opposite type.

So, initial assumption is false. ▷ by the contradiction rule
So A is not a truth teller. ▷ negation of assumption
So A is a liar. ▷ by elimination: All inhabitants are truth tellers or liars, so since A is not a
truth teller, A is a liar.
So What A says is false.
So B is not a truth teller.
So B is also a liar. ▷ by elimination

Final answer: A and B are both liars
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Truth Tables

P Q P → Q P Q ¬P ¬P ∨ Q
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Using Truth Tables to Evaluate Logical Formulas

Does P → Q imply ¬Q → ¬P?

All the two formulas equivalent?
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Using Truth Tables to Show Equivalence

What about ¬(P ∧ Q) and ¬P ∨ ¬Q?

P Q ¬P ¬Q ¬(P ∧ Q) ¬P ∨ ¬Q
F F T T T T
F T T F T T
T F F T T T
T T F F F F

The truth tables for ¬(P ∧Q) and ¬P ∨¬Q match, so we conclude they are equivalent:

¬(P∧Q) ↔ ¬P∨¬Q [De Morgan’s Law]
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De Morgan’s Law Examples for Practice

¬(P ∨ Q)

¬(P ∧ Q ∧ R)

¬(P ∧ (Q → R))
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Properties of Boolean Operators

Commutativity P ∨ Q ↔ Q ∨ P P ∧ Q ↔ Q ∧ P
Associativity P ∨ (Q ∨ R) ↔ (P ∨ Q) ∨ R P ∧ (Q ∧ R) ↔ (P ∧ Q) ∧ R
Distributivity P ∨ (Q ∧ R) ↔ (P ∨ Q) ∧ (P ∨ R) P ∧ (Q ∨ R) ↔ (P ∧ Q) ∨ (P ∧ R)
De Morgan’s Laws ¬(P ∨ Q) ↔ ¬P ∧ ¬Q ¬(P ∧ Q) ↔ ¬P ∨ ¬Q

Compare these laws with those for arithmetic, with ‘+’ for ‘∨’ and ‘∗’ for ‘∧’.

Which of the properties hold? Which ones don’t?
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Additional Useful Identities

¬¬P ↔ P

P ∨ ¬P ↔ true

P ∧ ¬P ↔ false

P ∨ P ↔ P

P ∧ P ↔ P

true ∨ P ↔ true

false ∨ P ↔ P

true ∧ P ↔ P

false ∧ P ↔ false

P → Q ↔ ¬P ∨ Q

true → P ↔ P

false → P ↔ true

P → true ↔ true
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Disjunctive Normal Form (DNF)

Formulas of the form
ψ1 ∨ ψ2 ∨ · · ·ψn

where each ψ is a conjunction of (possibly negated) propositions.

Example: P1 ∧ ¬P2 ∧ P3 ∨ ¬P1 ∨ P3

The only operator permitted at the top level is disjunction
Only the conjunction operator is permitted at the next level
Only propositional variables or their negations at the third level

Any propositional formula can be transformed into an equivalent formula in DNF.

Conversion repeatedly uses the identities from previous slides.
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Conjunctive Normal Form (CNF) and the SAT problem

Formulas are of the form
ψ1 ∧ ψ2 ∧ · · ·ψn

where each ψ is a conjunction of (possibly negated) propositions.

Example: P1 ∧ ¬P2 ∧ P3

Any propositional formula can be transformed into an equivalent formula in CNF.

Use boolean operator properties systematically.

SAT problem: Given a CNF formula, determine if it is satisfiable.

No efficient algorithm known

Forms the basis of NP-completeness and the P ̸= NP hypothesis
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Validity, Satisfiability and Equivalence

A formula φ is valid iff it is true for all possible values of propositions in them

Example: P ∨ ¬P

A formula φ is satisfiable iff it is true for some values of the propositions in them

Most formulas are satisfiable

Example: P → Q

A formula φ is equivalent to ψ iff they have the exact same value for all possible
values of the propositions contained in them

In other words, the truth tables for φ and ψ match fully

We saw several examples in the previous slides
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Axioms, Inference Rules, Theorems and Proofs (Textbook §1.3)

Axiom: a proposition accepted to be true.
Usually, no way to prove them; and they seem obviously true.
Example: there exists a straight line between any two points

Inference rule: an axiom to derive new propositions from existing ones
⊢ P, ⊢ P → Q

⊢ Q
(modus ponens)

Theorems, Lemmas: Propositions that can be derived from axioms using inference
rules

(Formal) Proof: The exact manner in which a theorem was derived from axioms.
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Example: there exists a straight line between any two points

Inference rule: an axiom to derive new propositions from existing ones
⊢ P, ⊢ P → Q

⊢ Q
(modus ponens)

Theorems, Lemmas: Propositions that can be derived from axioms using inference
rules

(Formal) Proof: The exact manner in which a theorem was derived from axioms.

41 / 77



Intro English to Logic Equivalence Proofs Strategies Digital circuits Summary Validity and satisfiability. Inference rules Simple proof examples

Axioms, Inference Rules, Theorems and Proofs (Textbook §1.3)

Axiom: a proposition accepted to be true.
Usually, no way to prove them; and they seem obviously true.
Example: there exists a straight line between any two points

Inference rule: an axiom to derive new propositions from existing ones
⊢ P, ⊢ P → Q

⊢ Q
(modus ponens)

Theorems, Lemmas: Propositions that can be derived from axioms using inference
rules

(Formal) Proof: The exact manner in which a theorem was derived from axioms.
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What is a valid argument?

Definition

An argument is valid if the conclusion follows necessarily from the premises
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Valid argument: Examples

If Socrates is a man, then Socrates is mortal.
Socrates is a man.
Therefore, Socrates is mortal. ▷ Valid argument

If Socrates is a man, then Socrates is mortal.
Socrates is mortal.
Therefore, Socrates is a man. ▷ Invalid argument

If Socrates is a man, then Socrates is mortal.
Socrates is not mortal.
Therefore, Socrates is not a man. ▷ Valid argument

If Socrates is a man, then Socrates is mortal.
Socrates is not a man.
Therefore, Socrates is not mortal. ▷ Invalid argument
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Valid argument: Examples

If it is raining, then it is cloudy.
It is raining.
Therefore, it is cloudy. ▷ Valid argument

If it is raining, then it is cloudy.
It is cloudy.
Therefore, it is raining. ▷ Invalid argument

If it is raining, then it is cloudy.
It is not cloudy.
Therefore, it is not raining. ▷ Valid argument

If it is raining, then it is cloudy.
It is not raining.
Therefore, it is not cloudy. ▷ Invalid argument
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Valid argument: Examples

If x > 2, then x2 > 4.
x > 2.
Therefore, x2 > 4. ▷ Valid argument

If x > 2, then x2 > 4.
x2 > 4.
Therefore, x > 2. ▷ Invalid argument

If x > 2, then x2 > 4.
x2 ≤ 4.
Therefore, x ≤ 2. ▷ Valid argument

If x > 2, then x2 > 4.
x ≤ 2.
Therefore, x2 ≤ 4. ▷ Invalid argument
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Valid argument: Examples

If P , then Q.
P .
Therefore, Q. ▷ Valid argument

If P , then Q.
Q.
Therefore, P . ▷ Invalid argument

If P , then Q.
¬Q.
Therefore, ¬P . ▷ Valid argument

If P , then Q.
¬P .
Therefore, ¬Q. ▷ Invalid argument
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Proving an Implication P → Q

Strategy 1: Assume P , show that Q follows

Example:If 2 < x < 4 then x2 − 6x + 8 < 0
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Proving an Implication P → Q

Strategy 2: Prove the contrapositive ¬Q → ¬P

Example:If r is irrational then
√
r is irrational
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Proving P iff Q (“P if and only if Q”)

P ↔ Q is proved by showing P → Q and then Q → P

Example: 2 < x < 4 iff x2 − 6x + 8 < 0

50 / 77



Intro English to Logic Equivalence Proofs Strategies Digital circuits Summary Implication Equivalence by case-splitting by contradiction

Proof by Cases

To prove P → Q when P is complex

We can simplify the proof by “breaking up” P into cases:

Find P1, P2 such that P → P1 ∨ P2
Prove P1 → Q and P2 → Q
Note P1 and P2 can overlap, i.e., they can simultaneously be true.
But most proofs consider mutually exclusive cases

Pi’s must be exhaustive, i.e., cover every possible case when P could be true
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Proof by Cases

Example: max(r, s) +min(r, s) = r + s
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False Hypothesis and Vacuous Truth

What happens to P → Q when P is false?

In this case, P → Q holds vacuously

So, F → Q for any Q!

If P is false, then P → ¬P holds!

Take the contrapositive of this, you get

Basis of proof-by-contradiction strategy
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Proof by Contradiction

Example: Show that there are infinitely many primes
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Idea: Circuits and logic are related

Open or off or false
Closed or on or true
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Idea: Circuits and logic are related

Switches Light bulb

P Q State

closed closed on

closed open off

open closed off

open open off

Switches Light bulb

P Q State

closed closed on

closed open on

open closed on

open open off
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Birth of digital logic circuits

1930s: Mechanical switches were used in circuit design

Late 1930s: Great idea that mathematical logic (or Boolean algebra) can be used to
analyze switches

1940s and 1950s: Electronic switches for circuit design

Led to the development of electronic computers, electronic telephone switching systems,

traffic light controls, electronic calculators, and the control mechanisms

Electronic switches to implement logic is the fundamental concept that underlies all
electronic digital computers
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Evolution of electronic computers

Vacuum tube switches (1940s on)

Semiconductor switches (transistors) from 1950s ...

Integrated circuits from 1960s

The number of transistors have increased by 2x every two years

Predicted by Gordon Moore (Moore’s Law) (1965)

Intel 4004 processor had 2250 gates in 1971, about 10µm

Today’s microprocessors have more than 100 billion transistors, about 10nm!

Solid state drives have over 2 trillion transistors
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Complicated logic gates as black boxes

A black box focuses on the functionality and ignores
the hardware implementation details

Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0
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Simple logic gates
Method

Complicated logic gates can be built using a collection of simple logic gates such
as NOT-gate, AND-gate, and OR-gate

Input Output

P R

1 0

0 1 R ≡ ¬P

Input Output

P Q R

1 1 1

1 0 0

0 1 0

0 0 0 R ≡ P ∧Q

Input Output

P Q R

1 1 1

1 0 1

0 1 1

0 0 0 R ≡ P ∨Q 60 / 77
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Combinational Vs Sequential Logic

Combinational circuit: output is purely a function of current inputs

Combines inputs using a series of gates

No output of a gate can eventually feed back into that gate.

Sequential circuits: output feeds back into input, so it depends on current and
previous inputs.
Basis of memory and sequential instruction processing
Basic unit is called a flip-flop, which in turn is realized using gates

Divides computation into steps

Progress from one step to next is governed by a clock
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Problem-solving in digital logic circuits

Diagram

Physical circuit design

Expression Table
Electronic functionality
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Problem-solving in digital logic circuits

Circuit→ Table

Logic circuit → Boolean expression

Simplify Boolean expression

Boolean expression → Input-output table

Table→ Circuit

Input-output table→ Boolean expression

Simplify Boolean expression

Boolean expression → Logic circuit
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Circuit → Table

Problem

Determine the input-output table for the given logic circuit.
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Circuit → Table

Circuit→ expression

Simplify expression: (P ∨ Q) ∧ ¬(P ∧ Q) ≡ P ⊕ Q ▷ Exclusive or

Expression→ table:

P Q P ∨ Q P ∧ Q ¬(P ∧ Q) (P ∨ Q) ∧ ¬(P ∧ Q)

1 1 1 1 0 0

1 0 1 0 1 1

0 1 1 0 1 1

0 0 0 0 1 0
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Table → Circuit
Problem

Determine the logic circuit for the given input-output table.
Input Output

P Q R S

1 1 1 1

1 1 0 0

1 0 1 1

1 0 0 1

0 1 1 0

0 1 0 0

0 0 1 0

0 0 0 0
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Table → Circuit

1. Table→ expression
(P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R)
Disjunctive normal form or sum-of-products form

Input Output Expression

P Q R S S

1 1 1 1 P ∧ Q ∧ R

1 1 0 0 P ∧ Q ∧ ¬R
1 0 1 1 P ∧ ¬Q ∧ R

1 0 0 1 P ∧ ¬Q ∧ ¬R
0 1 1 0 ¬P ∧ Q ∧ R

0 1 0 0 ¬P ∧ Q ∧ ¬R
0 0 1 0 ¬P ∧ ¬Q ∧ R

0 0 0 0 ¬P ∧ ¬Q ∧ ¬R
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Table → Circuit

2. Expression→ circuit
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Table → Circuit: Better Version

2. Simplify expression
(P ∧ Q ∧ R) ∨ (P ∧ ¬Q ∧ R) ∨ (P ∧ ¬Q ∧ ¬R)
≡ P ∧ (¬Q ∨ R) ▷ How?

3. Expression→ circuit
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Equivalence of logic circuits

Two digital logic circuits are called equivalent if and only if their input-output tables
are identical

We can use boolean simplification as well!

Show that the following two logic circuits are equivalent.
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Equivalence of logic circuits

Write this 8-input AND gate using 2-input AND gates only.
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NAND and NOR gates

NAND: ¬(P ∧ Q) NOR: ¬(P ∨ Q)

Note: Every boolean function can be realized entirely using NAND gates

Same holds for NOR as well

Input Output

P Q R = P | Q
1 1 0

1 0 1

0 1 1

0 0 1

Input Output

P Q R = P ↓ Q

1 1 0

1 0 0

0 1 0

0 0 1
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Logic and programming

Is there way to simplify

if (!((x >= 0) && (x <= 10)) || (x >= 20))

What about

if !((x <= 20) || ((x >= 30) && (x <= 39)))

if ((x >= 20) && (x <= 30)) || (x >= 40))
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Logic and Computer Hardware

Can the following circuit be optimized?
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Logic and Reasoning

Is John’s conclusion logical?
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Logic and proofs

Proving implications:
P ⊢ Q

⊢ P → Q

Proving implication by showing the contrapositive:
¬Q ⊢ ¬P
⊢ P → Q

Case-splitting:
P ∧ Q ⊢ R, P ∧ ¬Q ⊢ R

⊢ P → R

Establishing equivalence:
⊢ P → Q, ⊢ Q → P

⊢ P ↔ Q

Proof by contradiction:
P ⊢ ¬P
⊢ ¬P
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Unit Summary

Propositions, claims, conjectures and theorems
Logical formulas
English to logical formulas
Truth tables: construction and use
Validity, satisfiability and equivalence
Equivalences among logical operators
DNF, CNF and SAT

Axioms, inference rules and proofs

Proof techniques

Digital circuits
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