
Proofs Vs Examples

Can examples be proofs? What is the difference?

Can a counterexample be a proof?

Can an example be a proof?

It depends on the formula!

∃x P(x) needs just one specific value for x (i.e., an example) that makes P true
¬∀x P(x) is just an existential formula, so needs just an example
An universally quantified formula can be disproved with a single (counter) example

∀x P(x) cannot be proved with an example, as P should hold for all values of x .
Typically, x ranges over an infinite set, so we cannot explicitly try out all possible x
So, we need some insight to develop a logical argument that P holds regardless of the value of x
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Common Proof Techniques

(Boolean formula simplification)

For an implication P → Q, assume P and then prove Q

Proof by cases

Proof by contradiction

Proof by induction
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Proving an Implication P → Q

Strategy 1: Assume P , show that Q follows

Example:If 2 < x < 4 then x2 − 6x + 8 < 0

9 / 74



Proving an Implication P → Q

Strategy 1: Assume P , show that Q follows

Example:If the standard deviation of a set of real numbers {x1, x2, . . . , xn} is zero
then x1 = x2 = · · · = xn
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Proving an Implication P → Q

Strategy 2: Prove the contrapositive ¬Q → ¬P

Example:If r is irrational then
√
r is irrational
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Proving an Implication P → Q

Strategy 2: Prove the contrapositive ¬Q → ¬P

Example: For positive numbers a and b, let n = ab. Either a ≤
√
n or b ≤

√
n

12 / 74



Proving an Implication P → Q

Strategy 2: Prove the contrapositive ¬Q → ¬P

Example:
∀a, n ∈ N even(an) ⇒ even(a)
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Proving Equivalence (“P if and only if Q”)

P ↔ Q is proved by showing P → Q and then Q → P

Example: 2 < x < 4 iff x2 − 6x + 8 < 0
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Proof by Cases

To prove P → Q when P is complex

We can simplify the proof by “breaking up” P into cases:

Find P1, P2 such that P → P1 ∨ P2
Prove P1 → Q and P2 → Q
Note P1 and P2 can overlap, i.e., they can simultaneously be true.
But most proofs consider mutually exclusive cases

Pi’s must be exhaustive, i.e., cover every possible case when P could be true
Otherwise P → P1 ∨ P2 won’t hold.
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Proof by Cases

Example: max(r, s) +min(r, s) = r + s
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Proof by Cases

If every pair of people in a group has met before, let us call the group a club.

If no pair has met, let us call it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers.
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Template for Proofs By Contradiction

1. Start by assuming that the theorem is not true.

Your proof should start with “Proof is by contradiction. Assume P is false.” where P is the

theorem you are trying to prove.

2. Establish a contradiction
Show that the negation of the theorem contradicts something that you have assumed or
known to be true.
Well known identities or laws
One of the antecedents of the theorem
Negation of the consequent of the theorem
· · ·

3. This contradiction shows that the assumption (¬P) must be false, thus proving P .

4. End your proof with or or “Thus proved.”
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Proof by Contradiction
Prime factorization theorem:

Every composite number can be expressed as a product p1 × · · · × pn where n ≥ 2 and
pi ≥ 2.
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Proof by Contradiction

There are infinitely many primes.
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Proof by Contradiction

Prove that
√
2 is irrational.
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Proof by Contradiction

Prove that log2 3 is irrational.
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Mathematical Induction

A powerful proof technique in discrete (as opposed to continuous) math

Systematic: provides a template for proving a wide range of properties

Let P be a predicate on non-negative integers. If

P(0) is true, and

P(n) implies P(n+ 1) for all nonnegative integers n, then

conclude P(m) is true for all nonnegative integers m

Induction (inference) rule:
P(0),∀n P(n) → P(n+ 1)

∀m P(m)
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A Template for Induction Proofs
Never omit any of these steps in your proofs.
1. State that the proof uses induction.

For many proofs involving natural numbers, induction is on the number itself. But in

other cases, it may be on another quantity, e.g., length of a string. In such cases, indicate

the quantity on which induction is being carried out.

2. Define the induction hypothesis, namely, the predicate P(n).

Often, P is the property you want to prove. But sometimes, you select a stronger property

Q (i.e., Q implies P).

3. Establish the base case, i.e., show that P(0) is true.

4. Establish the induction step, i.e., show that if P(n) is true, then P(n+ 1) holds too.

5. Invoke induction to conclude the proof.
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Induction Proof Example 1:
∑n

i=1 i

1. Proof: is by induction on n.

2. Induction Hypothesis: Let P(n) ::=
∑n

i=1 i = n(n+ 1)/2.

3. Base Case: For n = 1, P(1) is
∑1

i=1 i = 1 = 1(1+ 1)/2. Thus, P(1) holds.

4. Induction Step: Assume that P(n) holds. Adding n+ 1 to both sides of P(n), we get
n+1∑
i=1

i =
n(n+ 1)

2
+ (n+ 1)

= (n+ 1)
(n
2
+ 1

)
(pulling out the common factor n+ 1)

= (n+ 1)
(
n+ 2
2

)
=

(n+ 1)(n+ 2)
2

(algebraic simplification)

5. Thus, we have established P(n+ 1), thereby establishing P(k) for all k ≥ 1.
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Induction Proof Example 2: ∀n > 1
∑n

i=1 1/i
2 < 2− 1/n

1. Proof: is by induction on n.

2. Induction Hypothesis: Let P(n) ::=
∑n

i=1 1/i
2 < 2− 1/n.

3. Base Case: For n = 2, P(2) is
∑2

i=1 1/i
2 = 1/12 + 1/22 = 5/4 < 2− 1/2.Thus, P(2) holds.

4. Induction Step: Assume that P(n) holds. Adding 1/(n+ 1)2 to both sides of P(n), we get
n+1∑
i=1

1/i2 < 2− 1
n
+

1
(n+ 1)2

= 2− (n+ 1)2 − n
n(n+ 1)2

= 2− n2 + �2n+ 1− �n
n(n+ 1)2

= 2− n2 + n+ 1
n(n+ 1)2

< 2− ����n(n+ 1)

�n(n+ 1)�2
= 2− 1/(n+ 1)

5. Thus, we have established P(n+ 1), thereby establishing P(k) for all k ≥ 1.

See https://faculty.math.illinois.edu/~hildebr/213/inductionsampler.pdf for more examples.
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1/i2 < 2− 1
n
+

1
(n+ 1)2

= 2− (n+ 1)2 − n
n(n+ 1)2

= 2− n2 + �2n+ 1− �n
n(n+ 1)2

= 2− n2 + n+ 1
n(n+ 1)2

< 2− ����n(n+ 1)

�n(n+ 1)�2
= 2− 1/(n+ 1)

5. Thus, we have established P(n+ 1), thereby establishing P(k) for all k ≥ 1.

See https://faculty.math.illinois.edu/~hildebr/213/inductionsampler.pdf for more examples.
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Example 3: What is Wrong With This Proof?

Theorem
All horses have the same color

Base: Trivial, as there is a single horse.
Induction hypothesis: All sets of horses with n or fewer horses have the same color.
Induction Step: Consider a set of h1, h2, . . . , hn+1. By induction hypothesis:

h1, h2, . . . , hn︸ ︷︷ ︸
same color

, hn+1 h1, h2, . . . , hn, hn+1︸ ︷︷ ︸
same color

This obviously means that all n+ 1 horses have the same color!
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Strong Induction

Key Point: Makes the stronger assumption of P(n), P(n− 1), ...

Contrast with simple induction, where we only assume P(n).

(Strong) Induction Inference Rule

P(b), ∀n ([∀b ≤ k ≤ n P(k)] → P(n+ 1))
∀m ≥ b P(m)

Secondary point: Base case can be for some small value b, not just zero

There can be more than one base case as well

In some cases, noting the use of strong induction makes it easier to understand a
proof

But the distinction is mostly insignificant
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Example 4: Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg (3 Strongs) and 5Sg.
Although the Inductians have some trouble making small change like 4Sg or 7Sg, it turns out that they
can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.
2. Induction Hypothesis: Let P(n) ::= “Inductians can make change for n+ 8 Sgs.”
3. Base Cases: For n = 0, n = 1 and n = 2, it is obvious that change can be made for 8Sg (3+5),

9Sg (3+3+3), and 10Sg (5+5). Thus P(0), P(1) and P(2) hold.
4. Induction Step: Is applied for n ≥ 2, and assumes P(n− 2), P(n− 1) and P(n).
Since P(n− 2) holds, we know how to make change for (n− 2) + 8 Sgs.
If we add one 3Sg coin to this, we will have change for (n+ 1) + 8 Sgs.
5. Thus, we have established P(n+ 1), thereby establishing P(k) for all k ≥ 0.

What does the proof say about making change when there is a severe shortage of 5Sg coins?
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Example 5: Prime factorization theorem

Every integer x > 1 is a product of primes.
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Example 6: Stacking Game

You begin with a stack of n chips, and end with n stacks of 1 chip each

In each move of the game, you split one stack into two

If a stack of a+ b chips is spit into two stacks with a and b chips each, you get ab points.

What strategy will maximize your winning?

Actually, the strategy does not matter!

Theorem
Every way of unstacking n blocks gives a score of n(n− 1)/2 points.

Proof: is by induction on n.
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(Strong) Induction Proof Example: Stacking Game
Induction Hypothesis: is that any way of unstacking k chips gives a score of S(k) ::= k(k − 1)/2 points.

Base Case: For n = 1, there are no moves left, so the score will be zero. This matches
S(1) = 1 · (1− 1)/2 = 0, thus establishing the base.
Induction Step: Assume that P(1), . . . , P(n) hold. For a game with n+ 1 chips, let the first move be to
split it into stacks of r and n+ 1− r . This move earns the score of r(n+ 1− r). Both stacks have ≤ n

chips, so we can apply the induction hypothesis to conclude that the remaining moves in the game will
yield r(r − 1)/2+ (n+ 1− r)(n− r)/2 points.Thus, the total points is:

= r(n+ 1− r) + r(r − 1)/2+ (n+ 1− r)(n− r)/2

= (nr + r − r2) + (r2 − r + n2 − nr + n− r − nr + r2)/2 (distributing multiplication)

= (((((((((
(−2r2 + r2 + r2) +

(((((((((((((
(2nr + 2r − r − nr − r − nr) + n2 + n)/2 (regrouping terms)

= (n2 + n)/2 = n(n+ 1)/2 = S(n+ 1)

Thus, no matter what the first move is (i.e., regardless of the value of r), we have shown that starting
with n+ 1 chips, you end up with the score of S(n+ 1), thus completing the inducation step.
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Example 7: Every integer is a sum of powers of two

You are given a series of envelopes, respectively containing 1, 2, 4, 8, . . . , 2m dollars.
Show that for any 0 ≤ n < 2m+1 there is a selection of envelopes whose contents add
up to exactly that number of dollars.
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