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Monty Hall Problem

Suppose you’re on a game show, and you’re given the choice of three doors. Behind

one door is a car, behind the others, goats. You pick a door, say number 1, and

the host, who knows what’s behind the doors, opens another door, say number 3,

which has a goat. He says to you, “Do you want to pick door number 2?” Is it to

your advantage to switch your choice of doors?

Describes a situation faced by contestants on a 70’s game show Let’s Make a Deal.
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Let’s Make a Deal: Assumptions

The car is equally likely to be hidden behind each of the three doors.

The player is equally likely to pick each of the three doors.

After the player picks a door, the host must open a different door with a goat behind
it and offer the player a second choice.

If the host has a choice of which door to open, then he is equally likely to select
each of them.
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The Sample Space

Random variables (aka “random quantities”)
door concealing the car.
door chosen by the player.
door opened by the host to reveal a goat.

These variables take 3 possible values: A, B, and C, representing the three doors.

Outcome: Values taken by random variables in any one experiment, e.g., (A,C,B) denotes:
the car is behind door A,
the player chooses door C,
the host opens door B

Sample space: Set of all possible outcomes

S =

{
(A,A,B), (A,A,C), (A,B,C), (A,C,B), (B,A,C), (B,B,A)

(B,B,C), (B,C,A), (C,A,B), (C,B,A), (C,C,A), (C,C,B)

}
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Tree Diagram Displaying Sample Space

“mcs” — 2017/6/5 — 19:42 — page 734 — #742

Chapter 17 Events and Probability Spaces734
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Figure 17.2 The full tree diagram for the Monty Hall Problem. The second level
indicates the door initially chosen by the player. The third level indicates the door
revealed by Monty Hall.
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Events

A set of outcomes is called an event. Examples:

“prize is behind door C”

{(C,A,B), (C,B,A), (C,C,A), (C,C,B)}
“prize behind door first picked by the player”

{(A,A,B), (A,A,C), (B,B,A), (B,B,C), (C,C,A), (C,C,B)}
“player wins by switching”

{(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}
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Tree Diagram With “Player Wins By Switching” Marked

“mcs” — 2017/6/5 — 19:42 — page 737 — #745

17.2. The Four Step Method 737
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Figure 17.4 The tree diagram for the Monty Hall Problem, where the outcomes
where the player wins by switching are denoted with a check mark.
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Computing Event Probabilities

Assign edge probabilities

Compute outcome probabilities

Compute event probability
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Computing Event Probabilities

Assign edge probabilities

Compute outcome probabilities

Compute event probability
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Figure 17.5 The tree diagram for the Monty Hall Problem where edge weights
denote the probability of that branch being taken given that we are at the parent of
that branch. For example, if the car is behind door A, then there is a 1/3 chance that
the player’s initial selection is door B . The rightmost column shows the outcome
probabilities for the Monty Hall Problem. Each outcome probability is simply the
product of the probabilities on the path from the root to the outcome leaf.
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Computing Event Probabilities

Assign edge probabilities

Compute outcome probabilities

Compute event probability:
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Computing Event Probabilities

Assign edge probabilities
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Computing Event Probabilities

Assign edge probabilities

Compute outcome probabilities

Compute event probability: 6/9 = 2/3!
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Computing Event Probabilities

Assign edge probabilities

Compute outcome probabilities

Compute event probabilities
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Strange Die Game

A stranger challenges you to a game: whoever rolls higher will pay the other $10.

To sweeten the deal, he says you can pick your die first.

“mcs” — 2017/6/5 — 19:42 — page 742 — #750

Chapter 17 Events and Probability Spaces742

A B C

Figure 17.6 The strange dice. The number of pips on each concealed face is the
same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.

17.3.1 Die A versus Die B

Step 1: Find the sample space.
The tree diagram for this scenario is shown in Figure 17.7. In particular, the sample
space for this experiment are the nine pairs of values that might be rolled with Die A

and Die B:
For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 17.7.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 17.7.
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Strange Die Game: A Vs B
“mcs” — 2017/6/5 — 19:42 — page 742 — #750
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same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.

17.3.1 Die A versus Die B

Step 1: Find the sample space.
The tree diagram for this scenario is shown in Figure 17.7. In particular, the sample
space for this experiment are the nine pairs of values that might be rolled with Die A

and Die B:
For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 17.7.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 17.7.
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Strange Die Game: A Vs C
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Figure 17.6 The strange dice. The number of pips on each concealed face is the
same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.

17.3.1 Die A versus Die B

Step 1: Find the sample space.
The tree diagram for this scenario is shown in Figure 17.7. In particular, the sample
space for this experiment are the nine pairs of values that might be rolled with Die A

and Die B:
For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 17.7.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 17.7.

23 / 58



Strange Die Game: B Vs C
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Figure 17.6 The strange dice. The number of pips on each concealed face is the
same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.

17.3.1 Die A versus Die B

Step 1: Find the sample space.
The tree diagram for this scenario is shown in Figure 17.7. In particular, the sample
space for this experiment are the nine pairs of values that might be rolled with Die A

and Die B:
For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 17.7.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 17.7.
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Strange Die Game: Sum of Two Rolls Wins
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Figure 17.6 The strange dice. The number of pips on each concealed face is the
same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.

17.3.1 Die A versus Die B

Step 1: Find the sample space.
The tree diagram for this scenario is shown in Figure 17.7. In particular, the sample
space for this experiment are the nine pairs of values that might be rolled with Die A

and Die B:
For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 17.7.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 17.7.
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space for this experiment are the nine pairs of values that might be rolled with Die A
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For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 17.7.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 17.7.
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same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.
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Birthday Problem

What is the probability of finding two people with the same birthday in this class?

The probability that two students have different birthdays: 364
365

In a class of n, there are
(n
2

)
pairs of students to consider.

If we assume that whether one pair shares a birthday is independent of another, we can

simply multiply these probabilities

Pr(no two persons with same birthday) ≈
(
364
365

)(n2)
≈

(
364
365

)n2/2

For n = 44, this formula yields a probability of 7%

n = 23 is enough to have better than even chance of finding two with the same birthday.
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Birthday Problem: More Accurate Approach

What is the probability of finding two people with the same birthday in this class?

There are 365n possible sequences of birthdays for n people

We assume these are all equally likely

Number of sequences without repetition: 365 · 364 · · · (365− (n− 1))

Probability that no two of n persons have same birthday:
365
365

· 365− 1
365

· · · 365− (n− 1)
365

=

(
1− 0

365

)(
1− 1

365

)
· · ·

(
1− n− 1

365

)
Use the approximation (1− x) < e−x to derive an upper bound:

Pr(no two persons with same birthday) < e0 · e− 1
365 · e− n−1

365 = e
−1
365

∑n−1
i=1 i = e

−n(n−1)
2∗365

For n = 44, this evaluates to 7.5%
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Set Theory and Probability

A countable sample space S is a nonempty countable set.

An outcome ω is an element of S .
A probability function Pr : S −→ R is a total function such that

Pr[ω] ≥ 0 for all ω ∈ S , and∑
ω∈S Pr[ω] = 1

An event E is a subset of S . Its probability is given by:

Pr[E] =
∑
ω∈E

Pr[ω]
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Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality

Sum Rule: If E0, E1, . . . , En, . . . are pairwise disjoint events, then
Pr[

⋃
n∈N En] =

∑
n∈N Pr[En]

Complement Rule: Pr[A] = 1− Pr[A]

Difference Rule:
Pr[B− A] = Pr[B]− Pr[A ∩ B]

Inclusion–Exclusion:
Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]

Union Bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Monotonicity: A ⊆ B → Pr[A] ≤ Pr[B]
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Uniform Probability Spaces

A finite probability space S said to be uniform if Pr[ω] is the same for all ω. In such
spaces:

Pr[E] =
|E|
|S|

We often this assumption — for instance, whenever probability was brought up while
counting.
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Infinite Probability Spaces

Two players take turns flipping fair coins. The first one to land heads wins. What is
the probability of each player winning?
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Conditional Probability

Probability of an event under a condition

The condition limits consideration to a subset of outcomes

Consider this subset (rather than whole of S) as the space of all possible outcomes

Pr[X |Y ] = Pr[X ∩ Y ]
Pr[Y ]

Example: Pr[win by switching | pick A and goat at B]
Pr({(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}|{(A,A,B), (A,A,C), (C,A,B)}]
i.e., Pr[{(C,A,B)}]/Pr[{(A,A,B), (A,A,C), (C,A,B)}]
which evaluates to 1/2 — switching does not seem to help!
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Monty Hall Problem Revisited

WrongQuestion: Pr[win by switching | pick A and goat at B]
Pr({(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}|{(A,A,B), (A,A,C), (C,A,B)}]
= Pr[{(C,A,B)}]/Pr[{(A,A,B), (A,A,C), (C,A,B)}] = 1/9

1/18+1/18+1/9 = 1/2

Switching does not seem to help!

RightQuestion: Pr[win by switching | pick A and host opens B]
Pr({(A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A)}|{(A,A,B), (C,A,B)}]
= Pr[{(C,A,B)}]/Pr[{(A,A,B), (C,A,B)}] = 1/9

1/18+1/9 = 2/3

Switching does help: The main clue is the host’s decision to open B!
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Four-Step Method for Conditional Probability

Best-of-Three Playoff

Both teams have a 0.5 probability of winning the first match. But for subsequent
games, the winning team has a 2/3 probability of winning the next match. Similarly,
the losing team has a 2/3 probability of losing the next match.

What is the probability that the team that wins the first match will win the playoffs?
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Four-Step Method for Conditional Probability
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local team wins the tournament, given that they win the first game?
This is a question about a conditional probability. Let A be the event that the

local team wins the tournament, and let B be the event that they win the first game.
Our goal is then to determine the conditional probability Pr

�
A j B

�
.

We can tackle conditional probability questions just like ordinary probability
problems: using a tree diagram and the four step method. A complete tree diagram
is shown in Figure 18.1.
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game 1 game 2 game 3 outcome event A:
win the
series

event B:
win

game 1

outcome
probability

Figure 18.1 The tree diagram for computing the probability that the local team
wins two out of three games given that they won the first game.

Step 1: Find the Sample Space
Each internal vertex in the tree diagram has two children, one corresponding to a
win for the local team (labeled W ) and one corresponding to a loss (labeled L).
The complete sample space is:

S D fW W; W LW; WLL; LW W; LWL; LLg:
Step 2: Define Events of Interest
The event that the local team wins the whole tournament is:

T D fW W; W LW; LW W g:
And the event that the local team wins the first game is:

F D fW W; WLW; WLLg:
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Four-Step Method for Conditional Probability

Find the sample space

S = {WW ,WLW ,WLL, LWW , LWL, LL}
Define events of interest

WT = {WW ,WLW , LWW} WF = {WW ,WLW ,WLL}
Determine outcome probabilities

Outcomes correspond to the tree leaves, and are annotated with their probabilities

Compute event probabilities

Pr[WT ] =
1
2
· 2
3
+

1
2
· 1
3
· 1
3
+

1
2
· 1
3
· 2
3
=

1
3
+

1
18

+
1
9
=

1
2

Pr[WT |WF ] =
Pr[{WW ,WLW}]

Pr[WF ]
=

1/3+ 1/18
1/2

=
7
9
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What are Edge Probabilities in Tree Diagrams?

They are just conditional probabilities!
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Extending Probability Rules for Conditional Probability

Product Rule 2: Pr[E1 ∩ E2] = Pr[E1] · Pr[E2|E1]

Product Rule 3: Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2|E1] · Pr[E3|E1 ∩ E2]

Bayes’ Rule: Pr[B|A] = Pr[A|B] · Pr[B]
Pr[A]

Total Probability Law: Pr[A] = Pr[A|E] · Pr[E] + Pr[A|E] · Pr[E]
Total Probability Law 2: If Ei are mutually disjoint and Pr[

⋃
Ei] = 1 then

Pr[A] =
∑

Pr[A|Ei] · Pr[Ei]
Inclusion-Exclusion: Pr[A ∪ B|C] = Pr[A|C] + Pr[B|C]− Pr[A ∩ B|C]
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Independence

An event A is independent of B iff the following (equivalent) conditions hold:

Pr[A|B] = Pr[A]

Pr[A ∩ B] = Pr[A] · Pr[B]
B is independent of A

Often, independence is an assumption.

Definition can be generalized to 3 (or n) events. Events E1, E2 and E3a are mutually
independent iff all of the following hold:

Pr[E1 ∩ E2] = Pr[E1] · Pr[E2]
Pr[E2 ∩ E3] = Pr[E2] · Pr[E3]
Pr[E1 ∩ E3] = Pr[E1] · Pr[E3]
Pr[E1 ∩ E2 ∩ E3] = Pr[E1] · Pr[E2] · Pr[E3]
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Medical Testing

False Positive (FP): Pr[positive test | not sick]
In the context of statistical hypothesis testing:

FP is called type I error or significance and denoted by the letter α
γ = 1− α is called specificity or confidence of the test.

False Negative: Pr[negative test | sick]
In statistical hypothesis testing,

FN is called type II error and denoted β.
1− β is called the power of the test.
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Medical Testing

Consider a diagnostic test with
FP and FN probabilities of
0.05 and 0.02 respectively.

If a test comes back positive,
what is the likelihood that
he/she has the disease?

It depends ...
... on what fraction of the tested
population is actually sick.
Assume this is 1%.
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Medical Testing: Four-Step Method
Find the sample space

S = {(sick, pos), (sick, neg), (¬sick, pos), (¬sick, neg)}

Define events of interest

Sick = {(sick, pos), (sick, neg)} Pos = {(sick, pos), (¬sick, pos)}

Determine outcome probabilities: See the tree diagram on the previous slide

Compute conditional probability

Pr[Pos] = Pr[(sick, pos)] + Pr[(¬sick, pos)] = 0.01 · 0.98+ 0.99 · 0.05 = 0.0593

Pr[Sick|Pos] = Pr[{(sick, pos)}]
Pr[Pos]

= 0.01 · 0.98/0.0593 = 16.5%

Although the test is more than 95% accurate, a positive does not mean much:

You have only a small (16.5%) chance of being actually sick!
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Medical Testing: Summary

While false positives are rare, they are more common that the likelihood of a
random person being sick

In fact, the condition being tested is 5x less prevalent than FPs.

So, 4 out 5 times, people flagged by the test are not sick.

This calculation is based on the assumption that the person being tested is someone
picked randomly from the population.
If we tested only those that display symptoms of the sickness, the rates will be different.
In particular, we need to use the prevalence of sickness among such symptomatic people.
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