Probability (Textbook Chapters 16 and 17)

R. Sekar

Monty Hall Problem

Monty Hall Problem

Suppose you're on a game show, and you're given the choice of three doors. Behind one door is a car, behind the others, goats. You pick a door, say number 1, and the host, who knows what's behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you want to pick door number 2?" Is it to your advantage to switch your choice of doors?

Describes a situation faced by contestants on a 70's game show Let's Make a Deal.

Let's Make a Deal: Assumptions

- The car is equally likely to be hidden behind each of the three doors.
- The player is equally likely to pick each of the three doors.

Let's Make a Deal: Assumptions

- The car is equally likely to be hidden behind each of the three doors.
- The player is equally likely to pick each of the three doors.
- After the player picks a door, the host must open a different door with a goat behind it and offer the player a second choice.

Let's Make a Deal: Assumptions

- The car is equally likely to be hidden behind each of the three doors.
- The player is equally likely to pick each of the three doors.
- After the player picks a door, the host must open a different door with a goat behind it and offer the player a second choice.
- If the host has a choice of which door to open, then he is equally likely to select each of them.

The Sample Space

- Random variables (aka "random quantities")
- door concealing the car.
- door chosen by the player.
- door opened by the host to reveal a goat.

The Sample Space

- Random variables (aka "random quantities")
- door concealing the car.
- door chosen by the player.
- door opened by the host to reveal a goat.

These variables take 3 possible values: A, B, and C, representing the three doors.

The Sample Space

- Random variables (aka "random quantities")
- door concealing the car.
- door chosen by the player.
- door opened by the host to reveal a goat.

These variables take 3 possible values: A, B, and C, representing the three doors.

- Outcome: Values taken by random variables in any one experiment, e.g., (A, C, B) denotes:
- the car is behind door A,
- the player chooses door C,
- the host opens door B

The Sample Space

- Random variables (aka "random quantities")
- door concealing the car.
- door chosen by the player.
- door opened by the host to reveal a goat.

These variables take 3 possible values: A, B, and C, representing the three doors.

- Outcome: Values taken by random variables in any one experiment, e.g., (A, C, B) denotes:
- the car is behind door A,
- the player chooses door C,
- the host opens door B
- Sample space: Set of all possible outcomes

$$
S=\left\{\begin{array}{l}
(A, A, B),(A, A, C),(A, B, C),(A, C, B),(B, A, C),(B, B, A) \\
(B, B, C),(B, C, A),(C, A, B),(C, B, A),(C, C, A),(C, C, B)
\end{array}\right\}
$$

Tree Diagram Displaying Sample Space

Tree Diagram Displaying Sample Space

Events

A set of outcomes is called an event. Examples:

- "prize is behind door C"

$$
\{(C, A, B),(C, B, A),(C, C, A),(C, C, B)\}
$$

- "prize behind door first picked by the player"

$$
\{(A, A, B),(A, A, C),(B, B, A),(B, B, C),(C, C, A),(C, C, B)\}
$$

- "player wins by switching"

$$
\{(A, B, C),(A, C, B),(B, A, C),(B, C, A),(C, A, B),(C, B, A)\}
$$

Tree Diagram With "Player Wins By Switching" Marked

Computing Event Probabilities

Computing Event Probabilities

Computing Event Probabilities

Computing Event Probabilities

- Assign edge probabilities
- Compute outcome probabilities
- Compute event probability:

Computing Event Probabilities

Computing Event Probabilities

- Assign edge probabilities
- Compute outcome probabilities
- Compute event probabilities

Strange Die Game

- A stranger challenges you to a game: whoever rolls higher will pay the other $\$ 10$.
- To sweeten the deal, he says you can pick your die first.

A

B

C

Strange Die Game: A Vs B

A

B

C

Strange Die Game: A Vs C

Strange Die Game: B Vs C

Strange Die Game: Sum of Two Rolls Wins

Strange Die Game: Sum of Two Rolls Wins

Strange Die Game: Sum of Two Rolls Wins

Birthday Problem

- What is the probability of finding two people with the same birthday in this class?

Birthday Problem

- What is the probability of finding two people with the same birthday in this class?
- The probability that two students have different birthdays: $\frac{364}{365}$
- In a class of n, there are $\binom{n}{2}$ pairs of students to consider.
- If we assume that whether one pair shares a birthday is independent of another, we can simply multiply these probabilities

$$
\operatorname{Pr}(\text { no two persons with same birthday }) \approx\left(\frac{364}{365}\right)^{\binom{n}{2}} \approx\left(\frac{364}{365}\right)^{n^{2} / 2}
$$

- For $n=44$, this formula yields a probability of 7%
- $n=23$ is enough to have better than even chance of finding two with the same birthday.

Birthday Problem: More Accurate Approach

- What is the probability of finding two people with the same birthday in this class?
- There are 365^{n} possible sequences of birthdays for n people
- We assume these are all equally likely
- Number of sequences without repetition: $365 \cdot 364 \cdots(365-(n-1))$
- Probability that no two of n persons have same birthday:

$$
\frac{365}{365} \cdot \frac{365-1}{365} \cdots \frac{365-(n-1)}{365}=\left(1-\frac{0}{365}\right)\left(1-\frac{1}{365}\right) \cdots\left(1-\frac{n-1}{365}\right)
$$

- Use the approximation $(1-x)<e^{-x}$ to derive an upper bound:
Pr (no two persons with same birthday) $<e^{0} \cdot e^{-\frac{1}{365}} \cdot e^{-\frac{n-1}{365}}=e^{\frac{-1}{365} \sum_{i=1}^{n-1} i}=e^{\frac{-n(n-1)}{2 * 365}}$
- For $n=44$, this evaluates to 7.5%

Set Theory and Probability

- A countable sample space \mathcal{S} is a nonempty countable set.
- An outcome ω is an element of \mathcal{S}.
- A probability function $\operatorname{Pr}: \mathcal{S} \longrightarrow \mathbb{R}$ is a total function such that
- $\operatorname{Pr}[\omega] \geq 0$ for all $\omega \in \mathcal{S}$, and
- $\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1$

Set Theory and Probability

- A countable sample space \mathcal{S} is a nonempty countable set.
- An outcome ω is an element of \mathcal{S}.
- A probability function $\operatorname{Pr}: \mathcal{S} \longrightarrow \mathbb{R}$ is a total function such that
- $\operatorname{Pr}[\omega] \geq 0$ for all $\omega \in \mathcal{S}$, and
- $\sum_{\omega \in \mathcal{S}} \operatorname{Pr}[\omega]=1$
- An event E is a subset of \mathcal{S}. Its probability is given by:

$$
\operatorname{Pr}[E]=\sum_{\omega \in E} \operatorname{Pr}[\omega]
$$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality
Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality
Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Complement Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality
Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Complement Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$
Difference Rule:

$$
\operatorname{Pr}[B-A]=\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Complement Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$
Difference Rule:

$$
\operatorname{Pr}[B-A]=\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Inclusion-Exclusion:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Union Bound: $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$

Probability Rules from Set Theory

Many probability rules follow from the rules on set cardinality Sum Rule: If $E_{0}, E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\bigcup_{n \in \mathbb{N}} E_{n}\right]=\sum_{n \in \mathbb{N}} \operatorname{Pr}\left[E_{n}\right]
$$

Complement Rule: $\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]$
Difference Rule:

$$
\operatorname{Pr}[B-A]=\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Inclusion-Exclusion:

$$
\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]
$$

Union Bound: $\operatorname{Pr}[A \cup B] \leq \operatorname{Pr}[A]+\operatorname{Pr}[B]$
Monotonicity: $A \subseteq B \rightarrow \operatorname{Pr}[A] \leq \operatorname{Pr}[B]$

Uniform Probability Spaces

A finite probability space \mathcal{S} said to be uniform if $\operatorname{Pr}[\omega]$ is the same for all ω. In such spaces:

$$
\operatorname{Pr}[E]=\frac{|E|}{|\mathcal{S}|}
$$

We often this assumption - for instance, whenever probability was brought up while counting.

Infinite Probability Spaces

Two players take turns flipping fair coins. The first one to land heads wins. What is the probability of each player winning?

Conditional Probability

- Probability of an event under a condition
- The condition limits consideration to a subset of outcomes
- Consider this subset (rather than whole of \mathcal{S}) as the space of all possible outcomes

$$
\operatorname{Pr}[X \mid Y]=\frac{\operatorname{Pr}[X \cap Y]}{\operatorname{Pr}[Y]}
$$

Conditional Probability

- Probability of an event under a condition
- The condition limits consideration to a subset of outcomes
- Consider this subset (rather than whole of \mathcal{S}) as the space of all possible outcomes

$$
\operatorname{Pr}[X \mid Y]=\frac{\operatorname{Pr}[X \cap Y]}{\operatorname{Pr}[Y]}
$$

Example: $\operatorname{Pr}[$ win by switching | pick A and goat at $B]$

$$
\begin{aligned}
& \operatorname{Pr}(\{(A, B, C),(A, C, B),(B, A, C),(B, C, A),(C, A, B),(C, B, A)\} \mid\{(A, A, B),(A, A, C),(C, A, B)\}] \\
& \text { i.e., } \operatorname{Pr}[\{(C, A, B)\}] / \operatorname{Pr}[\{(A, A, B),(A, A, C),(C, A, B)\}]
\end{aligned}
$$

which evaluates to $1 / 2-$ switching does not seem to help!

Monty Hall Problem Revisited

Wrong Question: $\operatorname{Pr}[$ win by switching | pick A and goat at $B]$

$$
\begin{aligned}
& \operatorname{Pr}(\{(A, B, C),(A, C, B),(B, A, C),(B, C, A),(C, A, B),(C, B, A)\} \mid\{(A, A, B),(A, A, C),(C, A, B)\}] \\
& =\operatorname{Pr}[\{(C, A, B)\}] / \operatorname{Pr}[\{(A, A, B),(A, A, C),(C, A, B)\}]=\frac{1 / 9}{1 / 18+1 / 18+1 / 9}=1 / 2
\end{aligned}
$$

- Switching does not seem to help!

Monty Hall Problem Revisited

Wrong Question: $\operatorname{Pr}[$ win by switching | pick A and goat at $B]$

$$
\begin{aligned}
& \operatorname{Pr}(\{(A, B, C),(A, C, B),(B, A, C),(B, C, A),(C, A, B),(C, B, A)\} \mid\{(A, A, B),(A, A, C),(C, A, B)\}] \\
& =\operatorname{Pr}[\{(C, A, B)\}] / \operatorname{Pr}[\{(A, A, B),(A, A, C),(C, A, B)\}]=\frac{1 / 9}{1 / 18+1 / 18+1 / 9}=1 / 2
\end{aligned}
$$

- Switching does not seem to help!

Right Question: $\operatorname{Pr}[$ win by switching | pick A and host opens B]

$$
\begin{aligned}
& \operatorname{Pr}(\{(A, B, C),(A, C, B),(B, A, C),(B, C, A),(C, A, B),(C, B, A)\} \mid\{(A, A, B),(C, A, B)\}] \\
& =\operatorname{Pr}[\{(C, A, B)\}] / \operatorname{Pr}[\{(A, A, B),(C, A, B)\}]=\frac{1 / 9}{1 / 18+1 / 9}=2 / 3
\end{aligned}
$$

- Switching does help: The main clue is the host's decision to open B !

Four-Step Method for Conditional Probability

Best-of-Three Playoff

Both teams have a 0.5 probability of winning the first match. But for subsequent games, the winning team has a $2 / 3$ probability of winning the next match. Similarly, the losing team has a $2 / 3$ probability of losing the next match.

What is the probability that the team that wins the first match will win the playoffs?

Four-Step Method for Conditional Probability

game 1 game 2 game 3	outcome	event A: win the series	event B: win game 1	outcome probability
	WW	\checkmark	\checkmark	1/3
$\begin{array}{ll} 2 / 3 & \\ 1 / 3 & \mathbf{1 / 3} \end{array}$	WLW	\checkmark	\checkmark	1/18
L-	$W L L$		\checkmark	1/9
	$L W W$	\checkmark		1/9
	LWL			1/18
L	$L L$			1/3

Four-Step Method for Conditional Probability

- Find the sample space

$$
\mathcal{S}=\{W W, W L W, W L L, L W W, L W L, L L\}
$$

- Define events of interest

$$
W_{T}=\{W W, W L W, L W W\} \quad W_{F}=\{W W, W L W, W L L\}
$$

- Determine outcome probabilities
- Outcomes correspond to the tree leaves, and are annotated with their probabilities
- Compute event probabilities

$$
\begin{gathered}
\operatorname{Pr}\left[W_{T}\right]=\frac{1}{2} \cdot \frac{2}{3}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{3}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{2}{3}=\frac{1}{3}+\frac{1}{18}+\frac{1}{9}=\frac{1}{2} \\
\operatorname{Pr}\left[W_{T} \mid W_{F}\right]=\frac{\operatorname{Pr}[\{W W, W L W\}]}{\operatorname{Pr}\left[W_{F}\right]}=\frac{1 / 3+1 / 18}{1 / 2}=\frac{7}{9}
\end{gathered}
$$

What are Edge Probabilities in Tree Diagrams?

- They are just conditional probabilities!

| game 1 | game 2 | game 3 | outcome
 event A:
 win the
 series | event B:
 win
 game 1 | outcome
 probability |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Extending Probability Rules for Conditional Probability

Product Rule 2: $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]$

Extending Probability Rules for Conditional Probability

Product Rule 2: $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]$
Product Rule 3: $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$

Extending Probability Rules for Conditional Probability

Product Rule 2: $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]$
Product Rule 3: $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$
Bayes' Rule: $\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]}{\operatorname{Pr}[A]}$

Extending Probability Rules for Conditional Probability

Product Rule 2: $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right]$
Product Rule 3: $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2} \mid E_{1}\right] \cdot \operatorname{Pr}\left[E_{3} \mid E_{1} \cap E_{2}\right]$
Bayes' Rule: $\operatorname{Pr}[B \mid A]=\frac{\operatorname{Pr}[A \mid B] \cdot \operatorname{Pr}[B]}{\operatorname{Pr}[A]}$

Total Probability Law: $\operatorname{Pr}[A]=\operatorname{Pr}[A \mid E] \cdot \operatorname{Pr}[E]+\operatorname{Pr}[A \mid \bar{E}] \cdot \operatorname{Pr}[\bar{E}]$
Total Probability Law 2: If E_{i} are mutually disjoint and $\operatorname{Pr}\left[\bigcup E_{i}\right]=1$ then

$$
\operatorname{Pr}[A]=\sum \operatorname{Pr}\left[A \mid E_{i}\right] \cdot \operatorname{Pr}\left[E_{i}\right]
$$

Inclusion-Exclusion: $\operatorname{Pr}[A \cup B \mid C]=\operatorname{Pr}[A \mid C]+\operatorname{Pr}[B \mid C]-\operatorname{Pr}[A \cap B \mid C]$

Independence

- An event A is independent of B iff the following (equivalent) conditions hold:
- $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$
- $\operatorname{Pr}[A \cap B]=\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]$
- B is independent of A
- Often, independence is an assumption.
- Definition can be generalized to 3 (or n) events. Events E_{1}, E_{2} and E_{3} a are mutually independent iff all of the following hold:
- $\operatorname{Pr}\left[E_{1} \cap E_{2}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2}\right]$
- $\operatorname{Pr}\left[E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{2}\right] \cdot \operatorname{Pr}\left[E_{3}\right]$
- $\operatorname{Pr}\left[E_{1} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{3}\right]$
- $\operatorname{Pr}\left[E_{1} \cap E_{2} \cap E_{3}\right]=\operatorname{Pr}\left[E_{1}\right] \cdot \operatorname{Pr}\left[E_{2}\right] \cdot \operatorname{Pr}\left[E_{3}\right]$

Medical Testing

False Positive (FP): Pr [positive test | not sick]
In the context of statistical hypothesis testing:

- FP is called type I error or significance and denoted by the letter α
- $\gamma=1-\alpha$ is called specificity or confidence of the test.

False Negative: $\operatorname{Pr}[$ negative test \mid sick]
In statistical hypothesis testing,

- FN is called type II error and denoted β.
- $1-\beta$ is called the power of the test.

Medical Testing

- Consider a diagnostic test with FP and FN probabilities of 0.05 and 0.02 respectively.
- If a test comes back positive, what is the likelihood that he/she has the disease?

Medical Testing

- Consider a diagnostic test with FP and FN probabilities of 0.05 and 0.02 respectively.
- If a test comes back positive, what is the likelihood that he/she has the disease? It depends ..

Medical Testing

- Consider a diagnostic test with FP and FN probabilities of 0.05 and 0.02 respectively.
- If a test comes back positive, what is the likelihood that he/she has the disease?
It depends ...
... on what fraction of the tested
population is actually sick.
Assume this is 1%.

Medical Testing: Four-Step Method

- Find the sample space

$$
\mathcal{S}=\{(\text { sick }, \text { pos }),(\text { sick, neg }),(\neg \text { sick, pos }),(\neg \text { sick, neg })\}
$$

- Define events of interest

$$
\text { Sick }=\{(\text { sick }, \text { pos }),(\text { sick }, \text { neg })\} \quad \text { Pos }=\{(\text { sick }, \text { pos }),(\neg \text { sick }, \text { pos })\}
$$

- Determine outcome probabilities: See the tree diagram on the previous slide
- Compute conditional probability

$$
\begin{gathered}
\operatorname{Pr}[\operatorname{Pos}]=\operatorname{Pr}[(\text { sick, pos })]+\operatorname{Pr}[(\neg \text { sick, pos })]=0.01 \cdot 0.98+0.99 \cdot 0.05=0.0593 \\
\operatorname{Pr}[\operatorname{Sick} \mid \operatorname{Pos}]=\frac{\operatorname{Pr}[\{(\text { sick, pos })\}]}{\operatorname{Pr}[\operatorname{Pos}]}=0.01 \cdot 0.98 / 0.0593=16.5 \%
\end{gathered}
$$

$$
\begin{aligned}
& \text { Although the test is more than } 95 \% \text { accurate, a positive does not mean much: } \\
& \text { You have only a small }(16.5 \%) \text { chance of being actually sick! }
\end{aligned}
$$

Medical Testing: Summary

- While false positives are rare, they are more common that the likelihood of a random person being sick
- In fact, the condition being tested is $5 x$ less prevalent than FPs.
- So, 4 out 5 times, people flagged by the test are not sick.
- This calculation is based on the assumption that the person being tested is someone picked randomly from the population.
- If we tested only those that display symptoms of the sickness, the rates will be different. - In particular, we need to use the prevalence of sickness among such symptomatic people.

