Predicates (Textbook §3.6)

A *predicate* is a *proposition* whose truth depends on the values of variables

P

Predicates (Textbook §3.6)

A *predicate* is a *proposition* whose truth depends on the values of variables

$$P(n) := "n \text{ is a perfect square"}$$

• If P is a unary predicate, P(n), being a proposition, is either true or false.

Predicates (Textbook §3.6)

A *predicate* is a *proposition* whose truth depends on the values of variables

$$P(n) ::=$$
 "n is a perfect square"
$$P_{3} \underbrace{4,5} T$$

$$P_{4} \underbrace{2,3,4} F$$

- If P is a unary predicate, P(n), being a proposition, is either true or false.
- A k-ary predicate takes k variables, e.g.,

$$Py(x, y, z) := "x^2 + y^2 = z^2 \text{ for integers } x, y \text{ and } z$$
"

is a ternary predicate that characterizes Pythagorean triples. x, y and z are said to be *free variables* in the formula defining Py.

$$Q(x,y) := x \ge y \vee y > x$$

Satisfiability and Validity

These terms have the same high level meaning as in the propositional case.

Satisfiable: There is at least one value for each variable such that the formula is true

Satisfiability and Validity

These terms have the same high level meaning as in the propositional case.

Satisfiable: There is at least one value for each variable such that the formula is true

- Related to *existential* quantification
- Example: Are there values of x, y and z such that Py(x, y, z)?

$$R(x) := x/x$$

Satisfiability and Validity

These terms have the same high level meaning as in the propositional case.

Satisfiable: There is at least one value for each variable such that the formula is true

- Related to existential quantification
- Example: Are there values of x, y and z such that Py(x, y, z)?

Valid: The formula is true for all possible values of variables

• Related to *universal* quantification.

Example:
$$Q(x, y) ::= \text{``if } y > 0 \text{ then } x + y > x \text{''}$$

Is this always true?

Quantifiers

The sets may not be explicitly specified if they are obvious from context.

Unsat

If multiple variables belong to the same domain, we may abbreviate:

tayen xzy vy>x

Free Vs Bound Variables

 A quantifier "captures" or "binds" a variable. It is no longer free to take any possible value

 $P(n) := \exists x \in \mathbb{N}, \ n = \underline{x^2}$

- This formula has two variables *n* and *x*, but *x* has been bound by the quantifier.
- *n* continues to be *free*: It can take any value.
 - Some values of n make P(n) true, while others render it false.

Examples of Quantified Statements

"Every American has a dream."

Examples of Quantified Statements

Every even integer greater than 2 is the sum of two primes

Examples of Quantified Statements

Every even integer greater than 2 is the sum of two primes

• For every even integer n greater than 2, there exist primes p and q s.t. n = p + q

Order of Quantifiers

- Sometimes the order does not matter
 - e.g., when two universal quantifiers are nested

ty ta 229 V 922

- But other times, they mean a lot! One order will make sense but the other will not.
 - Often, you cannot change the order of existential operators

Negating Quantifiers

Negating Quantifiers

Not everyone likes ice cream.

- T(NEP LCN)
- There is someone who does not like ice cream
- There is no one who likes being mocked → (∃ne P M(n))
- Everyone dislikes being mocked
- ∀ is equivalent to ¬∃¬
- \exists is equivalent to $\neg \forall \neg$

Unit Summary

- Predicate Vs Proposition
- Satisfiability and Validity
- Quantifiers
 - Free and Bound variables
 - Conversion between English and Logical Formulas
- Order of quantifiers
- Negating quantifiers