Predicates (Textbook §3.6)

A predicate is a proposition whose truth depends on the values of variables

$$
\begin{aligned}
& P(n)::=\frac{" n \text { is a perfect square" }}{P(n) \text { holds for } n=0,1,4,9,16, \ldots} \\
& P
\end{aligned}
$$

1 is a perfect square \leftarrow true prop.
3 is a perfect square \longleftarrow false prop

Predicates (Textbook §3.6)

A predicate is a proposition whose truth depends on the values of variables
one $\quad P(n)::=$ " n is a perfect square"

- If P is a unary predicate, $P(n)$, being a proposition, is either true or false.

Predicates (Textbook §3.6)

A predicate is a proposition whose truth depends on the values of variables

$$
P(n)::=\text { " } n \text { is a perfect square" }
$$

- If P is a unary predicate, $P(n)$, being a proposition, is either true or false.
- A k-ary predicate takes k variables, e.g.,

$$
\operatorname{Py}(x, y, z)::=" x^{2}+y^{2}=z^{2} \text { for integers } x, y \text { and } z "
$$

is a ternary predicate that characterizes Pythagorean triples. x, y and z are said to be free variables in the formula defining Py.

Satisfiability and Validity

These terms have the same high level meaning as in the propositional case.
Satisfiable: There is at least one value for each variable such that the formula is true

Satisfiability and Validity

These terms have the same high level meaning as in the propositional case.
Satisfiable: There is at least one value for each variable such that the formula is true

- Related to existential quantification
- Example: Are there values of x, y and z such that $\operatorname{Py}(x, y, z)$?

Satisfiability and Validity

These terms have the same high level meaning as in the propositional case.
Satisfiable: There is at least one value for each variable such that the formula is true

- Related to existential quantification
- Example: Are there values of x, y and z such that $\operatorname{Py}(x, y, z)$?

Valid: The formula is true for all possible values of variables

- Related to universal quantification.

$$
\text { Example: } Q(x, y)::=\text { "if } y>0 \text { then } x+y>x \text { " }
$$

Is this always true?

Quantifiers

$$
\begin{aligned}
& \forall x \in \mathbb{N} \forall y \in \mathbb{N} x \geq y \vee y>x \\
& \Leftrightarrow \frac{\text { Universal Quantifier: } \forall \text { "for all" }}{\forall x \in \mathbb{R} x^{2} \geq 0} \\
& \rightarrow \text { Existential Quantifier: } \exists \text { "there exists" } \quad \exists x \in \sqrt{\frac{7}{5}} \\
& V a l i d \rightarrow(\mathbb{N}) 5 x^{2}-7=0
\end{aligned}
$$

The sets may not be explicitly specified if they are obvious from context.

If multiple variables belong to the same domain, we may abbreviate:

$$
\forall x, y \in \mathbb{N} \quad x \geqslant y \vee y>x
$$

Free Vs Bound Variables

- A quantifier "captures" or "binds" a variable. It is no longer free to take any possible value

$$
P(n)::=x \in \mathbb{N}, n=x^{2}
$$

- This formula has two variables n and x, but x has been bound by the quantifier.
- n continues to be free: It can take any value.
- Some values of n make $P(n)$ true, while others render it false.

Examples of Quantified Statements
set of dreams: D
set of Americans: A
"Every American has a dream."

$$
\left[\begin{array}{l}
\forall x \in A \quad \exists d \in D \\
x \text { dreams of } d \\
\exists d \in D \quad \forall x \in A \\
x \text { dreams of } d
\end{array}\right.
$$

Examples of Quantified Statements

Every even integer greater than 2 is the sum of two primes

Examples of Quantified Statements

Every even integer greater than 2 is the sum of two primes

- For every even integer n greater than 2 , there exist primes p and q s.t. $n=p+q$

Order of Quantifiers

- Sometimes the order does not matter
- e.g., when two universal quantifiers are nested

- But other times, they mean a lot! One order will make sense but the other will not.
- Often, you cannot change the order of existential operators

Negating Quantifiers

- Not everyone likes ice cream.
- There is someone who does not like ice cream $\forall n \in P L(n)$
- There is no one who likes being mocked
- Everyone dislikes being mocked

$$
\rightarrow \forall n \in P \exists M(n)
$$

Negating Quantifiers

Not everyone likes ice cream.

- There is someone who does not like ice cream

$$
(\forall n \in P \quad(\underline{\exists} \in n \in P \simeq L(n))
$$

$\xrightarrow{\text { LL }} \rightarrow \exists n \in P \rightarrow L(n)$

- There is no one who likes being mocked $\rightarrow \exists \exists \in P M(n)$
- Everyone dislikes being mocked $\nleftarrow(\nexists \forall n \in P \rightarrow M(n))$
- \forall is equivalent to $\neg \exists \neg$
- \exists is equivalent to $\neg \forall \neg$

Unit Summary

- Predicate Vs Proposition
- Satisfiability and Validity
- Quantifiers
- Free and Bound variables
- Conversion between English and Logical Formulas
- Order of quantifiers
- Negating quantifiers

