Classifying Relations Based on its Graph

function: if it has [< 1 arrow out] property
total: if it has [> 1 arrow out] property
surjective: if it has [> 1 arrow in] property
injective: if it has [< 1 arrow in] property

bijective: if it has all of the above properties

i.e., it has [= 1 arrow out] and [= 1 arrow in].
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A surj B iff there is a surjective function from A to B

A'inj B iff there is a injective, total function from A to B

A bij B iff there is a bijection from A to B
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Using Injection and Surjection to Relate Set Cardinalities

A surj B iff there is a surjective function from A to B

A'inj B iff there is a injective, total function from A to B

A bij B iff there is a bijection from A to B

For finite sets
e |A| > |B|iff Asurj B

o |A| < |B|iff A inj B
e |A| = |B|iff A bij B
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Can we use the same ideas as finite sets?
e |A| > |B|iff Asurj B

o |A| < |B|iff Ainj B
o |A| = |B|iff A bij B

4/37



Counting Infinite Sets (Textbook §7.1)

Can we use the same ideas as finite sets?
e |A| > |B|iff Asurj B

o |A| < |B|iff A inj B
o |A| = |B|iff A bij B

Basically. But:

@ There are some unintuitive things about the “size” of infinite sets
@ We don’t know how to say one set is stricly larger

@ We don’t know how to measure the size of an infinite set.

We will ignore the third problem, and just talk about comparing sizes.
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For finite sets, adding an element strictly increases its size
e i.e, if Ais finite, and b¢ A, there is no bijection from Ato AU {b}
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For finite sets, adding an element strictly increases its size
e i.e, if Ais finite, and b¢ A, there is no bijection from Ato AU {b}

This is not true for infinite sets
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Infinite Sets are Different ...

For finite sets, adding an element strictly increases its size

e ie.,if Aisfinite, and b¢ A, there is no bijection from Ato AU {b}
This is not true for infinite sets In fact:

A set A is infinite iff there is a bijection from Ato AU {b}
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@ Ais countable if its elements can be listed in some order ¢, ¢;, ¢, . . . such that every

element will eventually appear in the list.

e Equivalently, there is a surjection from N to A.
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Countable and Infinite Sets

Countability of set A
@ Ais countable if its elements can be listed in some order ¢, ¢;, ¢,

element will eventually appear in the list.

e Equivalently, there is a surjection from N to A.

... such that every

Countably infinite: Infinite and countable.

@ In other words, there is a bijection from N to A.

Countable: Finite or countably infinite
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o ldentify an enumeration order for the set

@ Show that every element will eventually occur in that order.

Example: The set Z
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If A and B are countable, then the following sets are countable as well:
e AUB

e ANB
@ AX B
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@ Use closure properties. |

Examples: The set Q
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@ Use closure properties. |

Examples: The set of complex rational numbers of the form p + gi where p and q are

rational
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o ldentify an enumeration order for the set

@ Show that every element will eventually occur in that order.

Example: The set of all finite-length strings over a finite alphabet
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o ldentify an enumeration order for the set

@ Show that every element will eventually occur in that order.

Example: The set of all finite-length strings over a countably infinite alphabet
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A strict B iff =(A surj B)

@ On finite sets, “strict” obviously means strictly smaller. But what about infinite

sets?
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Strict Inequality on Infinite Set Cardinality

A strict B iff (A surj B)

e On finite sets, “strict” obviously means strictly smaller. But what about infinite

sets? We will take it as a given that it holds for infinite sets as well.
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A strict p(A) |

@ So far, our proofs involved constructing a surjective or bijective mapping

@ But now, we need to show no such mapping is possible. How in the world can we do
that?
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A strict p(A)

@ So far, our proofs involved constructing a surjective or bijective mapping

@ But now, we need to show no such mapping is possible. How in the world can we do
that?

Answer: We need new proof techniques
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Power Sets are Strictly Larger

Theorem [Cantor]
A strict p(A)

@ So far, our proofs involved constructing a surjective or bijective mapping

@ But now, we need to show no such mapping is possible. How in the world can we do
that?

Answer: We need new proof techniques

We use Diagonalization, a particular form of proof by contradiction.
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Diagonalization: Uncountability of infinite strings over {0,1}

00000000000 ...

57

11111111111...
=01010101010...

S2

53

10101010101 ...

S4
S5

11010110101 ...
=00110110110...

56
S7

S8

=10001000100 ...

00110011001...
=11001100110...
Sl(]zllOlllOﬂlill...

S9

11010100100 ...

S11

10111010011 ...

S
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Diagonalization: Uncountability of infinite strings over {0,1}

51
S2
53
S4
S5
56
S7
S8
59
S10
S11

HEEQMHEOMRRMQOMO
HFERQQOOROREFEO
COOoOHOHO=OFEOQO
QR QOHRKE

CSCHHEQO
OMRMERO=OCOHONO
HEHEOOFHRFRORRKROD
COO0OFRORKRMROROD
COOFROOQOOFHFHO
HE QO HFKFERORO
CORQOOOOMMO

—_—
=

~FOHOORRORO

10

111010011 ...

Can prove uncountability of real numbers
using this
@ Focus on real numbers over [0, 1)
e We can define a bijection from R to real
numbers of [0, 1), so they contain the

same number of elements.

@ Each real number over [0, 1) can be
expressed as a binary number

0.d\drds - - -

where each d;isa 0 or 1.
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Diagonalization: Proving that p(N) is uncountable

Idea

o List p(N) in some order
5,85, ..

e Construct S by drawing at least
one element in n; € N that is
not included in S;

e n;is a witness to verify S # S;

@ S C N but will never appear in

the enumeration — a

contradiction.. n
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Diagonalization: Proving that p(N) is uncountable

Idea
o List p(N) in some order
GG

@ Construct S by drawing at least .
Y & Unfortunately, this is not a correct proof.

one element in n; € N that is ) ]
. . @ What if some set includes every
not included in S;

. ) . element?
e n;is a witness to verify S # §;

@ S C N but will never appear in

the enumeration — a

contradiction.. n
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@ Why not apply our idea of a bijection

between subsets and bitstrings that we used

for counting p(A)?
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Proving that ©(N) is uncountable: 2nd Attempt

@ Why not apply our idea of a bijection
between subsets and bitstrings that we used

for counting p(A)?

@ Because the subsets are countably infinite,

the string lengths will be countably infinite.
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Proving that ©(N) is uncountable: 2nd Attempt

@ Why not apply our idea of a bijection
between subsets and bitstrings that we used

for counting p(A)?

@ Because the subsets are countably infinite,

the string lengths will be countably infinite.

51
S2

S10
511

=00000000000...
=11111111111...
=01010101010...
10101010101 ...
11010110101 ...
=00110110110...
=10001000100...
=00110011001...
=11001100110...
=11011100101...
=11010100100...

=10111010011...
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Diagonalization: Proof of Cantor’s Theorem (A strict p(A))

@ We can’t use the proof from slide because it relies on A being enumerable.

o The bit strings we use contain countably infinite digits

o Instead, we need to think directly in terms of surjections:

o Assume, contrary to the theorem, there is a surjection g: A — p(A)
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Diagonalization: Proof of Cantor’s Theorem (A strict p(A))

@ We can’t use the proof from slide because it relies on A being enumerable.

o The bit strings we use contain countably infinite digits

o Instead, we need to think directly in terms of surjections:

o Assume, contrary to the theorem, there is a surjection g: A — p(A)

o The witness idea is still the key:
o Specifically, define S = {a € Ala¢ g(a)}

e i.e, such a’s don’t point to a set containing themselves
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Diagonalization: Proof of Cantor’s Theorem (A strict p(A))

@ We can’t use the proof from slide because it relies on A being enumerable.

o The bit strings we use contain countably infinite digits

o Instead, we need to think directly in terms of surjections:

o Assume, contrary to the theorem, there is a surjection g: A — p(A)

o The witness idea is still the key:
o Specifically, define S = {a € Ala¢ g(a)}

e i.e, such a’s don’t point to a set containing themselves

@ “Sis the set of elements that don’t point to themselves”
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Diagonalization: Proof of Cantor’s Theorem (A strict p(A))

@ We can’t use the proof from slide because it relies on A being enumerable.

o The bit strings we use contain countably infinite digits

o Instead, we need to think directly in terms of surjections:

o Assume, contrary to the theorem, there is a surjection g: A — p(A)

o The witness idea is still the key:
o Specifically, define S = {a € Ala¢ g(a)}

e i.e, such a’s don’t point to a set containing themselves
@ “Sis the set of elements that don’t point to themselves”

Now, who will point to S?
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e Who will point to S?
e Since g is a surjection and S C A, there must be an x € A such that g(x) = S.

e ie., “x points to the elements of §”

33/37



e Who will point to S?
e Since g is a surjection and S C A, there must be an x € A such that g(x) = S.

e ie., “x points to the elements of §”

e Now, do a case-split on whether x itself is in S:
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Diagonalization: Proof of Cantor’s Theorem (A strict p(A))

e Who will point to S?

o Since g is a surjection and S C A, there must be an x € A such that g(x) = S.
e i.e., “x points to the elements of §”

e Now, do a case-split on whether x itself is in S:
x € S: Then, x is “pointing to itself”

e by definition, S leaves out such x, so this case is impossible
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Diagonalization: Proof of Cantor’s Theorem (A strict p(A))

e Who will point to S?

o Since g is a surjection and S C A, there must be an x € A such that g(x) = S.
e i.e., “x points to the elements of §”

e Now, do a case-split on whether x itself is in S:
x € S: Then, x is “pointing to itself”
e by definition, S leaves out such x, so this case is impossible
x ¢ S: Then, “x is not pointing to itself”

e By definition, S includes such x, so this case is impossible as well.
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Diagonalization: Proof of Cantor’s Theorem (A strict o(A))

e Who will point to S?

o Since g is a surjection and S C A, there must be an x € A such that g(x) = S.
e i.e., “x points to the elements of §”

e Now, do a case-split on whether x itself is in S:
x € S: Then, x is “pointing to itself”
e by definition, S leaves out such x, so this case is impossible
x ¢ S: Then, “x is not pointing to itself”

e By definition, S includes such x, so this case is impossible as well.

As we have reached a contradiction in all cases, our original assumption about
the existence of g must be false.

o No surjective function from A to p(A) is possible. "
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