
Classifying Relations Based on its Graph

function: if it has [≤ 1 arrow out] property

total: if it has [≥ 1 arrow out] property

surjective: if it has [≥ 1 arrow in] property

injective: if it has [≤ 1 arrow in] property

bijective: if it has all of the above properties
i.e., it has [= 1 arrow out] and [= 1 arrow in].
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Using Injection and Surjection to Relate Set Cardinalities

A surj B iff there is a surjective function from A to B

A inj B iff there is a injective, total function from A to B

A bij B iff there is a bijection from A to B

For finite sets

|A| ≥ |B| iff A surj B

|A| ≤ |B| iff A inj B

|A| = |B| iff A bij B
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Counting Infinite Sets (Textbook §7.1)

Can we use the same ideas as finite sets?

|A| ≥ |B| iff A surj B

|A| ≤ |B| iff A inj B

|A| = |B| iff A bij B

Basically. But:

There are some unintuitive things about the “size” of infinite sets

We don’t know how to say one set is stricly larger

We don’t know how to measure the size of an infinite set.

We will ignore the third problem, and just talk about comparing sizes.
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Infinite Sets are Different ...

For finite sets, adding an element strictly increases its size

i.e., if A is finite, and b /∈A, there is no bijection from A to A ∪ {b}

This is not true for infinite sets In fact:

A set A is infinite iff there is a bijection from A to A∪ {b}
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Countable and Infinite Sets

Countability of set A

A is countable if its elements can be listed in some order c0, c1, c2, . . . such that every
element will eventually appear in the list.

Equivalently, there is a surjection from N to A.

Countably infinite: Infinite and countable.

In other words, there is a bijection from N to A.

Countable: Finite or countably infinite
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Proving Countability of Sets

Strategy 1

Identify an enumeration order for the set

Show that every element will eventually occur in that order.

Example: The set Z
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Properties of Countable Sets

Countable sets are closed under union, intersection and set product

If A and B are countable, then the following sets are countable as well:

A ∪ B

A ∩ B

A× B
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Proving Countability of Sets

Strategy 2

Use closure properties.

Examples: The set Q
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Proving Countability of Sets

Strategy 2

Use closure properties.

Examples: The set of complex rational numbers of the form p + qi where p and q are
rational
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Proving Countability of Sets

Strategy 1

Identify an enumeration order for the set

Show that every element will eventually occur in that order.

Example: The set of all finite-length strings over a finite alphabet
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Strict Inequality on Infinite Set Cardinality

A strict B iff ¬(A surj B)

On finite sets, “strict” obviously means strictly smaller. But what about infinite
sets?

We will take it as a given that it holds for infinite sets as well.
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Power Sets are Strictly Larger

Theorem [Cantor]

A strict ℘(A)

So far, our proofs involved constructing a surjective or bijective mapping

But now, we need to show no such mapping is possible. How in the world can we do
that?

Answer: We need new proof techniques

We use Diagonalization, a particular form of proof by contradiction.
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Diagonalization: Uncountability of infinite strings over {0,1}

Can prove uncountability of real numbers
using this

Focus on real numbers over [0, 1)

We can define a bijection from R to real

numbers of [0, 1), so they contain the

same number of elements.

Each real number over [0, 1) can be
expressed as a binary number
0.d1d2d3 · · · where each di is a 0 or 1.
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Diagonalization: Proving that ℘(N) is uncountable

Idea
List ℘(N) in some order
S1, S2, . . .

Construct S by drawing at least
one element in ni ∈ N that is
not included in Si
ni is a witness to verify S ̸= Si

S ⊆ N but will never appear in
the enumeration – a
contradiction..

Unfortunately, this is not a correct proof.

What if some set includes every
element?
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Proving that ℘(N) is uncountable: 2nd Attempt

Why not apply our idea of a bijection
between subsets and bitstrings that we used
for counting ℘(A)?

Because the subsets are countably infinite,
the string lengths will be countably infinite.
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Diagonalization: Proof of Cantor’s Theorem (A strict ℘(A))

We can’t use the proof from slide because it relies on A being enumerable.

The bit strings we use contain countably infinite digits

Instead, we need to think directly in terms of surjections:

Assume, contrary to the theorem, there is a surjection g : A −→ ℘(A)

The witness idea is still the key:

Specifically, define S = {a ∈ A|a /∈g(a)}
i.e., such a’s don’t point to a set containing themselves

“S is the set of elements that don’t point to themselves”

Now, who will point to S?
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Diagonalization: Proof of Cantor’s Theorem (A strict ℘(A))

Who will point to S?

Since g is a surjection and S ⊆ A, there must be an x ∈ A such that g(x) = S.

i.e., “x points to the elements of S”

Now, do a case-split on whether x itself is in S:
x ∈ S: Then, x is “pointing to itself”

by definition, S leaves out such x , so this case is impossible

x /∈ S: Then, “x is not pointing to itself”
By definition, S includes such x , so this case is impossible as well.

As we have reached a contradiction in all cases, our original assumption about
the existence of g must be false.

No surjective function from A to ℘(A) is possible.
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