Proofs Vs Examples

- Can examples be proofs? What is the difference?

Proofs Vs Examples

- Can examples be proofs? What is the difference?
- Can a counterexample be a proof?

Proofs Vs Examples

- Can examples be proofs? What is the difference?
- Can a counterexample be a proof?
- Can an example be a proof?

Proofs Vs Examples

- Can examples be proofs? What is the difference?
- Can a counterexample be a proof?
- Can an example be a proof?
- It depends on the formula!
- $\exists x P(x)$ needs just one specific value for x (i.e., an example) that makes P true

Proofs Vs Examples

- Can examples be proofs? What is the difference?
- Can a counterexample be a proof?
- Can an example be a proof?
- It depends on the formula!
- $\exists x P(x)$ needs just one specific value for x (i.e., an example) that makes P true - $\neg \forall x P(x)$ is just an existential formula, so needs just an example
- An universally quantified formula can be disproved with a single (counter) example

Proofs Vs Examples

- Can examples be proofs? What is the difference?
- Can a counterexample be a proof?
- Can an example be a proof?
- It depends on the formula!
- $\exists x P(x)$ needs just one specific value for x (i.e., an example) that makes P true
- $\neg \forall x P(x)$ is just an existential formula, so needs just an example
- An universally quantified formula can be disproved with a single (counter) example
- $\forall x P(x)$ cannot be proved with an example, as P should hold for all values of x.

Proofs Vs Examples

- Can examples be proofs? What is the difference?
- Can a counterexample be a proof?
- Can an example be a proof?
- It depends on the formula!
- $\exists x P(x)$ needs just one specific value for x (i.e., an example) that makes P true - $\neg \forall x P(x)$ is just an existential formula, so needs just an example
- An universally quantified formula can be disproved with a single (counter) example
- $\forall x P(x)$ cannot be proved with an example, as P should hold for all values of x.
- Typically, x ranges over an infinite set, so we cannot explicitly try out all possible x
- So, we need some insight to develop a logical argument that P holds regardless of the value of x

Proof by Cases

- To prove $P \rightarrow Q$ when P is complex
- We can simplify the proof by "breaking up" P into cases:
- Find P_{1}, P_{2} such that $P \rightarrow P_{1} \vee P_{2}$
- Prove $P_{1} \rightarrow Q$ and $P_{2} \rightarrow Q$
- Note P_{1} and P_{2} can overlap, i.e., they can simultaneously be true.
- But most proofs consider mutually exclusive cases
- P_{i} 's must be exhaustive, i.e., cover every possible case when P could be true
- Otherwise $P \rightarrow P_{1} \vee P_{2}$ won't hold.

Proof by Cases

Example: $\max (r, s)+\min (r, s)=r+s$

Proof by Cases

- If every pair of people in a group has met before, let us call the group a club.
- If no pair has met, let us call it a group of strangers.

Theorem. Every collection of 6 people includes a club of 3 people or a group of 3 strangers.

Proof by Contradiction

For positive numbers a and b, let $n=a b$. Either $a \leq \sqrt{n}$ or $b \leq \sqrt{n}$

Template for Proofs By Contradiction

1. Start by assuming that the theorem is not true.

- Your proof should start with "Proof is by contradiction. Assume P is false." where P is the theorem you are trying to prove.

2. Establish a contradiction

- Show that the negation of the theorem contradicts something that you have assumed or known to be true.
- Well known identities or laws
- One of the antecedents of the theorem
- Negation of the consequent of the theorem
- ...

3. This contradiction shows that the assumption $(\neg P)$ must be false, thus proving P.
4. End your proof with \square or $■$ or "Thus proved."

Proof by Contradiction

There are infinitely many primes.

Give an example of two distinct positive integers m and n such that:

- $m<n$
- n^{2} is a multiple of m, but n is not a multiple of m.

Proof by Contradiction

$\forall a, n \in \mathbb{N} \operatorname{even}\left(a^{n}\right) \Rightarrow \operatorname{even}(a)$

Proof by Contradiction

Prove that $\log _{2} 3$ is irrational.

Mathematical Induction

- A powerful proof technique in discrete (as opposed to continuous) math
- Systematic: provides a template for proving a wide range of properties

Mathematical Induction

- A powerful proof technique in discrete (as opposed to continuous) math
- Systematic: provides a template for proving a wide range of properties

Let P be a predicate on non-negative integers. If

- $P(0)$ is true, and
- $P(n)$ implies $P(n+1)$ for all nonnegative integers n, then
- conclude $P(m)$ is true for all nonnegative integers m
Induction (inference) rule: $\quad \frac{P(0), \forall n P(n) \rightarrow P(n+1)}{\forall m P(m)}$

A Template for Induction Proofs

Never omit any of these steps in your proofs.

1. State that the proof uses induction.

- For many proofs involving natural numbers, induction is on the number itself. But in other cases, it may be on another quantity, e.g., length of a string. In such cases, indicate the quantity on which induction is being carried out.

2. Define the induction hypothesis, namely, the predicate $P(n)$.

- Often, P is the property you want to prove. But sometimes, you select a stronger property Q (i.e., Q implies P).

3. Establish the base case, i.e., show that $P(0)$ is true.
4. Establish the induction step, i.e., show that if $P(n)$ is true, then $P(n+1)$ holds too.
5. Invoke induction to conclude the proof.

Induction Proof Example: $\sum_{i=1}^{n} i$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} i=n(n+1) / 2$.

Induction Proof Example: $\sum_{i=1}^{n} i$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} i=n(n+1) / 2$.
3. Base Case: For $n=1, P(1)$ is $\sum_{i=1}^{1} i=1=1(1+1) / 2$. Thus, $P(1)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $n+1$ to both sides of $P(n)$, we get

$$
\begin{array}{rlrl}
\sum_{i=1}^{n+1} i & =\frac{n(n+1)}{2}+(n+1) & \\
& =(n+1)\left(\frac{n}{2}+1\right) & & \text { (pulling out the common factor } n+1) \\
& =(n+1)\left(\frac{n+2}{2}\right)=\frac{(n+1)(n+2)}{2} & & \text { (algebraic simplification) }
\end{array}
$$

5. Thus, we have established $P(n+1)$, thereby establishing $P(k)$ for all $k \geq 1$.

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=$

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=$

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4$

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $1 /(n+1)^{2}$ to both sides of $P(n)$, we get

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $1 /(n+1)^{2}$ to both sides of $P(n)$, we get

$$
\sum_{i=1}^{n+1} 1 / i^{2}<2-\frac{1}{n}+\frac{1}{(n+1)^{2}}
$$

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $1 /(n+1)^{2}$ to both sides of $P(n)$, we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} 1 / i^{2} & <2-\frac{1}{n}+\frac{1}{(n+1)^{2}} \\
& =2-\frac{(n+1)^{2}-n}{n(n+1)^{2}}
\end{aligned}
$$

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $1 /(n+1)^{2}$ to both sides of $P(n)$, we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} 1 / i^{2} & <2-\frac{1}{n}+\frac{1}{(n+1)^{2}} \\
& =2-\frac{(n+1)^{2}-n}{n(n+1)^{2}}=2-\frac{n^{2}+\not 2 n+1-\not n}{n(n+1)^{2}}
\end{aligned}
$$

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $1 /(n+1)^{2}$ to both sides of $P(n)$, we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} 1 / i^{2} & <2-\frac{1}{n}+\frac{1}{(n+1)^{2}} \\
& =2-\frac{(n+1)^{2}-n}{n(n+1)^{2}}=2-\frac{n^{2}+\not 2 n+1-\not n}{n(n+1)^{2}} \\
& =2-\frac{n^{2}+n+1}{n(n+1)^{2}}
\end{aligned}
$$

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $1 /(n+1)^{2}$ to both sides of $P(n)$, we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} 1 / i^{2} & <2-\frac{1}{n}+\frac{1}{(n+1)^{2}} \\
& =2-\frac{(n+1)^{2}-n}{n(n+1)^{2}}=2-\frac{n^{2}+\not 2 n+1-\not n}{n(n+1)^{2}} \\
& =2-\frac{n^{2}+n+1}{n(n+1)^{2}}<2-\frac{n(n+1)}{n(n+1)^{2}}=2-1 /(n+1)
\end{aligned}
$$

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $1 /(n+1)^{2}$ to both sides of $P(n)$, we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} 1 / i^{2} & <2-\frac{1}{n}+\frac{1}{(n+1)^{2}} \\
& =2-\frac{(n+1)^{2}-n}{n(n+1)^{2}}=2-\frac{n^{2}+\not 2 n+1-\not n}{n(n+1)^{2}} \\
& =2-\frac{n^{2}+n+1}{n(n+1)^{2}}<2-\frac{n(n+1)}{\not n(n+1)^{2}}=2-1 /(n+1)
\end{aligned}
$$

5. Thus, we have established $P(n+1)$, thereby establishing $P(k)$ for all $k \geq 1$.

Induction Proof Example: $\forall n>1 \sum_{i=1}^{n} 1 / i^{2}<2-1 / n$

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=\sum_{i=1}^{n} 1 / i^{2}<2-1 / n$.
3. Base Case: For $n=2, P(2)$ is $\sum_{i=1}^{2} 1 / i^{2}=1 / 1^{2}+1 / 2^{2}=5 / 4<2-1 / 2$.Thus, $P(2)$ holds.
4. Induction Step: Assume that $P(n)$ holds. Adding $1 /(n+1)^{2}$ to both sides of $P(n)$, we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} 1 / i^{2} & <2-\frac{1}{n}+\frac{1}{(n+1)^{2}} \\
& =2-\frac{(n+1)^{2}-n}{n(n+1)^{2}}=2-\frac{n^{2}+\not 2 n+1-\not n}{n(n+1)^{2}} \\
& =2-\frac{n^{2}+n+1}{n(n+1)^{2}}<2-\frac{n(n+1)}{\not n(n+1)^{2}}=2-1 /(n+1)
\end{aligned}
$$

5. Thus, we have established $P(n+1)$, thereby establishing $P(k)$ for all $k \geq 1$.

See https://faculty.math.illinois.edu/~hildebr/213/inductionsampler.pdf for more examples.

What is Wrong With This Proof?

Theorem

All horses have the same color

Base: Trivial, as there is a single horse.
Induction hypothesis: All sets of horses with n or fewer horses have the same color.
Induction Step: Consider a set of $h_{1}, h_{2}, \ldots, h_{n+1}$. By induction hypothesis:

$$
\underbrace{h_{1}, h_{2}, \ldots, h_{n}}_{\text {same color }}, h_{n+1}
$$

$$
h_{1}, \underbrace{h_{2}, \ldots, h_{n}, h_{n+1}}_{\text {same color }}
$$

This obviously means that all $n+1$ horses have the same color!

Strong Induction

- Key Point: Makes the stronger assumption of $P(n), P(n-1), \ldots$
- Contrast with simple induction, where we only assume $P(n)$.

(Strong) Induction Inference Rule

$$
\frac{P(b), \forall n([\forall b \leq k \leq n P(k)] \rightarrow P(n+1))}{\forall m \geq b P(m)}
$$

- Secondary point: Base case can be for some small value b, not just zero
- There can be more than one base case as well
- In some cases, noting the use of strong induction makes it easier to understand a proof
- But the distinction is mostly insignificant

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5 Sg . Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5 Sg . Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5Sg. Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=$ "Inductians can make change for $n+8$ Sgs."

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5 Sg . Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=$ "Inductians can make change for $n+8$ Sgs."
3. Base Cases: For $n=0, n=1$ and $n=2$, it is obvious that change can be made for $8 \operatorname{Sg}(3+5)$, $9 \mathrm{Sg}(3+3+3)$, and $10 \mathrm{Sg}(5+5)$. Thus $P(0), P(1)$ and $P(2)$ hold.

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5 Sg . Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=$ "Inductians can make change for $n+8$ Sgs."
3. Base Cases: For $n=0, n=1$ and $n=2$, it is obvious that change can be made for $8 \operatorname{Sg}(3+5)$, $9 \mathrm{Sg}(3+3+3)$, and $10 \mathrm{Sg}(5+5)$. Thus $P(0), P(1)$ and $P(2)$ hold.
4. Induction Step: Is applied for $n \geq 2$, and assumes $P(n-2), P(n-1)$ and $P(n)$.

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5 Sg . Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=$ "Inductians can make change for $n+8$ Sgs."
3. Base Cases: For $n=0, n=1$ and $n=2$, it is obvious that change can be made for $8 \mathrm{Sg}(3+5)$, $9 \mathrm{Sg}(3+3+3)$, and $10 \mathrm{Sg}(5+5)$. Thus $P(0), P(1)$ and $P(2)$ hold.
4. Induction Step: Is applied for $n \geq 2$, and assumes $P(n-2), P(n-1)$ and $P(n)$. Since $P(n-2)$ holds, we know how to make change for $(n-2)+8$ Sgs.

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5 Sg . Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=$ "Inductians can make change for $n+8$ Sgs."
3. Base Cases: For $n=0, n=1$ and $n=2$, it is obvious that change can be made for $8 \operatorname{Sg}(3+5)$, $9 \mathrm{Sg}(3+3+3)$, and $10 \mathrm{Sg}(5+5)$. Thus $P(0), P(1)$ and $P(2)$ hold.
4. Induction Step: Is applied for $n \geq 2$, and assumes $P(n-2), P(n-1)$ and $P(n)$. Since $P(n-2)$ holds, we know how to make change for $(n-2)+8$ Sgs. If we add one 3 Sg coin to this, we will have change for $(n+1)+8$ Sgs.

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5 Sg . Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=$ "Inductians can make change for $n+8$ Sgs."
3. Base Cases: For $n=0, n=1$ and $n=2$, it is obvious that change can be made for $8 \operatorname{Sg}(3+5)$, $9 \mathrm{Sg}(3+3+3)$, and $10 \mathrm{Sg}(5+5)$. Thus $P(0), P(1)$ and $P(2)$ hold.
4. Induction Step: Is applied for $n \geq 2$, and assumes $P(n-2), P(n-1)$ and $P(n)$. Since $P(n-2)$ holds, we know how to make change for $(n-2)+8$ Sgs. If we add one 3 Sg coin to this, we will have change for $(n+1)+8$ Sgs.
5. Thus, we have established $P(n+1)$, thereby establishing $P(k)$ for all $k \geq 0$.

Proof by Strong Induction

The country Inductia, whose unit of currency is the Strong, has coins worth 3 Sg (3 Strongs) and 5 Sg . Although the Inductians have some trouble making small change like 4 Sg or 7 Sg , it turns out that they can collect coins to make change for any number that is at least 8 Strongs.

1. Proof: is by induction on n.
2. Induction Hypothesis: Let $P(n)::=$ "Inductians can make change for $n+8$ Sgs."
3. Base Cases: For $n=0, n=1$ and $n=2$, it is obvious that change can be made for $8 \operatorname{Sg}(3+5)$, $9 \mathrm{Sg}(3+3+3)$, and $10 \mathrm{Sg}(5+5)$. Thus $P(0), P(1)$ and $P(2)$ hold.
4. Induction Step: Is applied for $n \geq 2$, and assumes $P(n-2), P(n-1)$ and $P(n)$.

Since $P(n-2)$ holds, we know how to make change for $(n-2)+8$ Sgs.
If we add one 3 Sg coin to this, we will have change for $(n+1)+8$ Sgs.
5. Thus, we have established $P(n+1)$, thereby establishing $P(k)$ for all $k \geq 0$.

What does the proof say about making change when there is a severe shortage of 5 Sg coins?

Proof by Strong Induction

Prime factorization theorem: Every integer $x>1$ is a product of primes.

Stacking Game

- You begin with a stack of n chips, and end with n stacks of 1 chip each
- In each move of the game, you split one stack into two
- If a stack of $a+b$ chips is spit into two stacks with a and b chips each, you get $a b$ points.
- What strategy will maximize your winning?

Stacking Game

- You begin with a stack of n chips, and end with n stacks of 1 chip each
- In each move of the game, you split one stack into two
- If a stack of $a+b$ chips is spit into two stacks with a and b chips each, you get $a b$ points.
- What strategy will maximize your winning? Actually, the strategy does not matter!

Theorem

Every way of unstacking n blocks gives a score of $n(n-1) / 2$ points.

Proof: is by induction on n.

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points.

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.
Induction Step: Assume that $P(1), \ldots, P(n)$ hold. For a game with $n+1$ chips, let the first move be to split it into stacks of r and $n+1-r$. This move earns the score of $r(n+1-r)$.

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.
Induction Step: Assume that $P(1), \ldots, P(n)$ hold. For a game with $n+1$ chips, let the first move be to split it into stacks of r and $n+1-r$. This move earns the score of $r(n+1-r)$. Both stacks have $\leq n$ chips, so we can apply the induction hypothesis to conclude that the remaining moves in the game will yield $r(r-1) / 2+(n+1-r)(n-r) / 2$ points.

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.
Induction Step: Assume that $P(1), \ldots, P(n)$ hold. For a game with $n+1$ chips, let the first move be to split it into stacks of r and $n+1-r$. This move earns the score of $r(n+1-r)$. Both stacks have $\leq n$ chips, so we can apply the induction hypothesis to conclude that the remaining moves in the game will yield $r(r-1) / 2+(n+1-r)(n-r) / 2$ points. Thus, the total points is:

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.
Induction Step: Assume that $P(1), \ldots, P(n)$ hold. For a game with $n+1$ chips, let the first move be to split it into stacks of r and $n+1-r$. This move earns the score of $r(n+1-r)$. Both stacks have $\leq n$ chips, so we can apply the induction hypothesis to conclude that the remaining moves in the game will yield $r(r-1) / 2+(n+1-r)(n-r) / 2$ points. Thus, the total points is:

$$
=r(n+1-r)+r(r-1) / 2+(n+1-r)(n-r) / 2
$$

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.
Induction Step: Assume that $P(1), \ldots, P(n)$ hold. For a game with $n+1$ chips, let the first move be to split it into stacks of r and $n+1-r$. This move earns the score of $r(n+1-r)$. Both stacks have $\leq n$ chips, so we can apply the induction hypothesis to conclude that the remaining moves in the game will yield $r(r-1) / 2+(n+1-r)(n-r) / 2$ points.Thus, the total points is:

$$
\begin{aligned}
& =r(n+1-r)+r(r-1) / 2+(n+1-r)(n-r) / 2 \\
& =\left(n r+r-r^{2}\right)+\left(r^{2}-r+n^{2}-n r+n-r-n r+r^{2}\right) / 2
\end{aligned}
$$

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.
Induction Step: Assume that $P(1), \ldots, P(n)$ hold. For a game with $n+1$ chips, let the first move be to split it into stacks of r and $n+1-r$. This move earns the score of $r(n+1-r)$. Both stacks have $\leq n$ chips, so we can apply the induction hypothesis to conclude that the remaining moves in the game will yield $r(r-1) / 2+(n+1-r)(n-r) / 2$ points.Thus, the total points is:

$$
\begin{aligned}
& =r(n+1-r)+r(r-1) / 2+(n+1-r)(n-r) / 2 \\
& =\left(n r+r-r^{2}\right)+\left(r^{2}-r+n^{2}-n r+n-r-n r+r^{2}\right) / 2 \quad \text { (distributing multiplication) } \\
& =\left(\left(-2 r^{2}+r^{2}+r^{2}\right)+(2 n r+2 r-r-n r-r-n r)+n^{2}+n\right) / 2 \quad \text { (regrouping terms) }
\end{aligned}
$$

(regrouping terms)

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.
Induction Step: Assume that $P(1), \ldots, P(n)$ hold. For a game with $n+1$ chips, let the first move be to split it into stacks of r and $n+1-r$. This move earns the score of $r(n+1-r)$. Both stacks have $\leq n$ chips, so we can apply the induction hypothesis to conclude that the remaining moves in the game will yield $r(r-1) / 2+(n+1-r)(n-r) / 2$ points.Thus, the total points is:

$$
\begin{aligned}
& =r(n+1-r)+r(r-1) / 2+(n+1-r)(n-r) / 2 \\
& =\left(n r+r-r^{2}\right)+\left(r^{2}-r+n^{2}-n r+n-r-n r+r^{2}\right) / 2 \\
& =\left(\left(-2 r^{2}+r^{2}+r^{2}\right)+(2 n r+2 r-r \quad n r-r-n r)+n^{2}+n\right) / 2 \\
& =\left(n^{2}+n\right) / 2=n(n+1) / 2=S(n+1)
\end{aligned} \quad \text { (distributing multiplication) }
$$

(Strong) Induction Proof Example: Stacking Game

Induction Hypothesis: is that any way of unstacking k chips gives a score of $S(k)::=k(k-1) / 2$ points. Base Case: For $n=1$, there are no moves left, so the score will be zero. This matches $S(1)=1 \cdot(1-1) / 2=0$, thus establishing the base.
Induction Step: Assume that $P(1), \ldots, P(n)$ hold. For a game with $n+1$ chips, let the first move be to split it into stacks of r and $n+1-r$. This move earns the score of $r(n+1-r)$. Both stacks have $\leq n$ chips, so we can apply the induction hypothesis to conclude that the remaining moves in the game will yield $r(r-1) / 2+(n+1-r)(n-r) / 2$ points.Thus, the total points is:

$$
\begin{array}{ll}
=r(n+1-r)+r(r-1) / 2+(n+1-r)(n-r) / 2 & \\
=\left(n r+r-r^{2}\right)+\left(r^{2}-r+n^{2}-n r+n-r-n r+r^{2}\right) / 2 & \text { (distributing multiplication) } \\
=\left(\left(-2 r^{2}+r^{2}+r^{2}\right)+(2 n r+2 r-r-n r-r-n r)+n^{2}+n\right) / 2 & \text { (regrouping terms) } \\
=\left(n^{2}+n\right) / 2=n(n+1) / 2=S(n+1) &
\end{array}
$$

Thus, no matter what the first move is (i.e., regardless of the value of r), we have shown that starting with $n+1$ chips, you end up with the score of $S(n+1)$, thus completing the inducation step.

Proof by Induction

You are given a series of envelopes, respectively containing $1,2,4,8, \ldots, 2^{m}$ dollars. Show that for any $0 \leq n<2^{m+1}$ there is a selection of envelopes whose contents add up to exactly that number of dollars.

Fibonacci Numbers

- Arose out of population growth modeling work done by mathematician Fibonacci at the beginning of the 13th century.
- These numbers occur frequently in the natural world - number of petals in a flower, the number of growing tips in a tree, etc.

$$
\begin{aligned}
& F(0)=0, \\
& F(1)=1, \\
& F(n)=F(n-1)+F(n-2), \text { for } n \geq 2
\end{aligned}
$$

Induction Proof: Closed form solution for Fibonacci

Closed form Solution for $F(n)$

$$
F(n)=\frac{p^{n}-q^{n}}{\sqrt{5}} \text { where } p=\frac{1+\sqrt{5}}{2} \text { and } q=\frac{1-\sqrt{5}}{2}
$$

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.
Induction Hypothesis: $F(k)=\left(p^{k}-q^{k}\right) / \sqrt{5}$ for all $k \leq n$.

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.
Induction Hypothesis: $F(k)=\left(p^{k}-q^{k}\right) / \sqrt{5}$ for all $k \leq n$.
Base Case: For $n=0, F(0)=\left(p^{0}-q^{0}\right) / \sqrt{5}=(1-1) / \sqrt{5}=0$.

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.
Induction Hypothesis: $F(k)=\left(p^{k}-q^{k}\right) / \sqrt{5}$ for all $k \leq n$.
Base Case: For $n=0, F(0)=\left(p^{0}-q^{0}\right) / \sqrt{5}=(1-1) / \sqrt{5}=0$. For $n=1$,
$\left(p^{1}-q^{1}\right) / \sqrt{5}=(\sqrt{5}) / \sqrt{5}=1$. Thus, both base cases have been established.

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.
Induction Hypothesis: $F(k)=\left(p^{k}-q^{k}\right) / \sqrt{5}$ for all $k \leq n$.
Base Case: For $n=0, F(0)=\left(p^{0}-q^{0}\right) / \sqrt{5}=(1-1) / \sqrt{5}=0$. For $n=1$,
$\left(p^{1}-q^{1}\right) / \sqrt{5}=(\sqrt{5}) / \sqrt{5}=1$. Thus, both base cases have been established.
Induction Step: Using definition of $F(n+1)=F(n)+F(n-1)$ and using induction hypothesis:
$F(n+1)=1 / \sqrt{5}\left(\left(p^{n}-q^{n}\right)+\left(p^{n-1}-q^{n-1}\right)\right) \quad$ (by induction hypothesis and then regrouping)

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.
Induction Hypothesis: $F(k)=\left(p^{k}-q^{k}\right) / \sqrt{5}$ for all $k \leq n$.
Base Case: For $n=0, F(0)=\left(p^{0}-q^{0}\right) / \sqrt{5}=(1-1) / \sqrt{5}=0$. For $n=1$,
$\left(p^{1}-q^{1}\right) / \sqrt{5}=(\sqrt{5}) / \sqrt{5}=1$. Thus, both base cases have been established.
Induction Step: Using definition of $F(n+1)=F(n)+F(n-1)$ and using induction hypothesis:

$$
\begin{aligned}
F(n+1) & =1 / \sqrt{5}\left(\left(p^{n}-q^{n}\right)+\left(p^{n-1}-q^{n-1}\right)\right) & & \text { (by induction hypothesis and then regrouping) } \\
& =1 / \sqrt{5}\left(p^{n-1}(p+1)-q^{n-1}(q+1)\right) & & \text { (regrouping terms) }
\end{aligned}
$$

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.
Induction Hypothesis: $F(k)=\left(p^{k}-q^{k}\right) / \sqrt{5}$ for all $k \leq n$.
Base Case: For $n=0, F(0)=\left(p^{0}-q^{0}\right) / \sqrt{5}=(1-1) / \sqrt{5}=0$. For $n=1$,
$\left(p^{1}-q^{1}\right) / \sqrt{5}=(\sqrt{5}) / \sqrt{5}=1$. Thus, both base cases have been established.
Induction Step: Using definition of $F(n+1)=F(n)+F(n-1)$ and using induction hypothesis:

$$
\begin{array}{rlr}
F(n+1) & =1 / \sqrt{5}\left(\left(p^{n}-q^{n}\right)+\left(p^{n-1}-q^{n-1}\right)\right) \quad \text { (by induction hypothesis and then regrouping) } \\
& =1 / \sqrt{5}\left(p^{n-1}(p+1)-q^{n-1}(q+1)\right) \quad \text { (regrouping terms) } \\
& =1 / \sqrt{5}\left(p^{n-1} p^{2}+q^{n-1} q^{2}\right) \quad \quad\left(\text { since } p^{2}=p+1 \text { and } q^{2}=q+1\right)
\end{array}
$$

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.
Induction Hypothesis: $F(k)=\left(p^{k}-q^{k}\right) / \sqrt{5}$ for all $k \leq n$.
Base Case: For $n=0, F(0)=\left(p^{0}-q^{0}\right) / \sqrt{5}=(1-1) / \sqrt{5}=0$. For $n=1$,
$\left(p^{1}-q^{1}\right) / \sqrt{5}=(\sqrt{5}) / \sqrt{5}=1$. Thus, both base cases have been established.
Induction Step: Using definition of $F(n+1)=F(n)+F(n-1)$ and using induction hypothesis:

$$
\begin{array}{rlr}
F(n+1) & =1 / \sqrt{5}\left(\left(p^{n}-q^{n}\right)+\left(p^{n-1}-q^{n-1}\right)\right) \quad \text { (by induction hypothesis and then regrouping) } \\
& =1 / \sqrt{5}\left(p^{n-1}(p+1)-q^{n-1}(q+1)\right) \quad \text { (regrouping terms) } \\
& \left.=1 / \sqrt{5}\left(p^{n-1} p^{2}+q^{n-1} q^{2}\right) \quad \quad \text { (since } p^{2}=p+1 \text { and } q^{2}=q+1\right) \\
& =\left(p^{n+1}+q^{n+1}\right) / \sqrt{5} &
\end{array}
$$

Induction Proof: Closed form solution for Fibonacci

Note that p and q are the roots of the quadratic equation $x^{2}-x-1=0$. So:

- $p^{2}=p+1$, and
- $q^{2}=q+1$

We will use these facts in our proof.
Induction Hypothesis: $F(k)=\left(p^{k}-q^{k}\right) / \sqrt{5}$ for all $k \leq n$.
Base Case: For $n=0, F(0)=\left(p^{0}-q^{0}\right) / \sqrt{5}=(1-1) / \sqrt{5}=0$. For $n=1$,
$\left(p^{1}-q^{1}\right) / \sqrt{5}=(\sqrt{5}) / \sqrt{5}=1$. Thus, both base cases have been established.
Induction Step: Using definition of $F(n+1)=F(n)+F(n-1)$ and using induction hypothesis:

$$
\begin{array}{rlr}
F(n+1) & =1 / \sqrt{5}\left(\left(p^{n}-q^{n}\right)+\left(p^{n-1}-q^{n-1}\right)\right) \quad \text { (by induction hypothesis and then regrouping) } \\
& =1 / \sqrt{5}\left(p^{n-1}(p+1)-q^{n-1}(q+1)\right) \quad \text { (regrouping terms) } \\
& \left.=1 / \sqrt{5}\left(p^{n-1} p^{2}+q^{n-1} q^{2}\right) \quad \text { (since } p^{2}=p+1 \text { and } q^{2}=q+1\right) \\
& =\left(p^{n+1}+q^{n+1}\right) / \sqrt{5} &
\end{array}
$$

This completes the induction step.

Induction Vs Proof-By-Contradiction

