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Functions

(Pure) Functional Programming

Programs consist of a set of functions

These functions behave like as functions Mathematics.

Variables are like variables in algebra or logic

They are placeholders for (input) values
Unlike most programming languages (e.g., Java), there is no concept of “assigning” to
them or “modifying” their values.
The term “absence of side-effects” is used to described this property

Data structures are based on mathematical types

Sets

Cartesian products and other type constructors to consruct new types from existing ones.
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ML

ML was developed initially as a “meta language” for a theorem proving system
(Logic of Computable Functions)
The two main dialects, SML and CAML, have many features in common:
data type definition, type inference, interactive top-level, . . .

SML syntax is closer to mathematics, so we will use it in this course.

CAML has more features for programming (e.g., object-orientation). It is a more
modern project, and hence prefer it over SML in real projects.
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Installing Standard ML of New Jersey (SML/NJ)

Ubuntu/Debian Linux: Run sudo apt install smlnj at the command-line

Windows: Your best bet is likely to be an install within a Windows subsystem for Linux

(WSL): https://docs.microsoft.com/en-us/windows/wsl/install-win10

Within the Linux subsystem, follow the above instructions.

On a browser: You can also run SML directly on your web browser at

https://www.tutorialspoint.com/execute_smlnj_online.php. No

installation is required, but you have to cut/paste everything from local files on your

machine (or else your programs may not be saved)

Other: Please see https://www.smlnj.org/ and especially

http://www.smlnj.org/install/
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Using SML

On Linux, run sml on the command-line. If you are using it in a browser, you will
already be at the top-level SML prompt.

SML prompts with
-

Enter new code definitions, evaluate expressions, or issue directives at the prompt.

Control-D to exit SML

We will use SML interactive toplevel throughout for examples.

Run sml inside readline wrapper as follows:
rlwrap sml

in order to be able to go up/down and correct your mistakes.
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Using SML

Instead of typing our program at the prompt, we usually enter it into a file and
execute it.

Type the command use "abc" in order to load the file abc in the current directory.

Contents of the file are processed as if they were directly typed in
Not available on the browser (no access to files).
You can instead cut/paste from a file stored on your computer.
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Expressions

Examples:
User Input SML’s Response
2 * 3; val it = 6 : int

val : Indicates that the result (aka output) is a value
it : variable representing the output of the last expression
6 : the number 6
: : separator between the output and its type
int : the type of output

A few key points:

Use semicolons at the end of definitions. Spurious semicolons in the middle confuse SML.
When you type a multi-line definition, you get a secondary prompt = from SML.
When you finish the definition and type a semicolon, SML goes back to its top-level prompt -
If SML is confused and prints = when you think you are done with a definition, press Ctrl-C to
get back to the primary prompt.
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Expression Evaluation (Contd.)

More examples:
User Input SML’s Response
2 + 3 * 4; val it = 14 : int

~2 + 3 * 4; val it = 10 : int

(2 + 3) * 4; val it = 20 : int

4.4 * 2.0; val it = 9.68 : real

2 + 2.2; stdIn:15.1-15.8 Error: operator and operand don’t agree [overload conflict]

operator domain: [+ ty] * [+ ty]

operand: [+ ty] * real

in expression:

2 + 2.2
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Operators

Operators Types
+

-

*

Integer or real arithmetic

true

false
Boolean constants

div Integer division

/ Real number division

andalso

orelse

not

Boolean operations
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Value definitions

Syntax: val ⟨name⟩ = ⟨expression⟩ ;

Examples:
User Input SML’s Response
val x = 1; val x = 1: int

val y = x + 1; val y = 2 : int

val x = x + 1; val x = 3 : int

val z = "SML rocks!"; val z = "SML rocks!": string
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Functions

Syntax: fun ⟨name⟩ (⟨arguments⟩) = ⟨expression⟩ ;

Examples:
User Input SML’s Response
fun f(x) = 1; val f = fn : ’a -> int

fun g(x) = x; val g = fn : ’a -> ’a

fun inc(x) = x + 1; val inc = fn : int -> int

fun sum(x,y) = x+y; val sum = fn : int * int -> int

fun max(x, y) = val max = fn : int * int -> int
if x < y
then y
else x;

max(2,3); val it = 3 : int
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Let Statements

We often want to break down a complex expression into a series of steps to make it
easier to understand

let ⟨definition⟩ in ⟨expression⟩ ;

A let can define one or more values (left), functions (right), or a mix of them.

- fun f(x, y) = let

val x2 = x*x

val y2 = y*y

in

x2+y2

end;

- fun f(x, y) = let

fun sq(z) = z*z

in

sq(x)+sq(y)

end;
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Strings and Printing in SML

The built-in function print prints strings (and only strings)
-print;

val it = fn : string -> unit

Use predefined functions Int.toString and Real.toString to covert int’s
and real’s to strings.

Use string concatenation operator ^ to construct complex strings.
- print("I know 10 * 20 is " ^ Int.toString(10*20) ^ "\n");

I know 10 * 20 is 200

val it = () : unit
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Recursion

fun g(0) = 1 (* Base Case 1 *)

| g(1) = 1 (* Base Case 2 *)

| g(n) = g(n-1)+g(n-2); (* Recursive Case *)

fun f(0) = 1 (* Base Case *)

| f(n) = 2*f(n-1); (* Recursive Case *)

fun h(1) = 1 (* Base Case *)

| h(n) = 2*h(n div 2); (* Recursive Case *)
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More recursion

fun f(0) = 1

| f(n) = n * f(n-1);

fun euclid(0, b) = b

| euclid(a, b) = euclid(b mod a, a);

fun gcd(a,b) = if a < b then euclid(a, b) else euclid(b,a);
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(Mathematical) Data Types in SML

Pre-defined Sets

Built-in Sets: int ⊂ N, real⊂ R, bool, string

Programmer-defined sets (“enumerated types”)

datatype Suit = Spades|Clubs|Diamonds|Hearts;

(* the type corresponding to the set {Spades, Clubs, Diamonds, Hearts} *)

datatype Rank = One|Two|Three|Four|Five|Six|Seven|Eight|Nine|Ten|Jack|Queen|King|Ace;

Tuples: Cartesian Products of Sets

type Card = Suit * Rank; (* Type corresponding to the set Suit × Rank *)

type PokerHand = Card * Card * Card * Card * Card;
(* A hand with five cards. Note that this is not a set: the order matters.*)

Sequences: A list in SML represents the type S∗ =
⋃∞

i=0 S
i for any set S.

type Hand = Card list;
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List Examples in SML

User Input SML’s Response
[1]; val it = [1] : int list

[4.1,2.7,3.1]; val it = [4.1, 2.7, 3.1] : real list

[4.1, 2]; Error: operator and operand don’t agree [overload conflict]

operator domain: real * real list

operand: real * [int ty] list

in expression:

4.1 :: 2 :: nil

[[1,2],[4,8,16]]; val it = [[1,2], [4,8,16]] : int list list

1::2::[] val it = [1, 2] : int list
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Tuple Examples in SML

(2,"Andrew") : int * string

(true,3.5,"x") : bool * real * string

((4,2),(7,3)) : (int * int) * (int * int)

[(2,3),(2,2),(9,1)] : (int * int) list

Lists are homogeneous: All elements must have the same type.

But tuples are heteregeneous: components can be of different types.
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Functions on Lists

Like functions on natural numbers, functions on lists also use base and recursive cases.
For integers, the base case corresponds to n = 0
For lists, the base case typically corresponds to the empty list

We use pattern-matching to distinguish between cases
On the surface, this looks very similar to what we have seen before

Note that nil and [] both denote empty lists

Non-empty lists are of the form h::t where h denotes the first element of the list (“head”)
and t denotes the rest of the list (“tail”)
For a list of type ’a list, the head has the type ’a while the tail has the type ’a list

List constants are typically specified without using ::, e.g., [1, 2, 3, 4]
But you can use :: if you wanted: 1::2::3::4::nil
You can also mix and match the :: and [] notations, e.g., 1::2::[3,4] or 1::2::[]
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Example List Functions

fun length(nil) = 0

| length(x::xs) = 1 + length(xs);

fun append(nil, y) = y

| append(x::xs, y) = x::append(xs, y);

fun reverse(nil) = nil

| reverse(x::xs) = append(reverse(xs), [x]);

There is an infix operator @ for append: e.g., [1,2] @ [3,4] yields [1,2,3,4].
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Sieve of Eratosthenes

Start with a list of natural numbers > 1

Take the first number that has not been crossed out, and output it
It is a prime number

Cross out all multiples of this number

Repeat until the list is exhausted.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
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Sieve of Eratosthenes: Approach

1. Define a function gen to generate a list of integers

2. Define a helper function elim that takes a list and a number as arguments, and
deletes all multiples of the number from the list

3. Define the sieve function that

takes the current list as input,

moves the first element to a list of prime numbers

uses elim to eliminate multiples of this number from the list,

and finally, repeats this until done

4. Define a top-level function that generates a list and then invokes sieve on it.
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SML Code for Sieve of Eratosthenes

fun gen(0, m) = [] (* 1st arg is number of elems, m is the next elem *)

| gen(n, m) = m::gen(n-1, m+1);

fun elim([], n) = []

| elim(x::xs, n) = if (x mod n = 0) then elim(xs, n) else x::elim(xs, n);

fun sieve([], primes) = primes

| sieve(n::ns, primes) = sieve(elim(ns, n), n::primes);

fun dosieve(n) = sieve(gen(n-1, 2), []);
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Sets

Lists are not sets: they represent sequences.

But we can represent sets using lists: keep list elements in a sorted order, and eliminate

duplicates.

If we start with lists that satisfy these properties, then we can implement set
operations easily using list operations
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Set Operations in SML

Start with the definition of Cartesian product

X × Y = {(x, y)|x ∈ X ∧ y ∈ Y}

To express it in SML, break into two steps:

First iterate through the set Y :

fun cart1(x, []) = []

| cart1(x, y::ys) = (x, y)::cart1(x, ys);

then iterate through the set X

fun cart([], ys) = []

| cart(x::xs, ys) = cart1(x, ys) @ cart(xs, ys);
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Set Operations in SML

X ∪ Y = {a|a ∈ X ∨ a ∈ B}
In the SML code below, we iterate simultaneously through X and Y . We have some
extra work over the above definition so that we maintain elements in sorted order.

fun union([], ys) = ys

| union(xs, []) = xs

| union(x::xs, y::ys) = if (x = y)

then x::union(xs, ys)

else if (x < y)

then x::union(xs, y::ys)

else y::union(x::xs, ys);
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Set Operations in SML: Exercises

Membership

Intersection
X ∩ Y = {a|a ∈ X ∧ a ∈ Y}

Subset
X ⊆ Y iff X ∪ Y = Y

Difference
X − Y = {a|a ∈ X ∧ a /∈ Y}

Complement

Test your implementation by checking De Morgran’s laws
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Relations

Recall that a binary relation R : X −→ Y is a subset of X × Y . For instance, the
following list represents a binary relation from N to N:

[(1, 3), (2, 4), (1, 4), (3, 5)]

fun getSupport([]) = []

| getSupport((x,y)::xys) = union([x], getSupport(xys));

fun getRange([]) = []

| getRange((x,y)::xys) = union([y], getRange(xys));

fun isTotal(Domain, R) = (Domain = getSupport(R));

fun isOnto(Codomain, R) = (Codomain = getRange(R));
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Relations

fun getArrowTails([]) = []

| getArrowTails((x,y)::xys) = x::getArrowTails(xys);

fun getArrowHeads([]) = []

| getArrowHeads((x,y)::xys) = y::getArrowHeads(xys);

fun isFun(R) = (getSupport(R) = getArrowTails(R));

fun isOneToOne(R) = (getRange(R) = getArrowHeads(R));

fun isBijection(X, Y, R) = isFun(R) andalso isTotal(X, R)

andalso isOneToOne(R) andalso isOnto(Y, R);
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Relations: Exercises

Composition of relations R : X −→ Y and S : Y −→ Z

R ◦ S = {(x, z)| ∃y (x, y)∈R ∧ (y, z)∈S}

Compute Rn, where R : X −→ X is a binary relation on X .

Check for reachability in a graph

Check if a given walk (or path or circuit) is valid

Compute paths in a graph
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End of Slides Covered in Class

The remaining slides are included for those that

are interested in learning more about SML.

Students are not expected to review them for

the Final exam.
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Generating Combinations (Subsets of Given Size)

Generate subsets of size n that include the first element

Combine first element with any n− 1-member subset of the remaining elements

Generate subsets of size n that don’t include the first element

In this case, we are generating n-member subsets of the remaining elements

fun prefixAll([], x) = [] (* put x at the beginning of all lists in the first arg *)
| prefixAll(xs::xss, x) = (x::xs)::prefixAll(xss, x);

fun subsets(xs, 0) = [[]] (* All sets have ONE subset of size 0 *)
| subsets([], n) = [] (* An empty set has NO subsets of size > 0 *)
| subsets(x::xs, n) = prefixAll(subsets(xs, n-1), x) @ subsets(xs, n);

fun genlist(0, s) = []
| genlist(r, s) = s::genlist(r-1, s+1);

fun choose(m, n) = List.length(subsets(genlist(m, 1), n));
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Generating Permutations

Generate all permutations of all but the first element

Insert the first element at every possible position in each of these permutations.

fun insertAt(0, xs, y) = y::xs (* Insert y into xs at position given by 1st argument *)
| insertAt(n, x::xs, y) = x::insertAt(n-1, xs, y);

fun insAtAll(xs, y) = (* Returns |xs|+1 lists: ith list is xs with y inserted at ith pos *)
let fun doInsAtAll(0, xs, y) = [insertAt(0, xs, y)]

| doInsAtAll(n, xs, y) = insertAt(n, xs, y)::doInsAtAll(n-1, xs, y)
in doInsAtAll(List.length(xs), xs, y) end;

fun insAtAllIntoAll([], x) = [] (* insert x into all possible pos in all lists in the 1st arg *)
| insAtAllIntoAll(zs::zss, x) = insAtAll(zs, x) @ insAtAllIntoAll(zss,x);

fun permute([]) = [[]] (* Not [] but [[]]: there is one permutation of empty list *)
| permute(x::xs) = insAtAllIntoAll(permute(xs), x);
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Counting: n of m Books, Omit k after a selected book
An analytical soluttion to this problem required a new way of thinking, but its code is not
far from the

(m
n

)
problem

Just discard k elements in one of the two recursive cases

The program is simple because it is brute-force:

Recursive calls implicitly construct the tree diagram, and then we simply count the leaves

Somtimes, it is easier to apply conditions in a post-processing phase.

fun dropN(0, xs) = xs
| dropN(n, []) = []
| dropN(n, x::xs) = dropN(n-1, xs)

fun books(xs, 0, k) = [[]] (* All sets have ONE subset of size 0 *)
| books([], n, k) = [] (* An empty set has NO books of size > 0 *)
| books(x::xs, n, k) =

prefixAll(books(dropN(k, xs), n-1, k), x) @ books(xs, n, k);

fun countBooks(m, n, k) = List.length(books(genlist(m, 1), n, k));
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Functions

Permutations, Combinations and Counting: Exercises

Generate the Powerset of a given set

Generate all possible words from a given string, also count their number.

How many numbers between 1 to 1M containy the digit 3?

In how many ways can we pick n fruits subject to the following constraints?

The number of apples must be even.

The number of bananas must be a multiple of 5.

There can be at most four oranges.

There can be at most one pear.

How many 5-card hands have a jack, queen, or king, but not all of them?
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Functions

Recursive Data Types

Constructors are operators that construct new data from existing data. They:

combine multiple data elements into one
attach a “tag” to the combination
Tags are used to distinguish base and inductive cases

datatype iTree = Leaf of int (* Base case *)
| BNode of int * iTree * iTree (* Inductive case 1 *)
| SNode of int * iTree (* Inductive case 2 *)

Tree Denoted by
1

↙ ↘
2 3

↙ ↘ ↘
4 5 6

BNode(1,

BNode(2,

Leaf(4),

Leaf(5))

SNode(3, Leaf(6)))
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Functions

Lists are Recursive Types!

They could have been defined as:
datatype ’a list = nil (* Base case *)

| :: of ’a * ’a list (* Recursive case *)

Starting from an arbitrary type A, we are constructing a recursive type for representing a

sequence of (0 or more) A’s

In SML, names prefixed with single quotes are used to refer to type variables that can stand

for an arbitrary type such as A

Because SML predefines this particular recursive type, we are able to use infix notation for

:: rather than the usual prefix notation for type constructors.
- nil;
val it = [] : ’a list
- 1::2::nil;
val it = [1,2] : int list
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Functions

More on Binary Trees

Complete or Full Trees: every internal node has two children

Perfectly balanced: all root-to-leaf paths have the same length

What is the number of nodes in a perfectly balanced binary tree of height h?

What fraction of nodes are leaved?

Balanced: At every node, the height of left and right children differ by at most one.
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Functions

Functions on Binary Trees: height, leaves, nodes

54 / 58



Functions

Binary Trees and Searching

All nodes in the left subtree are less than the value at the node

All nodes in the right subtree are greater than the value at the node

Search is efficient: takes O(log n) time, where n is the number of nodes in the tree.
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Functions

Tree Traversals

Prefix traversal: visit node before either children

Postfix traversal: visit both children before the node

Infix traversal: visit left child, then node, then right child
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Functions

Propositions
datatype PropFormula = T

| F

| VAR of int

| NOT of PropFormula

| AND of PropFormula*PropFormula

| OR of PropFormula*PropFormula

| IMPL of PropFormula*PropFormula;

Example: x1 ∧ x2 → ¬x3 becomes IMPL(AND(VAR(1),VAR(2)), NOT(VAR(3)))

fun find([], y) = false

| find(x::xs, y) = (x=y) orelse find(xs, y);

fun eval(T, asg) = true

| eval(F, asg) = false

| eval(VAR(x), asg) = find(asg, x)

| eval(NOT(f), asg) = not(eval(f, asg))

| eval(AND(f1, f2), asg) = eval(f1, asg) andalso eval(f2, asg)

| eval(OR(f1, f2), asg) = eval(f1, asg) orelse eval(f2, asg)

| eval(IMPL(f1, f2), asg) = not(eval(f1, asg)) orelse eval(f2, asg);
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Predicates
datatype PredFormula = PRED of int * int list

| NOT of PredFormula

| AND of PredFormula*PredFormula

| OR of PredFormula*PredFormula

| IMPL of PredFormula*PredFormula

| EXISTS of int*PredFormula

| FORALL of int*PredFormula

Example:
∀x1 (p1(x1) → ∃x2 p1(x2) ∧ p2(x1, x2))

becomes

FORALL(1,

IMPL(PRED(1, [1]),

EXISTS(2,

AND(PRED(1, [2]),

PRED(2, [1,2]))

)

)

)
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