Counting (Textbook §14.1 to §14.9)

R. Sekar

Counting and Mappings

- If there a bijection $f: A \longrightarrow B$ then $|A|=|B|$
- More generally, if there is a mapping $g: A \longrightarrow B$
with " $=1$ arrow out" and " $=k$ arrow in" properties then $|B|=|A| / k \quad$ (Division Rule)

Counting and Mappings

- If there a bijection $f: A \longrightarrow B$ then $|A|=|B|$
- More generally, if there is a mapping $g: A \longrightarrow B$ with "=1 arrow out" and " $=k$ arrow in" properties then $|B|=|A| / k \quad$ (Division Rule)
- Additionally, we use what we already know about sizes of sets:
- If $|A|=n$ then $|\mathbf{P}(A)|=2^{n}$
- If A and B are disjoint, $|A \cup B|=|A|+|B|$
(Sum Rule)
- Size of $A \times B$ is $|A| \times|B| \quad$ (Product Rule)

Sum Rule

- If there are 60 students enrolled in CSE 150 and 50 students enrolled in CSE 350, how many students are enrolled across the two courses?

Sum Rule

- If there are 60 students enrolled in CSE 150 and 50 students enrolled in CSE 350, how many students are enrolled across the two courses?

Sum Rule

If $P_{1}, P_{2}, \ldots, P_{n}$ are disjoint sets, then

$$
\left|P_{1} \cup P_{2} \cup \cdots \cup P_{n}\right|=\left|P_{1}\right|+\left|P_{2}\right|+\cdots+\left|P_{n}\right|
$$

- Since students don't take the two courses simultaneously, the two sets are disjoint, so we can apply the sum rule.
- The same rule cannot be applied to find the combined number of students across CSE 150 and AMS 210.
- They may be taken simultaneously, so the sets overlap

Donut Selection I

- World's Best Donut Shop (WBDS) is so famous that everyone wants to buy a donut there.
- To maximize the number of customers serviced, the shop limits each customer to just one Donut.
- To ensure a unique customer experience, their Chef insists that every donut be distinct.
- If WBDS offers a choice of
- 10 possible flavors
- 8 possible fillings
- 5 possible toppings
- 8 possible sprinkles
- How many customers can WBDS serve in a day?

Product Rule

- The donut problem can be reduced to one of counting sequences
- A donut is characterized by the sequence (F, I, T, S) representing the flavor, filling, topping and sprinkle choices

Product Rule

If $P_{1}, P_{2}, \ldots, P_{n}$ are finite sets, then

$$
\left|P_{1} \times P_{2} \times \cdots \times P_{n}\right|=\left|P_{1}\right| \cdot\left|P_{2}\right| \cdots \cdot\left|P_{n}\right|
$$

- Thus, the number of possible donuts $=|F| \cdot|I| \cdot|T| \cdot|S|=10^{*} 8^{*} 5^{*} 8=3200$

Key Assumption: The choices are independent of each other

Generalized Product Rule: Pieces on a Chessboard

- How many ways are there to arrange a pawn, a knight and a rook on a chessboard such that no two pieces occupy the same row or column?
- Let us represent these positions as the sequence $\left(r_{p}, c_{p}, r_{k}, c_{k}, r_{r}, c_{r}\right)$.

Generalized Product Rule: Pieces on a Chessboard

- How many ways are there to arrange a pawn, a knight and a rook on a chessboard such that no two pieces occupy the same row or column?
- Let us represent these positions as the sequence $\left(r_{p}, c_{p}, r_{k}, c_{k}, r_{r}, c_{r}\right)$.

Generalized Product Rule

If there are n_{i} possible entries for the i th position in a length $-k$ sequence, then the number of distinct sequences is $n_{1} \cdot n_{2} \cdots n_{k}$

Generalized Product Rule: Pieces on a Chessboard

- How many ways are there to arrange a pawn, a knight and a rook on a chessboard such that no two pieces occupy the same row or column?
- Let us represent these positions as the sequence $\left(r_{p}, c_{p}, r_{k}, c_{k}, r_{r}, c_{r}\right)$.

Generalized Product Rule

If there are n_{i} possible entries for the i th position in a length $-k$ sequence, then the number of distinct sequences is $n_{1} \cdot n_{2} \cdots \cdots n_{k}$

- The pawn can be in any of the 8 rows and columns, so r_{p} and c_{p} have 8 possible values.
- The knight can be in one of the remaining 7 rows/columns, so r_{k} and c_{k} have 7 possible values.
- The rook can be in one of the 6 rows and columns that are free after placing the pawn and the knight, so r_{r} and c_{r} have 6 possible values
- The total number of positions is hence $8 \cdot 8 \cdot 7 \cdot 7 \cdot 6 \cdot 6=112,896$

Permutations

- A permutation of a set S is a sequence that contains every element of S exactly once
- How many distinct permutations of S are there, if $|S|=n$?
- The First element of the sequence can be any of n elements
- Second element can be one of the remaining $n-1$ elements
- Third element can be one of the remaining $n-2$ elements
- Fourth element can be one of the remaining $n-3$ elements
- Continuing on, we arrive at n !

Words of length r over an alphabet of size n

- If letters can be repeated:
- Every letter can be one of n letters in the alphabet.
- So, the total number of possibilities is n^{r}.
- If letters cannot be repeated:
- Then we are asking for ${ }^{n} P_{r}$, r-length permutations of n letters.
- The first letter can be chosen in n ways
- The second letter can be chosen from the remaining $n-1$ letters
- The k 'th letter can be chosen from $n-k+1$ letters, - i.e., after leaving out the letters already used in the preceding $k-1$ letters
- So, the number is:

$$
n \cdot(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!}
$$

Award Distribution

- In how many ways can we distribute awards A_{1}, \ldots, A_{r} to n persons?
- We can represent the award as a sequence $\left(p_{1}, \ldots, p_{r}\right)$, where the p_{i} denotes the person winning the award A_{i}.
- Thus, the number of possibilities is n^{r}
- But what if each person can win only one award?
- For the i th award, the $i-1$ persons that won awards 1 through $i-1$ are not eligible
- Using this reasoning, we can calculate the number of possibilities as:

$$
n \cdot(n-1)(n-2) \cdots(n-r+1)=\frac{n!}{(n-r)!}={ }^{n} P_{r}
$$

Division Rule

- How many ways are there to arrange two identical rooks on a chessboard such that they occupy distinct rows and columns?
- If the rooks are distinct, e.f., black and white, the answer is $8 \cdot 8 \cdot 7 \cdot 7=3136$
- What if the rooks are of the same color?
- Note that the position $\left(r_{1}, c_{1}, r_{2}, c_{2}\right)$ is indistinguishable from $\left(r_{2}, c_{2}, r_{1}, c_{1}\right)$ because the two rooks are identical

Division Rule

- How many ways are there to arrange two identical rooks on a chessboard such that they occupy distinct rows and columns?
- If the rooks are distinct, e.g., black and white, the answer is $8 \cdot 8 \cdot 7 \cdot 7=3136$
- What if the rooks are of the same color?
- Note that the position $\left(r_{1}, c_{1}, r_{2}, c_{2}\right)$ is indistinguishable from $\left(r_{2}, c_{2}, r_{1}, c_{1}\right)$ because the two rooks are identical

Division Rule

If $f: A \longrightarrow B$ is a k-to- 1 onto function then $|A|=k \cdot|B|$ (Such a function has $=1$ arrow out and $=k$ arrow in properties.)

Division Rule

- How many ways are there to arrange two identical rooks on a chessboard such that they occupy distinct rows and columns?
- If the rooks are distinct, e.g., black and white, the answer is $8 \cdot 8 \cdot 7 \cdot 7=3136$
- What if the rooks are of the same color?
- Note that the position $\left(r_{1}, c_{1}, r_{2}, c_{2}\right)$ is indistinguishable from $\left(r_{2}, c_{2}, r_{1}, c_{1}\right)$ because the two rooks are identical

Division Rule

If $f: A \longrightarrow B$ is a k-to- 1 onto function then $|A|=k \cdot|B|$ (Such a function has $=1$ arrow out and $=k$ arrow in properties.)

- By applying division rule, we arrive at the correct number for identical rooks: $3136 / 2=1568$

Knights around a Circular Table

- How many distinct ways can n knights be seated around a circular table?
- Two seatings are considered the same if the two knights sitting next to each knight remains the same in both seatings.
- Let there be n knights and m seats around a table. A seating can be captured by listing the seats in order $\left(k_{1}, k_{2}, \ldots, k_{m}\right)$, which translates to $n!/(n-m)$! seatings.
- But many sequences represent the "same" seating arrangement. The first row lists the participants in clockwise order, starting from one of the m seats. The corresponding anti-clockwise order listing is shown in the second row.

$$
\begin{array}{ccccc}
\left(k_{1}, k_{2}, \ldots, k_{m}\right) & \left(k_{2}, \ldots, k_{m}, k_{1}\right) & \left(k_{3}, \ldots, k_{m}, k_{1}, k_{2}\right) & \ldots & \left(k_{m}, k_{1}, \ldots, k_{m-1}\right) \\
\left(k_{1}, k_{m}, k_{m-1} \ldots, k_{2}\right) & \left(k_{2}, k_{1}, k_{m}, \ldots k_{3}\right) & \left(k_{3}, k_{2}, \ldots k_{4}\right) & \cdots & \left(k_{m}, k_{m-1}, k_{m-2}, \ldots, k_{1}\right)
\end{array}
$$

- Using division rule, we obtain the number of distinct seatings as $\frac{n!}{(n-m)!} \cdot \frac{1}{2 m}=\frac{n!}{2(n-m)!m}$

Combinations aka Counting Subsets

- How many distinct 5-card poker hands can be dealt from a 52 -card deck?
- How many ways can I select 3 toppings for my pizza from the 10 available toppings?

Combinations aka Counting Subsets

- How many distinct 5 -card poker hands can be dealt from a 52 -card deck?
- How many ways can I select 3 toppings for my pizza from the 10 available toppings?

Subset Rule

A set of size n has $\binom{n}{m}=\frac{n!}{m!(n-m)!}$ distinct subsets of size m

- Start with a m-length permutations of the form $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$
- By the permutation rule, there are $\frac{n!}{(n-m)!}$ such sequences
- Apply division rule to collapse sequences corresponding to the same set:
- There are m ! permutations of an m-element set
- Thus, there are $\frac{n!}{(n-m)!m!}=\binom{n}{m}$ distinct subsets (aka combinations)

Donut Selection II

- Despite its unparalleled reputation, WBDS management is unhappy with the sales volume. They propose selling one box of dozen donuts per customer.
- Chef's agrees to sell the same donut to multiple customers, as long as no two customers get the exact some dozen.
- How many donuts can they sell in a day?

Donut Selection II

- Despite its unparalleled reputation, WBDS management is unhappy with the sales volume. They propose selling one box of dozen donuts per customer.
- Chef's agrees to sell the same donut to multiple customers, as long as no two customers get the exact some dozen.
- How many donuts can they sell in a day?
- Problem: How many distinct subsets of 12 can be drawn from 3200?

$$
\binom{3200}{12} \approx 2.36 \text { Decillion!!! (i.e., } 2.36 \times 10^{33} \text {) }
$$

- So, WBDS can sell up to $12 \cdot\binom{3200}{12} \approx 28$ decillion Donuts!

Donut Selection II

- Despite its unparalleled reputation, WBDS management is unhappy with the sales volume. They propose selling one box of dozen donuts per customer.
- Chef's agrees to sell the same donut to multiple customers, as long as no two customers get the exact some dozen.
- How many donuts can they sell in a day?
- Problem: How many distinct subsets of 12 can be drawn from 3200 ?

$$
\binom{3200}{12} \approx 2.36 \text { Decillion!!! (i.e., } 2.36 \times 10^{33} \text {) }
$$

- So, WBDS can sell up to $12 \cdot\binom{3200}{12} \approx 28$ decillion Donuts!
- What is the minimum donuts per box to be able to sell to everyone in the world?
- $\binom{3200}{3} \approx 5.5$ B will almost do!

Sequences of Subsets

- In how many ways can we split a set of size n into subsets of size $k_{1}, k_{2}, \ldots, k_{m}$?
- Each split is a collection of sets $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ such that $\left|A_{i}\right|=k_{i}$ and $\sum_{i=1}^{m} k_{i}=n$.
- Given a permutation of n elements, we can treat the first k_{1} elements in this sequence as A_{1}, the next k_{2} elements as A_{2} and so on.
- However, the same elements of A_{i} are represented using k_{i} ! distinct permutations.
- So we apply division rule for A_{1}, \ldots, A_{m} :

Sequences of Subsets

- In how many ways can we split a set of size n into subsets of size $k_{1}, k_{2}, \ldots, k_{m}$?
- Each split is a collection of sets $\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ such that $\left|A_{i}\right|=k_{i}$ and $\sum_{i=1}^{m} k_{i}=n$.
- Given a permutation of n elements, we can treat the first k_{1} elements in this sequence as A_{1}, the next k_{2} elements as A_{2} and so on.
- However, the same elements of A_{i} are represented using k_{i} ! distinct permutations.
- So we apply division rule for A_{1}, \ldots, A_{m} :

$$
\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}=\frac{n!}{k_{1}!k_{2}!\cdots k_{m}!}
$$

$\binom{n}{m}$ is called a binomial coefficient, $\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}$ is called a multinomial coefficient

Defective Dollar Bills

- Let us call a dollar bill defective if any digit in its 8-digit serial number is repeated.
- How many defective dollar bills are possible?

Defective Dollar Bills

- Let us call a dollar bill defective if any digit in its 8-digit serial number is repeated.
- How many defective dollar bills are possible?
- Often, it is easier to count the complement of a set:

Complement Rule

$$
|A|=|U|-|\bar{A}|
$$

Defective Dollar Bills

- Let us call a dollar bill defective if any digit in its 8-digit serial number is repeated.
- How many defective dollar bills are possible?
- Often, it is easier to count the complement of a set:

Complement Rule

$$
|A|=|U|-|\bar{A}|
$$

- Here, the complement set is one that contains no repeated digit.
- If no digit is repeated, the number of possible dollar bills is $10!/(10-8)!=10!/ 2$
- If repetitions are permitted, number of possible bills is 10^{8}
- So, number of defective bills is $10^{8}-10!/ 2=98185600$.

Defective Dollar Bills

- Let us call a dollar bill defective if any digit in its 8-digit serial number is repeated.
- How many defective dollar bills are possible?
- Often, it is easier to count the complement of a set:

Complement Rule

$$
|A|=|U|-|\bar{A}|
$$

- Here, the complement set is one that contains no repeated digit.
- If no digit is repeated, the number of possible dollar bills is $10!/(10-8)!=10!/ 2$
- If repetitions are permitted, number of possible bills is 10^{8}
- So, number of defective bills is $10^{8}-10!/ 2=98185600$.
- Fraction of non-defective bills is $(10 \cdot 9 \cdot 8 \cdots 3) / 10^{8}=1.81 \%$
- Over 49 of 50 possible dollar bills are defective!

Complement Rule: Additional Examples

- If you toss a fair coin n times, what is the likelihood there will be one or more heads?
- Very easy to count sequences that contain no heads: there is exactly one!
- It is also easy to total number of possible sequences: 2^{n}
- With a fair coin, all sequences are equally likely, so the probability is $\left(2^{n}-1\right) / 2^{n}$

Complement Rule: Additional Examples

- If you toss a fair coin n times, what is the likelihood there will be one or more heads?
- Very easy to count sequences that contain no heads: there is exactly one!
- It is also easy to total number of possible sequences: 2^{n}
- With a fair coin, all sequences are equally likely, so the probability is $\left(2^{n}-1\right) / 2^{n}$
- In a group of five students, what is the likelihood of finding two students that were born on the same day of the week?
- Easier to count instances where people were born on distinct days - $\binom{7}{5}$ ways for five students to be born on 5 distinct days.
- 7^{5} ways if there are no constraints.
- So, the desired probability, assuming that students are equally likely to be born any day of the week, is $\left(7^{5}-\binom{7}{5}\right) / 7^{5}=0.99875$

Summary of Basic Counting Rules

Product rule: $\left|P_{1} \times P_{2} \times \cdots \times P_{n}\right|=\left|P_{1}\right| \cdot\left|P_{2}\right| \cdots \cdots\left|P_{n}\right| \quad$ If choices are independent
Sum rule: $\left|P_{1} \cup P_{2} \cup \cdots \cup P_{n}\right|=\left|P_{1}\right|+\left|P_{2}\right|+\cdots+\left|P_{n}\right| \quad$ If sets are disjoint
Complement rule: $|A|=|U|-|\bar{A}|$

- Alternative form: If $A \subseteq S$ then $|A|=|S|-|S-A|$

Division rule: If $f: A \longrightarrow B$ is a k-to- 1 onto function then $|A|=k \cdot|B|$.
Permutation rule: The number of r-length permutation of n elements is $\frac{n!}{(n-r)!}$.
Combinations/subset rule: A set of size n has $\binom{n}{m}=\frac{n!}{m!(n-m)!}$ distinct subsets of size m.

Words from Repeated Letters: Bookkeeper

- How many distinct words can be formed by permuting letters in the word Bookkeeper?

Words from Repeated Letters: Bookkeeper

- How many distinct words can be formed by permuting letters in the word Bookkeeper?
- Consider all permutations, then use division rule to eliminate duplicates

Words from Repeated Letters: Bookkeeper

- How many distinct words can be formed by permuting letters in the word Bookkeeper?
- Consider all permutations, then use division rule to eliminate duplicates
- Total permutations $=10$!
- Repetitions: 3 E's, 2 O'S, 2 K's

$$
\frac{10!}{3!2!2!}=151200
$$

Poker Hands: Four of a Kind

- How many 5-card hands have all four suits of some rank?

Poker Hands: Four of a Kind

- How many 5 -card hands have all four suits of some rank?
- $8 \mathbf{4} 8 \diamond 8 \mathrm{C} 8 \mathbf{4} 0$

- First pick the repeating rank: 1 of 13 ways
- Next pick the fifth card: 1 of 48 ways
- Total: $13 \cdot 48=624$

Poker Hands: Four of a Kind

- How many 5 -card hands have all four suits of some rank?
- $8 \mathbf{4} 8 \diamond 8 \mathrm{C} 8 \mathbf{4} 0$

- First pick the repeating rank: 1 of 13 ways
- Next pick the fifth card: 1 of 48 ways
- Total: $13 \cdot 48=624$
- What is the probability of being dealt a four-of-a-kind hand?

Poker Hands: Four of a Kind

- How many 5-card hands have all four suits of some rank?
- $8 \mathbf{4} 8 \diamond 8 \mathrm{C} 8 \mathbf{4} 0$

- First pick the repeating rank: 1 of 13 ways
- Next pick the fifth card: 1 of 48 ways
- Total: $13 \cdot 48=624$
- What is the probability of being dealt a four-of-a-kind hand?
- Divide by number of possible 5 -card hands

$$
\frac{624}{\binom{52}{5}}=\frac{624}{2,598,960}=0.024 \%
$$

Poker Hands: Full House

- A Full House is a hand with three cards of one rank and two of another rank.

Poker Hands: Full House

- A Full House is a hand with three cards of one rank and two of another rank.
- Choose the rank of three cards: 13 ways
- Choose the suits of three cards: $\binom{4}{3}=\binom{4}{1}=4$
- Choose the rank of two cards: 12 ways
- Choose the suits of two cards: $\binom{4}{2}=6$
- Apply the product rule to get $13 \cdot 4 \cdot 12 \cdot 6=3744$

Poker Hands: Full House

- A Full House is a hand with three cards of one rank and two of another rank.
- Choose the rank of three cards: 13 ways
- Choose the suits of three cards: $\binom{4}{3}=\binom{4}{1}=4$
- Choose the rank of two cards: 12 ways
- Choose the suits of two cards: $\binom{4}{2}=6$
- Apply the product rule to get $13 \cdot 4 \cdot 12 \cdot 6=3744$
- The probability is significantly higher than 4 -of-a-kind, but still very low: 0.14%

Poker Hands: Non-repeating Ranks

- Approach 1

Poker Hands: Non-repeating Ranks

- Approach 1
- Choose the 5 ranks in $\binom{13}{5}$ ways
- Choose the suit of each card in 4 ways
- Total: $\binom{13}{5} \cdot 4^{5}=1,317,888$ ways
- Approach 2

Poker Hands: Non-repeating Ranks

- Approach 1
- Choose the 5 ranks in $\binom{13}{5}$ ways
- Choose the suit of each card in 4 ways
- Total: $\binom{13}{5} \cdot 4^{5}=1,317,888$ ways
- Approach 2
- Count 5-card sequences with distinct ranks, then use division rule
- Choose the first card in 52 ways, second card in 48 ways, and so on
- Finally divide by 5 ! to get: $\frac{52 \cdot 48 \cdot 44 \cdot 40 \cdot 36}{5!}=1,317,888$ ways
- Dividing by the total number of hands, we get

$$
\frac{1,317,888}{\binom{52}{5}}=\frac{1,317,888}{2,598,960}=0.5071
$$

Poker Hands: Two Pairs

- Two cards of one rank, two cards of another rank, a fifth card of different rank

Poker Hands: Two Pairs

- Two cards of one rank, two cards of another rank, a fifth card of different rank
- First pair can be chosen in

$$
\binom{13}{1}\binom{4}{2}=78 \text { ways }
$$

- Second pair can be chosen in

$$
\binom{12}{1}\binom{4}{2}=72 \text { ways }
$$

- Fifth card can be chosen in 44 ways (leave out all suits of the two chosen ranks)
- Since we can't distinguish between the first and second pairs, divide by 2 !

$$
\frac{78 \cdot 72 \cdot 44}{2}=123,552 \text { ways }
$$

Poker Hands: Two Pairs - Alternate Method

- Pick the rank of the two pairs: $\binom{13}{2}$ ways
- Pick the suit of the lower-ranked pair: $\binom{4}{2}$ ways
- Pick the suit of the higher-ranked pair: $\binom{4}{2}$ ways
- Pick the rank of extra card: 11 ways
- Pick the suit of the extra card: 4 ways
- Total:

$$
\binom{13}{2} \cdot\binom{4}{2}^{2} \cdot 11 \cdot 4=123,552 \text { ways }
$$

Poker Hands: Every Suit

- How many hands contain at least one card from every suit?

Poker Hands: Every Suit

- How many hands contain at least one card from every suit?
- Key point: the choice of the fifth card is not entirely independent of the first four.

Poker Hands: Every Suit

- How many hands contain at least one card from every suit?
- Key point: the choice of the fifth card is not entirely independent of the first four.
- For the first four cards, the suites are fixed, so there is a choice only for the ranks:

$$
13 \cdot 13 \cdot 13 \cdot 13=13^{4}
$$

- The last card can be any of the remaining 48
- But if we switch the last card with the other card that has the same suit, we would have counted that as a separate hand.
- So we need to divide in the end by 2

$$
\frac{13^{4} \cdot 48}{2}=685,464
$$

Poker Hands: At least 4 Ranks

- Break into two cases:
- Exactly 5 ranks (already done): 1, 317, 888 ways
- Exactly 4 ranks

Poker Hands: At least 4 Ranks

- Break into two cases:
- Exactly 5 ranks (already done): 1, 317, 888 ways
- Exactly 4 ranks
- Choose the 4 ranks in $\binom{13}{4}$ ways
- Choose which rank to repeat: 4 ways
- Choose the suit of 3 non-repeating ranks: 4^{3} ways
- Choose the suits of repeating rank in $\binom{4}{2}$ ways
- Total: $\binom{13}{4} \cdot 4 \cdot 4^{3} \cdot\binom{4}{2}=1,098$, 240 ways
- Total across two cases: $1,317,888+1,098,240=2416128$ ways

Number of Relations

How many binary relations from X to Y are there? State your answer in terms of the cardinalities of X and Y.

Number of Bijections

Let $|X|=n$. How many bijections are there from X to X ?

Binary Strings with Exactly k Ones

- How many n-bit sequences have exactly k ones?

Binary Strings with Exactly k Ones

- How many n-bit sequences have exactly k ones?
- You need to select a subset of k positions that will be occupied by 1's, while all other positions will be zeroes.
- So, the number is

$$
\binom{n}{k}
$$

Donut Selection III

- To further increase profits, WBDS management wants to streamline production by cutting down the number of distinct donut types to 10 .
- The Chef continues to insist on a unique box of dozen for each customer.
- How many customers can WBDS serve per day with these new rules?

Donut Selection III

- To further increase profits, WBDS management wants to streamline production by cutting down the number of distinct donut types to 10 .
- The Chef continues to insist on a unique box of dozen for each customer.
- How many customers can WBDS serve per day with these new rules?
- You can map it to a bit strings problem!
- The 0 's represent the donuts, 1 's represent the boundary between donut types.
- We need 9 boundaries for 10 donut types, and 12 zeroes for 12 donuts.
- Thus, the total number of boxes is

$$
\binom{21}{9} \approx 300 K
$$

Donut Selection III

- To further increase profits, WBDS management wants to streamline production by cutting down the number of distinct donut types to 10 .
- The Chef continues to insist on a unique box of dozen for each customer.
- How many customers can WBDS serve per day with these new rules?
- You can map it to a bit strings problem!
- The 0's represent the donuts, 1 's represent the boundary between donut types.
- We need 9 boundaries for 10 donut types, and 12 zeroes for 12 donuts.
- Thus, the total number of boxes is

$$
\binom{21}{9} \approx 300 K
$$

- How about the general case of a box of n Donuts drawn from m types?
- We need $m-1$ ones and n zeroes, so the number is $\binom{n+m-1}{m-1}=\binom{n+m-1}{n}$

Donut Selection: Variants

- What if you add a requirement that there be at least one donut of each type?

Donut Selection: Variants

- What if you add a requirement that there be at least one donut of each type?
- Put one donut of each type into the box, then count the ways to choose the other two

Donut Selection: Variants

- What if you add a requirement that there be at least one donut of each type?
- Put one donut of each type into the box, then count the ways to choose the other two
- Approach 1: Map to binary strings with 2 zeroes and 9 ones
- $\binom{11}{9}=\binom{11}{2}=\frac{11 \cdot 10}{2}=55$

Donut Selection: Variants

- What if you add a requirement that there be at least one donut of each type?
- Put one donut of each type into the box, then count the ways to choose the other two
- Approach 1: Map to binary strings with 2 zeroes and 9 ones
- $\binom{11}{9}=\binom{11}{2}=\frac{11 \cdot 10}{2}=55$
- Approach 2: Decompose into union of disjoint sets
- The last two donuts can have (i) the same type, or (ii) distinct types
- There are 10 choices for (i), and
- $\binom{10}{2}=\frac{10 \cdot 9}{2}=45$ choices for (ii)
- The total is again 55.

Donut Selection: Variants

- What if you add a requirement that there be at least one donut of each type?
- Put one donut of each type into the box, then count the ways to choose the other two
- Approach 1: Map to binary strings with 2 zeroes and 9 ones
- $\binom{11}{9}=\binom{11}{2}=\frac{11 \cdot 10}{2}=55$
- Approach 2: Decompose into union of disjoint sets
- The last two donuts can have (i) the same type, or (ii) distinct types
- There are 10 choices for (i), and
- $\binom{10}{2}=\frac{10 \cdot 9}{2}=45$ choices for (ii)
- The total is again 55.

Often, there are multiple ways of counting

- but all should yield the same answer: use this to check your approach.

Choosing Books

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.

Choosing Books

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10 ?

Choosing Books

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10 ?
- Selection problems like this can often be mapped to bit strings:
- Use 25 bits to represent 25 books, with 1's for selected books and 0 's for unselected ones

Choosing Books

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10 ?
- Selection problems like this can often be mapped to bit strings:
- Use 25 bits to represent 25 books, with 1's for selected books and 0 's for unselected ones
- How to incorporate the constraints?
- Select 10 books: There should be exactly ten 1-bits

Choosing Books

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10 ?
- Selection problems like this can often be mapped to bit strings:
- Use 25 bits to represent 25 books, with 1's for selected books and 0 's for unselected ones
- How to incorporate the constraints?
- Select 10 books: There should be exactly ten 1-bits
- No two consecutive: Can be simplified to "book following a selected book should be skipped."

Choosing Books

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10 ?
- Selection problems like this can often be mapped to bit strings:
- Use 25 bits to represent 25 books, with 1's for selected books and 0 's for unselected ones
- How to incorporate the constraints?
- Select 10 books: There should be exactly ten 1-bits
- No two consecutive: Can be simplified to "book following a selected book should be skipped."
- For the last selected book, "skip the following book" is redundant
- We are done with all selections, so we are not going to select any more books

Choosing Books

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10 ?
- Selection problems like this can often be mapped to bit strings:
- Use 25 bits to represent 25 books, with 1's for selected books and 0 's for unselected ones
- How to incorporate the constraints?
- Select 10 books: There should be exactly ten 1-bits
- No two consecutive: Can be simplified to "book following a selected book should be skipped."
- For the last selected book, "skip the following book" is redundant
- We are done with all selections, so we are not going to select any more books
- For the bit string, this constraint becomes:
- "Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0 "

Choosing Books (Continued)

- Consider "Ten 1 -bits and fifteen zero bits with all but the last 1 to be followed by a 0 "
- The constraint about 0 -bit following a 1 -bit is precisely captured by "taping" a zero to all but the last 1 .
- Since there are nine such 1 's, this effectively reduces the number of positions by 9

Choosing Books (Continued)

- Consider "Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0 "
- The constraint about 0 -bit following a 1 -bit is precisely captured by "taping" a zero to all but the last 1 .
- Since there are nine such 1 's, this effectively reduces the number of positions by 9
- Thus, we need to count bit strings with $25-9=16$ positions with ten 1 's.
- So, the number of possible selections is $\binom{16}{10}=8008$

Choosing Books (Continued)

- Consider "Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0 "
- The constraint about 0-bit following a 1-bit is precisely captured by "taping" a zero to all but the last 1 .
- Since there are nine such 1 's, this effectively reduces the number of positions by 9
- Thus, we need to count bit strings with $25-9=16$ positions with ten 1's.
- So, the number of possible selections is $\binom{16}{10}=8008$
- Can we generalize to m books out of n ?
- The "taping" step above reduces the number of positions from n to $n-m+1$
- So, the number is $\binom{n-m+1}{m}$

Partitioning an Integer

Let $S_{n, k}$ be the possible non-negative integer solutions to the inequality

$$
x_{1}+x_{2}+\cdots+x_{k}=n
$$

How many solutions are there?

Partitioning an Integer

Let $S_{n, k}$ be the possible non-negative integer solutions to the inequality

$$
x_{1}+x_{2}+\cdots+x_{k}=n
$$

How many solutions are there?
This is just the Donut problem!

- Make a box of n Donuts, drawing from k different types.
- So, the solution is

$$
S_{n, k}=\binom{n+k-1}{n}
$$

Partitioning an Integer

Let $I_{n, k}$ be the possible non-negative integer solutions to the inequality

$$
x_{1}+x_{2}+\cdots+x_{k} \leq n
$$

How many solutions are there?

Partitioning an Integer

Let $I_{n, k}$ be the possible non-negative integer solutions to the inequality

$$
x_{1}+x_{2}+\cdots+x_{k} \leq n
$$

How many solutions are there?
Can be reduced the equality case from previous slide:

$$
x_{1}+x_{2}+\cdots+x_{k}+x_{k+1}=n
$$

For any value $n^{\prime} \leq n$ such that $x_{1}+x_{2}+\cdots+x_{k}=n^{\prime}, x_{k+1}=n-n^{\prime}$

- Thus there is a bijection between the equality and inequality formulations.
- So, the solution is

$$
I_{n, k}=\binom{n+k}{n}
$$

Increasing Sequences

Let $L_{n, k}$ be the length of k weakly increasing sequences of non-negative integers, i.e.,

$$
y_{1} \leq y_{2} \leq \cdots \leq y_{k} \leq n
$$

How many such sequences are there?
This is the same problem from the last slide!

- Let y_{i} denote the sum of x_{1} through x_{i}

$$
y_{i}=\sum_{j=1}^{i} x_{j}
$$

Pigeonhole Principle

- A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Pigeonhole Principle

- A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Simple Version

If there are more pigeons than the holes they occupy, then there must be at least two pigeons in some hole

Pigeonhole Principle

- A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Simple Version

If there are more pigeons than the holes they occupy, then there must be at least two pigeons in some hole

Formal Version

If $|A|>|B|$ then every total function $f: A \longrightarrow B$ maps at least two different elements of A to an element of B

Hairs on Heads

- How many people riding the NYC subway in a day have the same number of hairs on their heads?

Hairs on Heads

- How many people riding the NYC subway in a day have the same number of hairs on their heads?
- Let us say that each head has a maximum of 100 K hairs
- NYC daily subway (pre-pandemic) ridership is about 4.3M

Hairs on Heads

- How many people riding the NYC subway in a day have the same number of hairs on their heads?
- Let us say that each head has a maximum of 100 K hairs
- NYC daily subway (pre-pandemic) ridership is about 4.3M

Generalized Pigeonhole Principle
 If $|A|>k \cdot|B|$ then every total function $f: A \longrightarrow B$ maps at least $k+1$ different elements of A to an element of B

Subset With Same Sum

- Suppose that we generate 100 random numbers with 25 digits:

0020480135385502964448038
5763257331083479647409398
0489445991866915676240992

- Will there be two subsets of these 25 -digit numbers that add up to the same value?

Union of Overlapping Sets: Inclusion-Exclusion Principle

- So far, we studied union of disjoint sets, where:

$$
\left|S_{1} \cup S_{2}\right|=\left|S_{1}\right|+\left|S_{2}\right|
$$

- What happens when the sets overlap?

Union of Overlapping Sets: Inclusion-Exclusion Principle

- So far, we studied union of disjoint sets, where:

$$
\left|S_{1} \cup S_{2}\right|=\left|S_{1}\right|+\left|S_{2}\right|
$$

- What happens when the sets overlap?

Union of Two Sets

$$
\left|S_{1} \cup S_{2}\right|=\left|S_{1}\right|+\left|S_{2}\right|-\left|S_{1} \cap S_{2}\right|
$$

Union of Three Sets

Union of Three Sets

Union of Three Sets

$$
\left|S_{1} \cup S_{2} \cup S_{3}\right|=\left(\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|\right)-\left(\left|S_{1} \cap S_{2}\right|+\left|S_{2} \cap S_{3}\right|+\left|S_{3} \cap S_{1}\right|\right)+\left|S_{1} \cap S_{2} \cap S_{3}\right|
$$

Union of n sets

Inclusion-Exclusion for n Sets

$$
\left|\bigcup_{i=1}^{n} S_{i}\right|=\sum_{i=1}^{n}\left|S_{i}\right|-\sum_{1 \leq i<j \leq n}\left|S_{i} \cap S_{j}\right|+\sum_{1 \leq i<j<k \leq n}\left|S_{i} \cap S_{j} \cap S_{k}\right| \cdots(-1)^{n-1}\left|\bigcap_{i=1}^{n} S_{i}\right|
$$

Or, more compactly:

$$
\left|\bigcup_{i=1}^{n} S_{i}\right|=\sum_{I \in \wp(\{1,2, \ldots, n\})}(-1)^{|/|+1}\left|\bigcap_{i \in I} S_{i}\right|
$$

Sequences with 42, 04 or 60

- How many permutations of $\{0,1,2, \ldots, 9\}$ contain a 42,04 or 60 ?

Sequences with 42, 04 or 60

- How many permutations of $\{0,1,2, \ldots, 9\}$ contain a 42,04 or 60 ?
- Permutations containing 42: "Fuse" 4 and 2 together, treat as if they are a single symbol. Now we have 9 symbols, for 9 ! permutations
- Permutations containing 04 and 60 are also 9 ! each
- Permutations containing two of these pairs would be 8 !
- Permutations containing all three would be 7!
- Using inclusion-exclusion principle, we arrive at

$$
3 \cdot 9!-3 \cdot 8!+7!
$$

Sequences with 42, 04 or 60

- How many permutations of $\{0,1,2, \ldots, 9\}$ contain a 42,04 or 60 ?
- Permutations containing 42: "Fuse" 4 and 2 together, treat as if they are a single symbol. Now we have 9 symbols, for 9 ! permutations
- Permutations containing 04 and 60 are also 9! each
- Permutations containing two of these pairs would be 8 !
- Permutations containing all three would be 7!
- Using inclusion-exclusion principle, we arrive at

$$
3 \cdot 9!-3 \cdot 8!+7!
$$

- How about sequences with 42,62 , or 60 ?

Numbers Containing Certain Digits

- How many numbers between 1 and 100 contain a 5 in them?

Numbers Containing Certain Digits

- How many numbers between 1 and 100 contain a 5 in them?
- How many numbers between 1 and 1000 contain a 5 in them?

Numbers Containing Certain Digits

- How many numbers between 1 and 100 contain a 5 in them?
- How many numbers between 1 and 1000 contain a 5 in them?
- How many numbers between 1 and 1 B contain a 5 in them?

Numbers Containing Certain Digits

- How many numbers between 1 and 100 contain a 5 in them?
- How many numbers between 1 and 1000 contain a 5 in them?
- How many numbers between 1 and 1 B contain a 5 in them?
- Inclusion-exclusion can be cumbersome to use. You should first check if other rules (e.g., complement) are applicable.

Summary of Counting Rules

Product rule: $\left|P_{1} \times P_{2} \times \cdots \times P_{n}\right|=\left|P_{1}\right| \cdot\left|P_{2}\right| \cdots \cdots\left|P_{n}\right| \quad$ If choices are independent
Sum rule: $\left|P_{1} \cup P_{2} \cup \cdots \cup P_{n}\right|=\left|P_{1}\right|+\left|P_{2}\right|+\cdots+\left|P_{n}\right| \quad$ If sets are disjoint
Complement rule: $|A|=|U|-|\bar{A}| \quad$ (Alternative form: If $A \subseteq S$ then $|A|=|S|-|S-A|$)
Division rule: If $f: A \longrightarrow B$ is a k-to- 1 onto function then $|A|=k \cdot|B|$.
Permutation rule: The number of r-length permutation of n elements is $\frac{n!}{(n-r)!}$.
Combinations/subset rule: A set of size n has $\binom{n}{m}=\frac{n!}{m!(n-m)!}$ distinct subsets of size m.
Bijection with bit strings.
Pigeon Hole Principle.
Inclusion-Exclusion Principle.

