Counting (Textbook §14.1 to §14.9)

R. Sekar

Counting and Mappings

- If there a bijection $f: A \longrightarrow B$ then |A| = |B|
- More generally, if there is a mapping $g: A \longrightarrow B$ with "=1 arrow **out**" and "=k arrow **in**" properties then |B| = |A|/k (Division Rule)

Counting and Mappings

- If there a bijection $f: A \longrightarrow B$ then |A| = |B|
- More generally, if there is a mapping $g: A \longrightarrow B$

with "=1 arrow **out**" and "=
$$k$$
 arrow **in**" properties
then $|B| = |A|/k$ (Division Rule)

- Additionally, we use what we already know about sizes of sets:
 - If |A| = n then $|P(A)| = 2^n$
 - If A and B are disjoint, $|A \cup B| = |A| + |B|$ (Sum Rule)
 - Size of $A \times B$ is $|A| \times |B|$ (Product Rule)

Sum Rule

• If there are 60 students enrolled in CSE 150 and 50 students enrolled in CSE 350, how many students are enrolled across the two courses?

Sum Rule

• If there are 60 students enrolled in CSE 150 and 50 students enrolled in CSE 350, how many students are enrolled across the two courses?

Sum Rule

If P_1, P_2, \ldots, P_n are disjoint sets, then

$$|P_1 \cup P_2 \cup \cdots \cup P_n| = |P_1| + |P_2| + \cdots + |P_n|$$

- Since students don't take the two courses simultaneously, the two sets are disjoint, so we can apply the sum rule.
- The same rule cannot be applied to find the combined number of students across CSE 150 and AMS 210.
 - They may be taken simultaneously, so the sets overlap

Donut Selection I

- World's Best Donut Shop (WBDS) is so famous that everyone wants to buy a donut there.
- To maximize the number of customers serviced, the shop limits each customer to just one Donut.
- To ensure a unique customer experience, their Chef insists that every donut be distinct.
- If WBDS offers a choice of
 - 10 possible flavors
 - 8 possible fillings
 - 5 possible toppings
 - 8 possible sprinkles
- How many customers can WBDS serve in a day?

Product Rule

- The donut problem can be reduced to one of counting sequences
 - A donut is characterized by the sequence (F, I, T, S) representing the flavor, filling, topping and sprinkle choices

Product Rule

If P_1, P_2, \ldots, P_n are finite sets, then

$$|P_1 \times P_2 \times \cdots \times P_n| = |P_1| \cdot |P_2| \cdot \cdots \cdot |P_n|$$

• Thus, the number of possible donuts = $|F| \cdot |I| \cdot |T| \cdot |S| = 10^* 8^* 5^* 8 = 3200$

Key Assumption: The choices are independent of each other

Generalized Product Rule: Pieces on a Chessboard

- How many ways are there to arrange a pawn, a knight and a rook on a chessboard such that no two pieces occupy the same row or column?
 - Let us represent these positions as the sequence $(r_p, c_p, r_k, c_k, r_r, c_r)$.

Generalized Product Rule: Pieces on a Chessboard

- How many ways are there to arrange a pawn, a knight and a rook on a chessboard such that no two pieces occupy the same row or column?
 - Let us represent these positions as the sequence $(r_p, c_p, r_k, c_k, r_r, c_r)$.

Generalized Product Rule

If there are n_i possible entries for the *i*th position in a length-k sequence, then the number of distinct sequences is $n_1 \cdot n_2 \cdot \cdots \cdot n_k$

Generalized Product Rule: Pieces on a Chessboard

- How many ways are there to arrange a pawn, a knight and a rook on a chessboard such that no two pieces occupy the same row or column?
 - Let us represent these positions as the sequence $(r_p, c_p, r_k, c_k, r_r, c_r)$.

Generalized Product Rule

If there are n_i possible entries for the *i*th position in a length-k sequence, then the number of distinct sequences is $n_1 \cdot n_2 \cdot \cdots \cdot n_k$

- The pawn can be in any of the 8 rows and columns, so r_p and c_p have 8 possible values.
- The knight can be in one of the remaining 7 rows/columns, so r_k and c_k have 7 possible values.
- The rook can be in one of the 6 rows and columns that are free after placing the pawn and the knight, so r_r and c_r have 6 possible values
- The total number of positions is hence $8 \cdot 8 \cdot 7 \cdot 7 \cdot 6 \cdot 6 = 112,896$

Permutations

- A permutation of a set S is a sequence that contains every element of S exactly once
- How many distinct permutations of S are there, if |S| = n?
 - The First element of the sequence can be any of *n* elements
 - Second element can be one of the remaining n-1 elements
 - Third element can be one of the remaining n-2 elements
 - Fourth element can be one of the remaining n-3 elements
 - Continuing on, we arrive at *n*!

Words of length *r* over an alphabet of size *n*

- If letters can be repeated:
 - Every letter can be one of *n* letters in the alphabet.
 - So, the total number of possibilities is n^r .
- If letters cannot be repeated:
 - Then we are asking for ${}^{n}P_{r}$, r-length permutations of n letters.
 - The first letter can be chosen in *n* ways
 - The second letter can be chosen from the remaining n-1 letters
 - The *k*'th letter can be chosen from n k + 1 letters,
 - i.e., after leaving out the letters already used in the preceding k-1 letters
 - So, the number is:

$$n\cdot (n-1)\cdots (n-r+1)=\frac{n!}{(n-r)!}$$

Award Distribution

- In how many ways can we distribute awards A_1, \ldots, A_r to n persons?
 - We can represent the award as a sequence (p_1, \ldots, p_r) , where the p_i denotes the person winning the award A_i .
 - Thus, the number of possibilities is n^r
- But what if each person can win only one award?
 - For the *i*th award, the i-1 persons that won awards 1 through i-1 are *not* eligible
- Using this reasoning, we can calculate the number of possibilities as:

$$n \cdot (n-1)(n-2) \cdot \cdot \cdot (n-r+1) = \frac{n!}{(n-r)!} = {}^{n}P_{r}$$

Division Rule

- How many ways are there to arrange two identical rooks on a chessboard such that they occupy distinct rows and columns?
 - If the rooks are distinct, e.g., black and white, the answer is $8 \cdot 8 \cdot 7 \cdot 7 = 3136$
 - What if the rooks are of the same color?
 - Note that the position (r_1, c_1, r_2, c_2) is indistinguishable from (r_2, c_2, r_1, c_1) because the two rooks are identical

Division Rule

- How many ways are there to arrange two identical rooks on a chessboard such that they occupy distinct rows and columns?
 - If the rooks are distinct, e.g., black and white, the answer is $8 \cdot 8 \cdot 7 \cdot 7 = 3136$
 - What if the rooks are of the same color?
 - Note that the position (r_1, c_1, r_2, c_2) is indistinguishable from (r_2, c_2, r_1, c_1) because the two rooks are identical

Division Rule

If $f: A \longrightarrow B$ is a k-to-1 onto function then $|A| = k \cdot |B|$

(Such a function has =1 arrow **out** and =k arrow **in** properties.)

Division Rule

- How many ways are there to arrange two identical rooks on a chessboard such that they occupy distinct rows and columns?
 - If the rooks are distinct, e.g., black and white, the answer is $8 \cdot 8 \cdot 7 \cdot 7 = 3136$
 - What if the rooks are of the same color?
 - Note that the position (r_1, c_1, r_2, c_2) is indistinguishable from (r_2, c_2, r_1, c_1) because the two rooks are identical

Division Rule

If $f: A \longrightarrow B$ is a k-to-1 onto function then $|A| = k \cdot |B|$ (Such a function has =1 arrow **out** and =k arrow **in** properties.)

• By applying division rule, we arrive at the correct number for identical rooks: 3136/2 = 1568

Knights around a Circular Table

- How many distinct ways can *n* knights be seated around a circular table?
 - Two seatings are considered the same if the two knights sitting next to each knight remains the same in both seatings.
- Let there be n knights and m seats around a table. A seating can be captured by listing the seats in order (k_1, k_2, \ldots, k_m) , which translates to n!/(n-m)! seatings.
- But many sequences represent the "same" seating arrangement. The first row lists the participants in clockwise order, starting from one of the *m* seats. The corresponding anti-clockwise order listing is shown in the second row.

$$(k_1, k_2, \ldots, k_m)$$
 (k_2, \ldots, k_m, k_1) $(k_3, \ldots, k_m, k_1, k_2)$ \cdots $(k_m, k_1, \ldots, k_{m-1})$ $(k_1, k_m, k_{m-1}, \ldots, k_2)$ $(k_2, k_1, k_m, \ldots, k_3)$ (k_3, k_2, \ldots, k_4) \cdots $(k_m, k_{m-1}, k_{m-2}, \ldots, k_1)$

• Using division rule, we obtain the number of distinct seatings as $\frac{n!}{(n-m)!} \cdot \frac{1}{2m} = \frac{n!}{2(n-m)!m}$

Combinations aka Counting Subsets

- How many distinct 5-card poker hands can be dealt from a 52-card deck?
- How many ways can I select 3 toppings for my pizza from the 10 available toppings?

Combinations aka Counting Subsets

- How many distinct 5-card poker hands can be dealt from a 52-card deck?
- How many ways can I select 3 toppings for my pizza from the 10 available toppings?

Subset Rule

A set of size n has $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ distinct subsets of size m

- Start with a *m*-length permutations of the form (i_1, i_2, \ldots, i_m)
 - By the permutation rule, there are $\frac{n!}{(n-m)!}$ such sequences
- Apply division rule to collapse sequences corresponding to the same set:
 - There are *m*! permutations of an *m*-element set
- Thus, there are $\frac{n!}{(n-m)!m!} = \binom{n}{m}$ distinct subsets (aka combinations)

Donut Selection II

- Despite its unparalleled reputation, WBDS management is unhappy with the sales volume. They propose selling one box of dozen donuts per customer.
- Chef's agrees to sell the same donut to multiple customers, as long as no two customers get the exact some dozen.
- How many donuts can they sell in a day?

Donut Selection II

- Despite its unparalleled reputation, WBDS management is unhappy with the sales volume. They propose selling one box of dozen donuts per customer.
- Chef's agrees to sell the same donut to multiple customers, as long as no two customers get the exact some dozen.
- How many donuts can they sell in a day?
 - Problem: How many distinct subsets of 12 can be drawn from 3200?

$$\binom{3200}{12} \approx 2.36 \text{ Decillion!!!} \text{ (i.e., } 2.36 \times 10^{33}\text{)}$$

• So, WBDS can sell up to $12 \cdot \binom{3200}{12} \approx 28$ decillion Donuts!

Donut Selection II

- Despite its unparalleled reputation, WBDS management is unhappy with the sales volume. They propose selling one box of dozen donuts per customer.
- Chef's agrees to sell the same donut to multiple customers, as long as no two customers get the exact some dozen.
- How many donuts can they sell in a day?
 - Problem: How many distinct subsets of 12 can be drawn from 3200?

$$\binom{3200}{12} \approx 2.36 \text{ Decillion!!!} \text{ (i.e., } 2.36 \times 10^{33}\text{)}$$

- So, WBDS can sell up to $12 \cdot \binom{3200}{12} \approx 28$ decillion Donuts!
- What is the minimum donuts per box to be able to sell to everyone in the world?
 - $\binom{3200}{3} \approx 5.5$ B will almost do!

Sequences of Subsets

- In how many ways can we split a set of size n into subsets of size $k_1, k_2, ..., k_m$?
- Each split is a collection of sets $\{A_1, A_2, \ldots, A_m\}$ such that $|A_i| = k_i$ and $\sum_{i=1}^m k_i = n$.
- Given a permutation of n elements, we can treat the first k_1 elements in this sequence as A_1 , the next k_2 elements as A_2 and so on.
- However, the same elements of A_i are represented using $k_i!$ distinct permutations.
 - So we apply division rule for $A_1, ..., A_m$:

Sequences of Subsets

- In how many ways can we split a set of size n into subsets of size $k_1, k_2, ..., k_m$?
- Each split is a collection of sets $\{A_1, A_2, \dots, A_m\}$ such that $|A_i| = k_i$ and $\sum_{i=1}^m k_i = n$.
- Given a permutation of n elements, we can treat the first k_1 elements in this sequence as A_1 , the next k_2 elements as A_2 and so on.
- However, the same elements of A_i are represented using $k_i!$ distinct permutations.
 - So we apply division rule for $A_1, ..., A_m$:

$$\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! k_2! \cdots k_m!}$$

 $\binom{n}{m}$ is called a *binomial coefficient*; $\binom{n}{k_1,k_2,\ldots,k_m}$ is called a *multinomial coefficient*

- Let us call a dollar bill *defective* if any digit in its 8-digit serial number is repeated.
 - How many defective dollar bills are possible?

- Let us call a dollar bill *defective* if any digit in its 8-digit serial number is repeated.
 - How many defective dollar bills are possible?
- Often, it is easier to count the *complement* of a set:

Complement Rule

$$|A| = |U| - |\overline{A}|$$

- Let us call a dollar bill *defective* if any digit in its 8-digit serial number is repeated.
 - How many defective dollar bills are possible?
- Often, it is easier to count the complement of a set:

Complement Rule

$$|A| = |U| - |\overline{A}|$$

- Here, the complement set is one that contains no repeated digit.
 - If no digit is repeated, the number of possible dollar bills is 10!/(10-8)! = 10!/2
 - If repetitions are permitted, number of possible bills is 10⁸
- So, number of defective bills is $10^8 10!/2 = 98185600$.

- Let us call a dollar bill *defective* if any digit in its 8-digit serial number is repeated.
 - How many defective dollar bills are possible?
- Often, it is easier to count the *complement* of a set:

Complement Rule

$$|A| = |U| - |\overline{A}|$$

- Here, the complement set is one that contains no repeated digit.
 - If no digit is repeated, the number of possible dollar bills is 10!/(10-8)! = 10!/2
 - If repetitions are permitted, number of possible bills is 10⁸
- So, number of defective bills is $10^8 10!/2 = 98185600$.
- Fraction of non-defective bills is $(10 \cdot 9 \cdot 8 \cdots 3)/10^8 = 1.81\%$
 - Over 49 of 50 possible dollar bills are defective!

Complement Rule: Additional Examples

- If you toss a fair coin *n* times, what is the likelihood there will be one or more heads?
 - Very easy to count sequences that contain no heads: there is exactly one!
 - It is also easy to total number of possible sequences: 2^n
 - With a fair coin, all sequences are equally likely, so the probability is $(2^n 1)/2^n$

Complement Rule: Additional Examples

- If you toss a fair coin n times, what is the likelihood there will be one or more heads?
 - Very easy to count sequences that contain no heads: there is exactly one!
 - It is also easy to total number of possible sequences: 2^n
 - With a fair coin, all sequences are equally likely, so the probability is $(2^n 1)/2^n$
- In a group of five students, what is the likelihood of finding two students that were born on the same day of the week?
 - Easier to count instances where people were born on distinct days
 - $\binom{7}{5}$ ways for five students to be born on 5 distinct days.
 - 7⁵ ways if there are no constraints.
 - So, the desired probability, assuming that students are equally likely to be born any day of the week, is $(7^5 \binom{7}{5})/7^5 = 0.99875$

Summary of Basic Counting Rules

Product rule:
$$|P_1 \times P_2 \times \cdots \times P_n| = |P_1| \cdot |P_2| \cdot \cdots \cdot |P_n|$$

If choices are independent

Sum rule:
$$|P_1 \cup P_2 \cup \cdots \cup P_n| = |P_1| + |P_2| + \cdots + |P_n|$$

If sets are disjoint

Complement rule: $|A| = |U| - |\overline{A}|$

• Alternative form: If $A \subseteq S$ then |A| = |S| - |S - A|

Division rule: If $f: A \longrightarrow B$ is a k-to-1 onto function then $|A| = k \cdot |B|$.

Permutation rule: The number of r-length permutation of n elements is $\frac{n!}{(n-r)!}$.

Combinations/subset rule: A set of size *n* has $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ distinct subsets of size *m*.

Words from Repeated Letters: Bookkeeper

 How many distinct words can be formed by permuting letters in the word Bookkeeper?

Words from Repeated Letters: Bookkeeper

- How many distinct words can be formed by permuting letters in the word Bookkeeper?
- Consider all permutations, then use division rule to eliminate duplicates

Words from Repeated Letters: Bookkeeper

- How many distinct words can be formed by permuting letters in the word Bookkeeper?
- Consider all permutations, then use division rule to eliminate duplicates
- Total permutations = 10!
- Repetitions: 3 E's, 2 O'S, 2 K's

$$\frac{10!}{3!2!2!} = 151200$$

Poker Hands: Four of a Kind

- How many 5-card hands have all four suits of some rank?
 - 8♠8♦8♥8♣3♥
 - 2♠Q♠2♦2♥2♣

Poker Hands: Four of a Kind

- How many 5-card hands have all four suits of some rank?
 - 8♠8♦8♥8♣3♥
 - 2♠Q♠2♦2♥2♣
- First pick the repeating rank: 1 of 13 ways
- Next pick the fifth card: 1 of 48 ways
- Total: $13 \cdot 48 = 624$

Poker Hands: Four of a Kind

- How many 5-card hands have all four suits of some rank?
 - 8♠8♦8♥8♣3♥
 - 2♠Q♠2♦2♥2♣
- First pick the repeating rank: 1 of 13 ways
- Next pick the fifth card: 1 of 48 ways
- Total: $13 \cdot 48 = 624$
- What is the probability of being dealt a four-of-a-kind hand?

Poker Hands: Four of a Kind

- How many 5-card hands have all four suits of some rank?
 - 8♠8♦8♥8♣3♥
 - 2♠Q♠2♦2♥2♣
- First pick the repeating rank: 1 of 13 ways
- Next pick the fifth card: 1 of 48 ways
- Total: $13 \cdot 48 = 624$
- What is the probability of being dealt a four-of-a-kind hand?
 - Divide by number of possible 5-card hands $\frac{624}{\binom{52}{5}} = \frac{624}{2.598.960} = 0.024\%$

Poker Hands: Full House

• A Full House is a hand with three cards of one rank and two of another rank.

Poker Hands: Full House

- A *Full House* is a hand with three cards of one rank and two of another rank.
- Choose the rank of three cards: 13 ways
- Choose the suits of three cards: $\binom{4}{3} = \binom{4}{1} = 4$
- Choose the rank of two cards: 12 ways
- Choose the suits of two cards: $\binom{4}{2} = 6$
- Apply the product rule to get $13 \cdot 4 \cdot 12 \cdot 6 = 3744$

Poker Hands: Full House

- A *Full House* is a hand with three cards of one rank and two of another rank.
- Choose the rank of three cards: 13 ways
- Choose the suits of three cards: $\binom{4}{3} = \binom{4}{1} = 4$
- Choose the rank of two cards: 12 ways
- Choose the suits of two cards: $\binom{4}{2} = 6$
- Apply the product rule to get $13 \cdot 4 \cdot 12 \cdot 6 = 3744$
- The probability is significantly higher than 4-of-a-kind, but still very low: 0.14%

Poker Hands: Non-repeating Ranks

Approach 1

Poker Hands: Non-repeating Ranks

- Approach 1
 - Choose the 5 ranks in $\binom{13}{5}$ ways
 - Choose the suit of each card in 4 ways
 - Total: $\binom{13}{5} \cdot 4^5 = 1,317,888$ ways
- Approach 2

Poker Hands: Non-repeating Ranks

- Approach 1
 - Choose the 5 ranks in $\binom{13}{5}$ ways
 - Choose the suit of each card in 4 ways
 - Total: $\binom{13}{5} \cdot 4^5 = 1,317,888$ ways
- Approach 2
 - Count 5-card sequences with distinct ranks, then use division rule
 - Choose the first card in 52 ways, second card in 48 ways, and so on
 - Finally divide by 5! to get: $\frac{52 \cdot 48 \cdot 44 \cdot 40 \cdot 36}{5!} = 1,317,888$ ways
- Dividing by the total number of hands, we get

$$\frac{1,317,888}{\binom{52}{5}} = \frac{1,317,888}{2,598,960} = 0.5071$$

Poker Hands: Two Pairs

• Two cards of one rank, two cards of another rank, a fifth card of different rank

Poker Hands: Two Pairs

- Two cards of one rank, two cards of another rank, a fifth card of different rank
- First pair can be chosen in

$$\binom{13}{1}\binom{4}{2} = 78 \text{ ways}$$

Second pair can be chosen in

$$\binom{12}{1}\binom{4}{2} = 72 \text{ ways}$$

- Fifth card can be chosen in 44 ways (leave out all suits of the two chosen ranks)
- Since we can't distinguish between the first and second pairs, divide by 2!

$$\frac{78 \cdot 72 \cdot 44}{2} = 123,552 \text{ ways}$$

Poker Hands: Two Pairs — Alternate Method

- Pick the rank of the two pairs: $\binom{13}{2}$ ways
- Pick the suit of the lower-ranked pair: (4/2) ways
- Pick the suit of the higher-ranked pair: (4/2) ways
- Pick the rank of extra card: 11 ways
- Pick the suit of the extra card: 4 ways
- Total:

$$\binom{13}{2} \cdot \binom{4}{2}^2 \cdot 11 \cdot 4 = 123,552 \text{ ways}$$

Poker Hands: Every Suit

• How many hands contain at least one card from every suit?

Poker Hands: Every Suit

- How many hands contain at least one card from every suit?
- Key point: the choice of the fifth card is not entirely independent of the first four.

Poker Hands: Every Suit

- How many hands contain at least one card from every suit?
- Key point: the choice of the fifth card is not entirely independent of the first four.
- For the first four cards, the suites are fixed, so there is a choice only for the ranks:

$$13 \cdot 13 \cdot 13 \cdot 13 = 13^4$$

- The last card can be any of the remaining 48
 - But if we switch the last card with the other card that has the same suit, we would have counted that as a separate hand.
 - So we need to divide in the end by 2

$$\frac{13^4 \cdot 48}{2} = 685,464$$

Poker Hands: At least 4 Ranks

- Break into two cases:
 - Exactly 5 ranks (already done): 1, 317, 888 ways
 - Exactly 4 ranks

Poker Hands: At least 4 Ranks

- Break into two cases:
 - Exactly 5 ranks (already done): 1, 317, 888 ways
 - Exactly 4 ranks
 - Choose the 4 ranks in $\binom{13}{4}$ ways
 - Choose which rank to repeat: 4 ways
 - Choose the suit of 3 non-repeating ranks: 4³ ways
 - Choose the suits of repeating rank in $\binom{4}{2}$ ways
 - Total: $\binom{13}{4} \cdot 4 \cdot 4^3 \cdot \binom{4}{2} = 1,098,240$ ways
- Total across two cases: 1,317,888 + 1,098,240 = 2416128 ways

Number of Relations

How many binary relations from *X* to *Y* are there? State your answer in terms of the cardinalities of *X* and *Y*.

Number of Bijections

Let |X| = n. How many bijections are there from X to X?

Binary Strings with Exactly *k* Ones

• How many *n*-bit sequences have exactly *k* ones?

Binary Strings with Exactly *k* Ones

- How many *n*-bit sequences have exactly *k* ones?
- You need to select a subset of k positions that will be occupied by 1's, while all other positions will be zeroes.
- So, the number is

$$\binom{n}{k}$$

Donut Selection III

- To further increase profits, WBDS management wants to streamline production by cutting down the number of distinct donut types to 10.
- The Chef continues to insist on a unique box of dozen for each customer.
- How many customers can WBDS serve per day with these new rules?

Donut Selection III

- To further increase profits, WBDS management wants to streamline production by cutting down the number of distinct donut types to 10.
- The Chef continues to insist on a unique box of dozen for each customer.
- How many customers can WBDS serve per day with these new rules?
- You can map it to a bit strings problem!
 - The 0's represent the donuts, 1's represent the boundary between donut types.
 - We need 9 boundaries for 10 donut types, and 12 zeroes for 12 donuts.
- Thus, the total number of boxes is

$$\binom{21}{9} \approx 300K$$

Donut Selection III

- To further increase profits, WBDS management wants to streamline production by cutting down the number of distinct donut types to 10.
- The Chef continues to insist on a unique box of dozen for each customer.
- How many customers can WBDS serve per day with these new rules?
- You can map it to a bit strings problem!
 - The 0's represent the donuts, 1's represent the boundary between donut types.
 - We need 9 boundaries for 10 donut types, and 12 zeroes for 12 donuts.
- Thus, the total number of boxes is

$$\binom{21}{9} \approx 300K$$

- How about the general case of a box of *n* Donuts drawn from *m* types?
 - We need m-1 ones and n zeroes, so the number is $\binom{n+m-1}{m-1} = \binom{n+m-1}{n}$

• What if you add a requirement that there be at least one donut of each type?

- What if you add a requirement that there be at least one donut of each type?
 - Put one donut of each type into the box, then count the ways to choose the other two

- What if you add a requirement that there be at least one donut of each type?
 - Put one donut of each type into the box, then count the ways to choose the other two
- Approach 1: Map to binary strings with 2 zeroes and 9 ones

•
$$\binom{11}{9} = \binom{11}{2} = \frac{11 \cdot 10}{2} = 55$$

- What if you add a requirement that there be at least one donut of each type?
 - Put one donut of each type into the box, then count the ways to choose the other two
- Approach 1: Map to binary strings with 2 zeroes and 9 ones
 - $\binom{11}{9} = \binom{11}{2} = \frac{11 \cdot 10}{2} = 55$
- Approach 2: Decompose into union of disjoint sets
 - The last two donuts can have (i) the same type, or (ii) distinct types
 - There are 10 choices for (i), and
 - $\binom{10}{2} = \frac{10.9}{2} = 45$ choices for (ii)
 - The total is again 55.

- What if you add a requirement that there be at least one donut of each type?
 - Put one donut of each type into the box, then count the ways to choose the other two
- Approach 1: Map to binary strings with 2 zeroes and 9 ones
 - $\binom{11}{9} = \binom{11}{2} = \frac{11 \cdot 10}{2} = 55$
- Approach 2: Decompose into union of disjoint sets
 - The last two donuts can have (i) the same type, or (ii) distinct types
 - There are 10 choices for (i), and
 - $\binom{10}{2} = \frac{10.9}{2} = 45$ choices for (ii)
 - The total is again 55.

Often, there are multiple ways of counting

• but all should yield the same answer: use this to check your approach.

• There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10?

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10?
- Selection problems like this can often be mapped to bit strings:
 - Use 25 bits to represent 25 books, with 1's for selected books and 0's for unselected ones

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10?
- Selection problems like this can often be mapped to bit strings:
 - Use 25 bits to represent 25 books, with 1's for selected books and 0's for unselected ones
- How to incorporate the constraints?
 - Select 10 books: There should be exactly ten 1-bits

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10?
- Selection problems like this can often be mapped to bit strings:
 - Use 25 bits to represent 25 books, with 1's for selected books and 0's for unselected ones
- How to incorporate the constraints?
 - Select 10 books: There should be exactly ten 1-bits
 - No two consecutive: Can be simplified to "book following a selected book should be skipped."

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10?
- Selection problems like this can often be mapped to bit strings:
 - Use 25 bits to represent 25 books, with 1's for selected books and 0's for unselected ones
- How to incorporate the constraints?
 - Select 10 books: There should be exactly ten 1-bits
 - No two consecutive: Can be simplified to "book following a selected book should be skipped."
 - For the last selected book, "skip the following book" is redundant
 - We are done with all selections, so we are not going to select any more books

- There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.
- What if there are 25 books on the shelf, and you want to choose 10?
- Selection problems like this can often be mapped to bit strings:
 - Use 25 bits to represent 25 books, with 1's for selected books and 0's for unselected ones
- How to incorporate the constraints?
 - Select 10 books: There should be exactly ten 1-bits
 - No two consecutive: Can be simplified to "book following a selected book should be skipped."
 - For the last selected book, "skip the following book" is redundant
 - We are done with all selections, so we are not going to select any more books
- For the bit string, this constraint becomes:
 - "Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0"

Choosing Books (Continued)

- Consider "Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0"
- The constraint about 0-bit following a 1-bit is precisely captured by "taping" a zero to all but the last 1.
 - Since there are nine such 1's, this effectively reduces the number of positions by 9

Choosing Books (Continued)

- Consider "Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0"
- The constraint about 0-bit following a 1-bit is precisely captured by "taping" a zero to all but the last 1.
 - Since there are nine such 1's, this effectively reduces the number of positions by 9
- Thus, we need to count bit strings with 25 9 = 16 positions with ten 1's.
 - So, the number of possible selections is $\binom{16}{10} = 8008$

Choosing Books (Continued)

- Consider "Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0"
- The constraint about 0-bit following a 1-bit is precisely captured by "taping" a zero to all but the last 1.
 - Since there are nine such 1's, this effectively reduces the number of positions by 9
- Thus, we need to count bit strings with 25 9 = 16 positions with ten 1's.
 - So, the number of possible selections is $\binom{16}{10} = 8008$
- Can we generalize to *m* books out of *n*?
 - The "taping" step above reduces the number of positions from n to n m + 1
 - So, the number is $\binom{n-m+1}{m}$

Let $S_{n,k}$ be the possible non-negative integer solutions to the inequality

$$x_1 + x_2 + \cdots + x_k = n$$

How many solutions are there?

Let $S_{n,k}$ be the possible non-negative integer solutions to the inequality

$$x_1 + x_2 + \cdots + x_k = n$$

How many solutions are there?

This is just the Donut problem!

- Make a box of *n* Donuts, drawing from *k* different types.
- So, the solution is

$$S_{n,k} = \binom{n+k-1}{n}$$

Let $I_{n,k}$ be the possible non-negative integer solutions to the inequality

$$x_1 + x_2 + \cdots + x_k \leq n$$

How many solutions are there?

Let $I_{n,k}$ be the possible non-negative integer solutions to the inequality

$$x_1 + x_2 + \cdots + x_k \leq n$$

How many solutions are there?

Can be reduced the equality case from previous slide:

$$x_1 + x_2 + \cdots + x_k + x_{k+1} = n$$

For any value $n' \leq n$ such that $x_1 + x_2 + \cdots + x_k = n'$, $x_{k+1} = n - n'$

- Thus there is a bijection between the equality and inequality formulations.
- So, the solution is

$$I_{n,k} = \binom{n+k}{n}$$

Increasing Sequences

Let $L_{n,k}$ be the length of k weakly increasing sequences of non-negative integers, i.e.,

$$y_1 \leq y_2 \leq \cdots \leq y_k \leq n$$

How many such sequences are there?

This is the same problem from the last slide!

• Let y_i denote the sum of x_1 through x_i

$$y_i = \sum_{j=1}^i x_j$$

Pigeonhole Principle

• A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Pigeonhole Principle

• A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Simple Version

If there are more pigeons than the holes they occupy, then there must be at least two pigeons in some hole

Pigeonhole Principle

• A drawer in a dark room contains red socks, green socks, and blue socks. How many socks must you withdraw to be sure that you have a matching pair?

Simple Version

If there are more pigeons than the holes they occupy, then there must be at least two pigeons in some hole

Formal Version

If |A| > |B| then every total function $f: A \longrightarrow B$ maps at least two different elements of A to an element of B

Hairs on Heads

How many people riding the NYC subway in a day have the same number of hairs on their heads?

Hairs on Heads

- How many people riding the NYC subway in a day have the same number of hairs on their heads?
- Let us say that each head has a maximum of 100K hairs
- NYC daily subway (pre-pandemic) ridership is about 4.3M

Hairs on Heads

- How many people riding the NYC subway in a day have the same number of hairs on their heads?
- Let us say that each head has a maximum of 100K hairs
- NYC daily subway (pre-pandemic) ridership is about 4.3M

Generalized Pigeonhole Principle

If $|A| > k \cdot |B|$ then every total function $f: A \longrightarrow B$ maps at least k+1 different elements of A to an element of B

Subset With Same Sum

• Suppose that we generate 100 random numbers with 25 digits:

```
0020480135385502964448038
5763257331083479647409398
0489445991866915676240992
:
```

• Will there be two subsets of these 25-digit numbers that add up to the same value?

Union of Overlapping Sets: Inclusion-Exclusion Principle

• So far, we studied union of disjoint sets, where:

$$|S_1 \cup S_2| = |S_1| + |S_2|$$

• What happens when the sets overlap?

Union of Overlapping Sets: Inclusion-Exclusion Principle

• So far, we studied union of disjoint sets, where:

$$|S_1 \cup S_2| = |S_1| + |S_2|$$

• What happens when the sets overlap?

Union of Two Sets

$$|S_1 \cup S_2| = |S_1| + |S_2| - |S_1 \cap S_2|$$

Union of Three Sets

Union of Three Sets

Union of Three Sets

$$|S_1 \cup S_2 \cup S_3| = (|S_1| + |S_2| + |S_3|) - (|S_1 \cap S_2| + |S_2 \cap S_3| + |S_3 \cap S_1|) + |S_1 \cap S_2 \cap S_3|$$

Union of *n* sets

Inclusion-Exclusion for n Sets

$$\left| \bigcup_{i=1}^{n} S_{i} \right| = \sum_{i=1}^{n} |S_{i}| - \sum_{1 \leq i < j \leq n} |S_{i} \cap S_{j}| + \sum_{1 \leq i < j < k \leq n} |S_{i} \cap S_{j} \cap S_{k}| \cdots (-1)^{n-1} \left| \bigcap_{i=1}^{n} S_{i} \right|$$

Or, more compactly:

$$\left|\bigcup_{i=1}^n S_i\right| = \sum_{I \in \wp(\{1,2,\ldots,n\})} (-1)^{|I|+1} \left|\bigcap_{i \in I} S_i\right|$$

Sequences with 42, 04 or 60

• How many permutations of $\{0, 1, 2, \dots, 9\}$ contain a 42, 04 or 60?

Sequences with 42, 04 or 60

- How many permutations of $\{0, 1, 2, \dots, 9\}$ contain a 42, 04 or 60?
- Permutations containing 42: "Fuse" 4 and 2 together, treat as if they are a single symbol. Now we have 9 symbols, for 9! permutations
- Permutations containing 04 and 60 are also 9! each
- Permutations containing two of these pairs would be 8!
- Permutations containing all three would be 7!
- Using inclusion-exclusion principle, we arrive at

$$3 \cdot 9! - 3 \cdot 8! + 7!$$

Sequences with 42, 04 or 60

- How many permutations of $\{0, 1, 2, \dots, 9\}$ contain a 42, 04 or 60?
- Permutations containing 42: "Fuse" 4 and 2 together, treat as if they are a single symbol. Now we have 9 symbols, for 9! permutations
- Permutations containing 04 and 60 are also 9! each
- Permutations containing two of these pairs would be 8!
- Permutations containing all three would be 7!
- Using inclusion-exclusion principle, we arrive at

$$3 \cdot 9! - 3 \cdot 8! + 7!$$

• How about sequences with 42, 62, or 60?

• How many numbers between 1 and 100 contain a 5 in them?

- How many numbers between 1 and 100 contain a 5 in them?
- How many numbers between 1 and 1000 contain a 5 in them?

- How many numbers between 1 and 100 contain a 5 in them?
- How many numbers between 1 and 1000 contain a 5 in them?
- How many numbers between 1 and 1B contain a 5 in them?

- How many numbers between 1 and 100 contain a 5 in them?
- How many numbers between 1 and 1000 contain a 5 in them?
- How many numbers between 1 and 1B contain a 5 in them?
- *Inclusion-exclusion can be cumbersome to use*. You should first check if other rules (e.g., complement) are applicable.

Summary of Counting Rules

Product rule: $|P_1 \times P_2 \times \cdots \times P_n| = |P_1| \cdot |P_2| \cdot \cdots \cdot |P_n|$ If choices are independent

Sum rule: $|P_1 \cup P_2 \cup \cdots \cup P_n| = |P_1| + |P_2| + \cdots + |P_n|$ If sets are disjoint

Complement rule: $|A| = |U| - |\overline{A}|$ (Alternative form: If $A \subseteq S$ then |A| = |S| - |S - A|)

Division rule: If $f: A \longrightarrow B$ is a k-to-1 onto function then $|A| = k \cdot |B|$.

Permutation rule: The number of *r*-length permutation of *n* elements is $\frac{n!}{(n-r)!}$.

Combinations/subset rule: A set of size n has $\binom{n}{m} = \frac{n!}{m!(n-m)!}$ distinct subsets of size m.

Bijection with bit strings.

Pigeon Hole Principle.

Inclusion-Exclusion Principle.