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Counting and Mappings

If there a bijection f :A −→ B then |A| = |B|

More generally, if there is a mapping g:A −→ B

with “=1 arrow out” and “=k arrow in” properties
then |B| = |A|/k (Division Rule)

Additionally, we use what we already know about sizes of sets:

If |A| = n then |P(A)| = 2n

If A and B are disjoint, |A ∪ B| = |A|+ |B| (Sum Rule)

Size of A× B is |A| × |B| (Product Rule)
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Sum Rule

If there are 60 students enrolled in CSE 150 and 50 students enrolled in CSE 350,
how many students are enrolled across the two courses?

Sum Rule
If P1, P2, . . . , Pn are disjoint sets, then

|P1 ∪ P2 ∪ · · · ∪ Pn| = |P1|+ |P2|+ · · ·+ |Pn|

Since students don’t take the two courses simultaneously, the two sets are disjoint,
so we can apply the sum rule.

The same rule cannot be applied to find the combined number of students across
CSE 150 and AMS 210.

They may be taken simultaneously, so the sets overlap
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Donut Selection I

World’s Best Donut Shop (WBDS) is so famous that everyone wants to buy a donut there.

To maximize the number of customers serviced, the shop limits each customer to just one

Donut.

To ensure a unique customer experience, their Chef insists that every donut be distinct.

If WBDS offers a choice of
10 possible flavors
8 possible fillings
5 possible toppings
8 possible sprinkles

How many customers can WBDS serve in a day?
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Product Rule

The donut problem can be reduced to one of counting sequences

A donut is characterized by the sequence (F , I, T , S) representing the flavor, filling,

topping and sprinkle choices

Product Rule
If P1, P2, . . . , Pn are finite sets, then

|P1 × P2 × · · · × Pn| = |P1| · |P2| · · · · · |Pn|

Thus, the number of possible donuts = |F | · |I| · |T | · |S| = 10*8*5*8 = 3200

Key Assumption: The choices are independent of each other
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Generalized Product Rule: Pieces on a Chessboard

How many ways are there to arrange a pawn, a knight and a rook on a chessboard such that no two

pieces occupy the same row or column?

Let us represent these positions as the sequence (rp, cp, rk , ck , rr , cr).

Generalized Product Rule
If there are ni possible entries for the ith position in a length-k sequence, then the
number of distinct sequences is n1 · n2 · · · · · nk

The pawn can be in any of the 8 rows and columns, so rp and cp have 8 possible values.

The knight can be in one of the remaining 7 rows/columns, so rk and ck have 7 possible values.

The rook can be in one of the 6 rows and columns that are free after placing the pawn and the
knight, so rr and cr have 6 possible values

The total number of positions is hence 8 · 8 · 7 · 7 · 6 · 6 = 112, 896
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Permutations

A permutation of a set S is a sequence that contains every element of S exactly once

How many distinct permutations of S are there, if |S| = n?

The First element of the sequence can be any of n elements

Second element can be one of the remaining n−1 elements

Third element can be one of the remaining n−2 elements

Fourth element can be one of the remaining n−3 elements

Continuing on, we arrive at n!
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Words of length r over an alphabet of size n

If letters can be repeated:

Every letter can be one of n letters in the alphabet.

So, the total number of possibilities is nr .

If letters cannot be repeated:

Then we are asking for nPr , r-length permutations of n letters.

The first letter can be chosen in n ways

The second letter can be chosen from the remaining n− 1 letters
The k’th letter can be chosen from n− k + 1 letters,
i.e., after leaving out the letters already used in the preceding k − 1 letters

So, the number is:
n · (n− 1) · · · (n− r + 1) =

n!
(n− r)!
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Award Distribution

In how many ways can we distribute awards A1, . . . ,Ar to n persons?

We can represent the award as a sequence (p1, . . . , pr), where the pi denotes the person

winning the award Ai .

Thus, the number of possibilities is nr

But what if each person can win only one award?

For the ith award, the i − 1 persons that won awards 1 through i − 1 are not eligible

Using this reasoning, we can calculate the number of possibilities as:

n · (n− 1)(n− 2) · · · (n− r + 1) =
n!

(n− r)!
= nPr
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Division Rule

How many ways are there to arrange two identical rooks on a chessboard such that
they occupy distinct rows and columns?

If the rooks are distinct, e.g., black and white, the answer is 8 · 8 · 7 · 7 = 3136
What if the rooks are of the same color?
Note that the position (r1, c1, r2, c2) is indistinguishable from (r2, c2, r1, c1) because the two rooks
are identical

Division Rule
If f : A −→ B is a k-to-1 onto function then |A| = k · |B|

(Such a function has =1 arrow out and =k arrow in properties.)

By applying division rule, we arrive at the correct number for identical rooks:
3136/2 = 1568
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Knights around a Circular Table

How many distinct ways can n knights be seated around a circular table?
Two seatings are considered the same if the two knights sitting next to each knight remains the
same in both seatings.

Let there be n knights and m seats around a table. A seating can be captured by listing the

seats in order (k1, k2, . . . , km), which translates to n!/(n−m)! seatings.

But many sequences represent the “same” seating arrangement. The first row lists the

participants in clockwise order, starting from one of the m seats. The corresponding

anti-clockwise order listing is shown in the second row.

(k1, k2, . . . , km) (k2, . . . , km, k1) (k3, . . . , km, k1, k2) · · · (km, k1, . . . , km−1)

(k1, km, km−1 . . . , k2) (k2, k1, km, . . . k3) (k3, k2, . . . k4) · · · (km, km−1, km−2, . . . , k1)

Using division rule, we obtain the number of distinct seatings as n!
(n−m)! ·

1
2m = n!

2(n−m)!m
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Combinations aka Counting Subsets

How many distinct 5-card poker hands can be dealt from a 52-card deck?

How many ways can I select 3 toppings for my pizza from the 10 available toppings?

Subset Rule
A set of size n has

(n
m

)
= n!

m!(n−m)!
distinct subsets of size m

Start with a m-length permutations of the form (i1, i2, . . . , im)

By the permutation rule, there are n!
(n−m)! such sequences

Apply division rule to collapse sequences corresponding to the same set:

There are m! permutations of an m-element set

Thus, there are n!
(n−m)!m!

=
(n
m

)
distinct subsets (aka combinations)
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Donut Selection II

Despite its unparalleled reputation, WBDS management is unhappy with the sales
volume. They propose selling one box of dozen donuts per customer.

Chef’s agrees to sell the same donut to multiple customers, as long as no two
customers get the exact some dozen.

How many donuts can they sell in a day?

Problem: How many distinct subsets of 12 can be drawn from 3200?(
3200
12

)
≈ 2.36 Decillion‼! (i.e., 2.36× 1033)

So, WBDS can sell up to 12 ·
(3200

12

)
≈ 28 decillion Donuts!

What is the minimum donuts per box to be able to sell to everyone in the world?(3200
3

)
≈ 5.5B will almost do!
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Sequences of Subsets

In how many ways can we split a set of size n into subsets of size k1, k2, ..., km?

Each split is a collection of sets {A1,A2, . . . ,Am} such that |Ai| = ki and
∑m

i=1 ki = n.

Given a permutation of n elements, we can treat the first k1 elements in this
sequence as A1, the next k2 elements as A2 and so on.

However, the same elements of Ai are represented using ki! distinct permutations.

So we apply division rule for A1, ...,Am:

(
n

k1, k2, . . . , km

)
=

n!
k1!k2! · · · km!

(n
m

)
is called a binomial coefficient;

( n
k1,k2,...,km

)
is called a multinomial coefficient
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Defective Dollar Bills

Let us call a dollar bill defective if any digit in its 8-digit serial number is repeated.

How many defective dollar bills are possible?

Often, it is easier to count the complement of a set:
Complement Rule

|A| = |U| − |A|

Here, the complement set is one that contains no repeated digit.
If no digit is repeated, the number of possible dollar bills is 10!/(10− 8)! = 10!/2
If repetitions are permitted, number of possible bills is 108

So, number of defective bills is 108 − 10!/2 = 98185600.

Fraction of non-defective bills is (10 · 9 · 8 · · · 3)/108 = 1.81%
Over 49 of 50 possible dollar bills are defective!
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Complement Rule: Additional Examples

If you toss a fair coin n times, what is the likelihood there will be one or more
heads?

Very easy to count sequences that contain no heads: there is exactly one!

It is also easy to total number of possible sequences: 2n

With a fair coin, all sequences are equally likely, so the probability is (2n − 1)/2n

In a group of five students, what is the likelihood of finding two students that were
born on the same day of the week?
Easier to count instances where people were born on distinct days(7

5

)
ways for five students to be born on 5 distinct days.

75 ways if there are no constraints.

So, the desired probability, assuming that students are equally likely to be born any day of

the week, is (75 −
(7
5

)
)/75 = 0.99875
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Summary of Basic Counting Rules

Product rule: |P1 × P2 × · · · × Pn| = |P1| · |P2| · · · · · |Pn| If choices are independent

Sum rule: |P1 ∪ P2 ∪ · · · ∪ Pn| = |P1|+ |P2|+ · · ·+ |Pn| If sets are disjoint

Complement rule: |A| = |U| − |A|
Alternative form: If A ⊆ S then |A| = |S| − |S − A|

Division rule: If f : A −→ B is a k-to-1 onto function then |A| = k · |B|.

Permutation rule: The number of r-length permutation of n elements is n!
(n−r)! .

Combinations/subset rule: A set of size n has
(n
m

)
= n!

m!(n−m)!
distinct subsets of size m.
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Words from Repeated Letters: Bookkeeper

How many distinct words can be formed by permuting letters in the word
Bookkeeper?

Consider all permutations, then use division rule to eliminate duplicates

Total permutations = 10!

Repetitions: 3 E’s, 2 O’S, 2 K’s
10!

3!2!2!
= 151200
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Poker Hands: Four of a Kind

How many 5-card hands have all four suits of some rank?

8♠8♢8♡8♣3♡
2♠Q♠2♢2♡2♣

First pick the repeating rank: 1 of 13 ways

Next pick the fifth card: 1 of 48 ways

Total: 13 · 48 = 624

What is the probability of being dealt a four-of-a-kind hand?

Divide by number of possible 5-card hands
624(52
5

) =
624

2, 598, 960
= 0.024%
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Poker Hands: Full House

A Full House is a hand with three cards of one rank and two of another rank.

Choose the rank of three cards: 13 ways

Choose the suits of three cards:
(4
3

)
=

(4
1

)
= 4

Choose the rank of two cards: 12 ways

Choose the suits of two cards:
(4
2

)
= 6

Apply the product rule to get 13 · 4 · 12 · 6 = 3744

The probability is significantly higher than 4-of-a-kind, but still very low: 0.14%
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Poker Hands: Non-repeating Ranks

Approach 1

Choose the 5 ranks in
(13
5

)
ways

Choose the suit of each card in 4 ways

Total:
(13
5

)
· 45 = 1, 317, 888 ways

Approach 2
Count 5-card sequences with distinct ranks, then use division rule
Choose the first card in 52 ways, second card in 48 ways, and so on
Finally divide by 5! to get: 52·48·44·40·36

5! = 1, 317, 888 ways

Dividing by the total number of hands, we get

1, 317, 888(52
5

) =
1, 317, 888
2, 598, 960

= 0.5071
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Poker Hands: Two Pairs

Two cards of one rank, two cards of another rank, a fifth card of different rank

First pair can be chosen in (
13
1

)(
4
2

)
= 78 ways

Second pair can be chosen in (
12
1

)(
4
2

)
= 72 ways

Fifth card can be chosen in 44 ways (leave out all suits of the two chosen ranks)

Since we can’t distinguish between the first and second pairs, divide by 2!
78 · 72 · 44

2
= 123, 552 ways
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Second pair can be chosen in (
12
1

)(
4
2

)
= 72 ways

Fifth card can be chosen in 44 ways (leave out all suits of the two chosen ranks)

Since we can’t distinguish between the first and second pairs, divide by 2!
78 · 72 · 44

2
= 123, 552 ways
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Poker Hands: Two Pairs — Alternate Method

Pick the rank of the two pairs:
(13
2

)
ways

Pick the suit of the lower-ranked pair:
(4
2

)
ways

Pick the suit of the higher-ranked pair:
(4
2

)
ways

Pick the rank of extra card: 11 ways

Pick the suit of the extra card: 4 ways

Total: (
13
2

)
·
(
4
2

)2

· 11 · 4 = 123, 552 ways
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Poker Hands: Every Suit

How many hands contain at least one card from every suit?

Key point: the choice of the fifth card is not entirely independent of the first four.

For the first four cards, the suites are fixed, so there is a choice only for the ranks:

13 · 13 · 13 · 13 = 134

The last card can be any of the remaining 48

But if we switch the last card with the other card that has the same suit, we would have

counted that as a separate hand.

So we need to divide in the end by 2
134 · 48

2
= 685, 464
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Poker Hands: At least 4 Ranks

Break into two cases:

Exactly 5 ranks (already done): 1, 317, 888 ways
Exactly 4 ranks

Choose the 4 ranks in
(13
4

)
ways

Choose which rank to repeat: 4 ways
Choose the suit of 3 non-repeating ranks: 43 ways
Choose the suits of repeating rank in

(4
2

)
ways

Total:
(13
4

)
· 4 · 43 ·

(4
2

)
= 1, 098, 240 ways

Total across two cases: 1, 317, 888+ 1, 098, 240 = 2416128 ways
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Number of Relations

How many binary relations from X to Y are there? State your answer in terms of the
cardinalities of X and Y .
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Number of Bijections

Let |X | = n. How many bijections are there from X to X?
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Binary Strings with Exactly k Ones

How many n-bit sequences have exactly k ones?

You need to select a subset of k positions that will be occupied by 1’s, while all other
positions will be zeroes.

So, the number is (
n
k

)

55 / 99



Binary Strings with Exactly k Ones

How many n-bit sequences have exactly k ones?

You need to select a subset of k positions that will be occupied by 1’s, while all other
positions will be zeroes.

So, the number is (
n
k

)

56 / 99



Donut Selection III

To further increase profits, WBDS management wants to streamline production by cutting down the
number of distinct donut types to 10.

The Chef continues to insist on a unique box of dozen for each customer.

How many customers can WBDS serve per day with these new rules?

You can map it to a bit strings problem!

The 0’s represent the donuts, 1’s represent the boundary between donut types.

We need 9 boundaries for 10 donut types, and 12 zeroes for 12 donuts.

Thus, the total number of boxes is (
21
9

)
≈ 300K

How about the general case of a box of n Donuts drawn from m types?

We need m− 1 ones and n zeroes, so the number is
(n+m−1

m−1

)
=

(n+m−1
n

)
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Donut Selection: Variants

What if you add a requirement that there be at least one donut of each type?

Put one donut of each type into the box, then count the ways to choose the other two

Approach 1: Map to binary strings with 2 zeroes and 9 ones(11
9

)
=

(11
2

)
= 11·10

2 = 55

Approach 2: Decompose into union of disjoint sets
The last two donuts can have (i) the same type, or (ii) distinct types
There are 10 choices for (i), and(10
2

)
= 10·9

2 = 45 choices for (ii)

The total is again 55.

Often, there are multiple ways of counting
but all should yield the same answer: use this to check your approach.
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Choosing Books

There are 6 books on a shelf. You want to choose 3 books such that no consecutive books are chosen.

What if there are 25 books on the shelf, and you want to choose 10?

Selection problems like this can often be mapped to bit strings:

Use 25 bits to represent 25 books, with 1’s for selected books and 0’s for unselected ones

How to incorporate the constraints?

Select 10 books: There should be exactly ten 1-bits

No two consecutive: Can be simplified to “book following a selected book should be skipped.”

For the last selected book, “skip the following book” is redundant
We are done with all selections, so we are not going to select any more books

For the bit string, this constraint becomes:

“Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0”
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Choosing Books (Continued)

Consider “Ten 1-bits and fifteen zero bits with all but the last 1 to be followed by a 0”

The constraint about 0-bit following a 1-bit is precisely captured by “taping” a zero
to all but the last 1.

Since there are nine such 1’s, this effectively reduces the number of positions by 9

Thus, we need to count bit strings with 25− 9 = 16 positions with ten 1’s.

So, the number of possible selections is
(16
10

)
= 8008

Can we generalize to m books out of n?

The “taping” step above reduces the number of positions from n to n−m+ 1

So, the number is
(n−m+1

m

)
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Partitioning an Integer

Let Sn,k be the possible non-negative integer solutions to the inequality

x1 + x2 + · · ·+ xk = n

How many solutions are there?

This is just the Donut problem!

Make a box of n Donuts, drawing from k different types.

So, the solution is

Sn,k =
(
n+ k − 1

n

)
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Partitioning an Integer

Let In,k be the possible non-negative integer solutions to the inequality

x1 + x2 + · · ·+ xk ≤ n

How many solutions are there?

Can be reduced the equality case from previous slide:

x1 + x2 + · · ·+ xk + xk+1 = n
For any value n′ ≤ n such that x1 + x2 + · · ·+ xk = n′, xk+1 = n− n′

Thus there is a bijection between the equality and inequality formulations.

So, the solution is

In,k =
(
n+ k
n

)
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Increasing Sequences

Let Ln,k be the length of k weakly increasing sequences of non-negative integers, i.e.,

y1 ≤ y2 ≤ · · · ≤ yk ≤ n

How many such sequences are there?

This is the same problem from the last slide!

Let yi denote the sum of x1 through xi

yi =
i∑

j=1

xj
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Pigeonhole Principle

A drawer in a dark room contains red socks, green socks, and blue socks. How many
socks must you withdraw to be sure that you have a matching pair?

Simple Version
If there are more pigeons than the holes they occupy, then there must be at least two

pigeons in some hole

Formal Version
If |A| > |B| then every total function f : A −→ B maps at least two different elements of A

to an element of B
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Hairs on Heads

How many people riding the NYC subway in a day have the same number of hairs
on their heads?

Let us say that each head has a maximum of 100K hairs

NYC daily subway (pre-pandemic) ridership is about 4.3M

Generalized Pigeonhole Principle
If |A| > k · |B| then every total function f : A −→ B maps at least k + 1 different elements

of A to an element of B
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Subset With Same Sum

Suppose that we generate 100 random numbers with 25 digits:
0020480135385502964448038
5763257331083479647409398
0489445991866915676240992
...

Will there be two subsets of these 25-digit numbers that add up to the same value?
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Union of Overlapping Sets: Inclusion-Exclusion Principle

So far, we studied union of disjoint sets, where:

|S1 ∪ S2| = |S1|+ |S2|

What happens when the sets overlap?

Union of Two Sets

|S1 ∪ S2| = |S1|+ |S2| − |S1 ∩ S2|
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Union of Three Sets

Union of Three Sets

|S1∪S2∪S3| = (|S1|+ |S2|+ |S3|) − (|S1 ∩ S2|+ |S2 ∩ S3|+ |S3 ∩ S1|) + |S1∩S2∩S3|
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Union of n sets

Inclusion-Exclusion for n Sets∣∣∣∣∣
n⋃

i=1

Si

∣∣∣∣∣ =
n∑

i=1

|Si| −
∑

1≤i<j≤n

|Si ∩ Sj|+
∑

1≤i<j<k≤n

|Si ∩ Sj ∩ Sk| · · · (−1)n−1

∣∣∣∣∣
n⋂

i=1

Si

∣∣∣∣∣
Or, more compactly: ∣∣∣∣∣

n⋃
i=1

Si

∣∣∣∣∣ = ∑
I∈℘({1,2,...,n})

(−1)|I|+1

∣∣∣∣∣⋂
i∈I

Si

∣∣∣∣∣
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Sequences with 42, 04 or 60

How many permutations of {0, 1, 2, . . . , 9} contain a 42, 04 or 60?

Permutations containing 42: “Fuse” 4 and 2 together, treat as if they are a single
symbol. Now we have 9 symbols, for 9! permutations

Permutations containing 04 and 60 are also 9! each

Permutations containing two of these pairs would be 8!

Permutations containing all three would be 7!

Using inclusion-exclusion principle, we arrive at

3 · 9!− 3 · 8! + 7!

How about sequences with 42, 62, or 60?
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Numbers Containing Certain Digits

How many numbers between 1 and 100 contain a 5 in them?

How many numbers between 1 and 1000 contain a 5 in them?

How many numbers between 1 and 1B contain a 5 in them?

Inclusion-exclusion can be cumbersome to use. You should first check if other rules
(e.g., complement) are applicable.
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Summary of Counting Rules

Product rule: |P1 × P2 × · · · × Pn| = |P1| · |P2| · · · · · |Pn| If choices are independent

Sum rule: |P1 ∪ P2 ∪ · · · ∪ Pn| = |P1|+ |P2|+ · · ·+ |Pn| If sets are disjoint

Complement rule: |A| = |U| − |A| (Alternative form: If A ⊆ S then |A| = |S| − |S − A|)

Division rule: If f : A −→ B is a k-to-1 onto function then |A| = k · |B|.

Permutation rule: The number of r-length permutation of n elements is n!
(n−r)! .

Combinations/subset rule: A set of size n has
(n
m

)
= n!

m!(n−m)!
distinct subsets of size m.

Bijection with bit strings.

Pigeon Hole Principle.

Inclusion-Exclusion Principle.
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