Model-Based Analysis of Configuration Vulnerabilities

Abstract

Vulnerability analysis is concerned with the problem of identifying weaknesses in computer systems that can
be exploited to compromise their security. In this paper we describe a new approach to vulnerability analysis
based on model checking. Our approach involves:

e Formal specification of desired security properties. An example of such a property is “no ordinary user can
overwrite system log files.”

e An abstract model of the system that captures its security-related behaviors. This model is obtained by com-
posing models of system components such as the file system, privileged processes, etc.

¢ Verification technigues to check whether the abstract model satisfies the security properties.

This approach can be used to automatically detect known and as-yet-unknown vulnerabilities. This is in contrast
with approaches such as those used in COPS and SATAN, which mainly address previously exploited vulnerabil-
ities. Another advantage of our approach is that it is modular. For instance, to identify system vulnerabilities after
addition of a server program, we only need to develop a model for the new server; the reanalysis of the system is
done automatically.

Traditional model checkers can analyze only finite-state systems. Finite-state models cannot capture compo-
nents such as file systems where files can be added, renamed or removed. Hence finite-state techniques cannot
be used to detect vulnerabilities that depend on file names, contents, or directory structures. In our approach, we
permit infinite-state models by developing an alternative model checking technique that exploits the nature of vul-
nerabilities. We demonstrate the usefulness of this technique by showing how it detects nontrivial vulnerabilities
in a simplified model of a Unix system.

Contents
1 Introduction 1
1.1 Vulnerability Analysis: State of Artvs. New Approach 1
2 Modeling Security-related Behaviors of Systems 3
2.1 ModelingLanguage e e e e e e e 3
2.2 Modelof File System e 3
2.3 Modelof UNIX Processes i 4
3 Detecting System Vulnerabilities 6

3.1 Model Checking Infinite-State Systems 7
3.2 Generating Counter-Examples e 8
3.3 BeyondlInvariant Properties. 8
3.4 \Vulnerabilities in Distributed Systems L 9

4 Analysis Results 9
4.1 \Vulnerabilitiesduetoomsat 9
4.2 Vulnerabilitiesdue ttpr L e 10

5 Summary and Future Work 10

1 Introduction

System configuration vulnerabilities can be traced back to classic problems in software engineering, such as
unexpected interactions between different system modules and violation of hidden assumptions. For instance,
consider a vulnerability that existed in the mail notification progtmmsat . This program waits for reports
of incoming mail for any user and prints the first few lines of the message on his/her terminal. This terminal
is determined from the filéetc/utmp , which was configured to be world-writable. A malicious user could
modify this file by substituting théetc/passwd in the place of the terminal that he/she is logged on. The user
then sends mail to self containing a line that starts wath::0:0: . Of particular significance here is that the
second field in this line, which corresponds to the password field, is empty, which implies that the superuser
has no password. Tlemsat program promptly overwrites the password file with the message. The user can
now login asroot without providing a password. This vulnerability is not the result of an error in any one
component, but arose from interactions among several componentsoifkat program assumed that the
contents ofetc/utmp were trustworthy, but this implicit assumption was violated by the other components.
Formal methods are a good choice to address software engineering problems of the kind described above.
(See [7] for a survey of recent successes in using formal methods for building safety-critical systems.) In this
paper, we propose a formal methods based approach for analyzing system configuration vulnerabilities. Our
approach is aimed at detecting interactions among multiple system components that lead to vulnerabilities,
rather than errors in individual programs. It involves:

e Construction of high-level models of system componehtsorder to detect the kind of vulnerabilities
described above, we would start with abstract models that capture the behavior of UNIX file spstein,
and mailer programs, and a model of user behavior. Currently, we are developing these abstract models
manually. In future, we expect the model extraction process be automated, at least partially, using existing
program analysis techniques.

e Formal statement of desired security-relevant properties of the composite syétdmerabilities can be
viewed as “flaws” in system configuration that can be exploited to violate certain security objectives of
the overall system. To detect vulnerabilities, we need a formal statement of such security properties. One
example of a property is that no ordinary user can overwrite system log files. Another example is that the
password file cannot be modified except by a superuser, or by using a password changing program.

e Automated analysis of system model to check deviation from desired security prop@ities.a formal
model of system components, we can derive their composite behavior. This behavior can be analyzed to
check if it violates the desired security objectives. Model checking [4, 13, 5] is a popular verification
technique that can be used to for this purpose. An important benefit of model checking is that when a
property is violated, a model checker provides a counterexample that shows how the property is violated.

The key issues in developing such an approach are: (a) development of languages that simplify the develop-
ment of abstract and accurate models of component behaviors, (b) development of appropriate model-checking
techniques that are efficient enough to handle realistic systems. The second issue is particularly challenging,
since the models are in general infinite, and hence well-known model-checking techniques are not applicable.
We propose a solution to these problems in this paper. We demonstrate, using a simple model of UNIX system,
that nontrivial vulnerabilities can be detected automatically using our approach.

1.1 \Vulnerability Analysis: State of Art vs. New Approach

Existing approaches [8, 3, 16] for analyzing configuration vulnerabilities can be broadly characterzled as
basedj.e., they employ a set of rules that enumerate knoauses for vulnerabilities. The tools then systemat-
ically check the system configuration to identify if these causes are present in the system. For instance, a world-
or group-writablelogin file is a well known vulnerability that enables one user to gain all access privileges of
another user. Widely used tools, such as COPS and SATAN search for occurrences of such known vulnerabili-
ties [8]. Generation of the rules relies on expert knowledge about interactions among many components of the

system. Unfortunately, few experts have a complete understanding of the interactions among all components of
modern computer system. Issues such as race conditions, many possible interleavings and hidden assumptions
make it very hard for humans to come up with all such rules.

A model-based approach does not suffer from these disadvantages. Human involvement is needed primarily
to develop models of individual system components. The problem that is hard for human reasoning, namely,
that of reasoning about interactions among system components, is relegated to a mechanical procedure. The
advantages of our approach are:

¢ Identification of knowmand unknown vulnerabilitiesOur model-based approach has the ability to identify
known andas-yet-unknowrulnerabilities. In contrast, the rule-based approaches are limited to examining
the system for known vulnerabilities.

e Modularity of approach.In our approach, the effort required to add new system components (e.g., new
privileged programs or significant software upgrades) is determined only by the new components to be
added. Models of existing components need not be changed. This contrasts with rule-based approaches,
where new rules need to be added that capture not only the interactions among new components, but also
interactions between new and old components.

e Generating patterns for misuse intrusion detectidfhen vulnerabilities are identified by our analysis, we
may sometimes be able to rectify them. Other times, there may be no immediate fix, as it may require
changes to vendor-provided software, or since the changes may interfere with legitimate functionality of
the system. A second line of defense for vulnerable systemmssigse intrusion detectiomvhere system
use is monitored in order to detect known exploitations. The exploit scenarios are usually specified by
an expert, while the process of detection of exploits is automated. The approach outlined in this paper
enables automation of the first task as well, since the counter examples generated by our model-checking
technique correspond to exploits. We can mechanically translate these exploits into patterns for a misuse
intrusion detection system. An important benefit of this approach is that the intrusion detection system can
recognize any action that threatens to exploit a system vulnerability, and not just those thaivan¢by
past experience or expert knowledge) to be potentially dangerous.

e Automatic generation of rules for checking vulnerabilities of specific configuratibmsaccomplish this,
we perform perform model checking with incomplete information about initial system configuration. For
instance, we may leave out information about initial contents of most parts of the filesystem. Our model-
checking technique will then produce vulnerability scenarios that are conditional upon the (unspecified)
initial configuration. Each of these conditions then capture a potential vulnerability that can be checked
using a rule. The main benefit of using these rules is that they can be checked much more economically (in
terms of time and memory usage), than running the model checker.

This paper builds on some preliminary results on model-based vulnerability analysis we had reported earlier
in [2]. Since then, Ritchey and Ammann [14] have suggested a promising approach for automating network
vulnerability analysis. Their approach starts with higher level models than ours. Their models &apture
exploitson individual systems, e.g., that a given version of a web server contains a vulnerability that allows a
remote user to gain access as a local user, and that a certain host is running this version of the server. Model
checking is then used to check if these exploits can be “strung together” to achieve a greater degree of access
than what can be obtained by individual exploits. In contrast, our approach is aimed at discovering the individual
exploits from models of (legitimate) behaviors of systems. Another important difference is that their models
are finite, which enables them to use widely available model checking tools such as SMV [6] and SPIN [10] to
perform vulnerability analysis. In contrast, we need to develop model checking techniques that can be used for
vulnerability analysis of infinite state systems. This is because finite models cannot capture components such
as file systems where files can be added, renamed or removed, and there is no bound on how many times these
operations may be repeated.

2 Modeling Security-related Behaviors of Systems

In this section, we first describe our model for a small subset of a UNIX-based system. This subset captures a
simplified view of the file system and other operating system facilities, and is sufficient to uncover nontrivial
vulnerabilities during the analysis process.

2.1 Modeling Language

The choice of modeling language is important: a language with constructs appropriate for a domain will pro-
mote clear, concise and accurate models, while the use of an inappropriate language can lead to introduction of
errors or artifacts into the model.

Our modeling language is based on concepts from CSP [9], CCS [12], and object-oriented languages, and
is designed to support a distributed object paradigm. In this language, a system is modelled as a collection of
communicating processes. Each process is viewed as an object (in the sense of OO-languages). Its internal
state is encapsulated, and cannot be accessed by other processes. Operations can be invoked on an object by
sending messages to it on its input channel. Operation invocation is synchronous: it causes the invoking process
to block until a return value is sent back at the conclusion of the operation. The communication channels are
not explicitly mentioned in the language, thus the syntax of operation invocation looks exactly like method
invocation syntax in OO-languages.

Basic data types supported in the language include integers, floats and strings. Compound types (such as
those needed for representing file systems), as well as several other features of the language, are similar to
Prolog. The language supports an algebraic datatype system, similar to Prolog. Two of the most common
compound types are tuples and lists.

Like Prolog predicates, method invocations in this language always return a boolean value. In addition,
some of the arguments to a method may get instantiated as a result of invocation. This feature is used to
communicate return values. We use the convention that all of the return parameters appear after the input
parameters in function invocations.

We assume that different processes execute concurrently. The language uses an interleaving semantics to
determine the result of concurrent executions. At the lowest level, operations such as assignment are performed
atomically. Multiple statements that must be executed atomically are specified by enclosing the statements with
theatomic construct.

2.2 Model of File System

The state of a file system is modelled as a set of tuples of the(figmame, Owner, Group, Permissions,

Content) . The file name is represented as a list: a name suchkvag“ " would be represented dsb,c]

The owner and group are represented as integers. The permission field captures the usual UNIX permission
information on files. The file content imrmal(C) for normal files whose content is given Byandiink(F)

for links to another file-.

To keep the model small, we are not representing directories as files. However, the directory structure is
captured implicitly in the way files are named. In effect, this means that information such as directory level
permission cannot be represented directly; they must be propagated and represented directly as permission on
files contained in the directory.

The file system behavior is captured by the following class. Note the use of Prolog-style convention:
variable names start with a capital letter, while constant, class and function names start with a lower case
letter. Note also that the comma operator is used to denote sequencing of operations, with the semantics that
subsequent operations in a sequence are executed only if all of the preceding operatiotisiesturn

class fileSystem(S) {
/I public methods

read(File,U,G,C) ::= resolve(File,U,G,read,F1), getContent(F1,C)
write(File,U,G,C) ::= resolve(File,U,G,write,F1), updateFile(F1,C)

remove(F,U,G) ::= resolve(File,U,G,write,F1), delete(F1)
chown(F,U,G,0) := resolve(F,U,G,root,F1), chngOwner(F1,0)
chgrp(F,U,G,0) ::= resolve(F,U,G,owner,F1), chngGroup(F1,G)
chmod(F, U, G, M) := resolve(F,U,G,owner,F1), chngMod(F1,M)
symlink(L,F,U,C) ::= write(L, U, G, link(F))
resolve(F,U,G,Opt,F1) ::=
resolveLink(F,F2),
member((F2,0,G1,P,normal(C)), S),// check if tuple is present in set S
((U = root) || /I no permission checks for root
((Opt = owner) && (U = O)) || // Opt=owner means to check if user U is file owner
((Opt = write) &&

(U =0) && (P = (S (R, 1, X), G2, U2))) || /I owner perm
member(U,G1) && (P = (S, 01, (R, 1, X), U1)) || // grp perm
(P = (S, 01, G2, (R, 1, X)) /I user perm

then resolveLink(F, F1)) ||
((Opt = read) &&) ||
.... /I other options omitted
resolveLink(F,F1) = if (member((F,U,G,P,link(F2)),S) then resolveLink(F2,F1)
else F1 = F;

Most of the public methods have their obvious meanings. rééve method resolves (symbolic) link
names into names of ordinary files, and performs permission checking.

All of the public methods above have been defined in terms of helper functions syefta@sent , up-
dateFile , etc. The definition ofetContent is provided here, while the others are omitted due to space
limitations:

getContent(F, C) ::= member((F,U,G,P,normal(C)), S)

2.3 Model of UNIX Processes

UNIX processes are modelled using a base class cadigeroc that captures behaviors common to all pro-
cesses, plus a derived class per program that we wish to model. The base class provides helper functions that
correspond roughly to system calls. The advantage of using this approach is that common errors in specifica-
tion, such as the use of incorrect process parameters (e.g., userid or effective userid) is significantly reduced.
The state of anixProc object is characterized by its real and effective user/group identifiers, plus information
about groups known to the system. In addition, it contains a reference to the filesystem object. In the class
unixProc below, note the use of tke construct to introduce new variables.

class unixProc(UID, EUID, GID, EGID, ArgList, FS, UserGroups) {
/I This class provides only private methods (accessible to subclasses)
read(F,C) ::= FS.read(F,EUID,EGID,C)
write(F,C) ::= FS.write(F,EUID,EGID,C)
run(F,ArgListl) ::= /I corresponds to fork+exec(F) in UNIX
FS.resolve(F,EUID,EGID,exec,F1),
if FS.resolve(F1,EUID,EGID,setuid,F2)
then FS.getOwner(F1, EUID1)
else EUID1 = EUID,
if FS.resolve(F1, EUID, EGID, setgid,F3)
then FS.getGroup(F1,EGID1)
else EGID1 = EGID,
FS.getContent(F1, program(C)), // F1 must contain a program
create(C, UID, EUID1, GID, EGID1, ArgListl, FS, UserGroups)
/I create is a language construct that results in creation of
/I a new object belonging to the class of its first argument.
/I The state of the object should correspond exactly to the
/I parameters supplied to create
.... /I Other methods omitted

Subclasses afnixProc define externally accessible methods, and make use of the methods provided by
unixProc class. They also need to provide a main function that gets executed as soon as an process is created.
The process terminates (and the object destroyed) when the main function terminates.

Based orunixProc , we can define an Ipr class as follows. At the level of the filesystem, Ipr either copies
the file to be printed into a spool directory or links it there symbolically, depending upon a command line
option.

/I In addition to usual process parameters, Ipr takes 2 arguments:
/I the name of the file to be printed, and an option that indicates if this
/I file is to be copied to the spool directory before printing, or just
/I symbolic-linked from the spool directory.
class Ipr(U, G,FS,[File, Opt],UG): unixProc(U,root,G,sys, [File,Opt], FS,UG) {
main() =
atomic { // N is used to create a temporary name for the spool file
read([var,spool,Ip,count], N),
write([var,spool,Ip,count],(N+1)%1000)

h
FS.resolve(File,U,G,read,F1), // accessiblity of File checked for U,
if (Opt = s) /I but subsequent operations are

then symlink([var,spool,Ip,N], File) // performed with root privilege
else read(File,C), write([var,spool,Ip,N],C)
}

In a similar manner, we can define the behavior of a highly simplified mail receiver/sender as follows.
This mail server operates by storing every incoming email message in a spool directory corresponding to the
recipient. For simplicity, we model the act of storing in a way that loses previous contents of the spool file.
class mailer(FS, UG): unixProc(root, root, sys, sys, [], FS, UG) {

send(U, M) ::= write(var,spool,mail,U], M)

Finally, we model the action of th@mmsat mail notifier program. It looks up the filetc/utmp to identify
the terminal where each user is logged in. Whenever a new message is received forangserprints the
message on the user’s terminal. We represent the content afidhemp as a list of records. We extend
thefilesystem andunixProc classes presented above to support such structured files. Of particular interest
is an operation callectadRec that allows access to a specific record whose first component is specified as an
argument toeadRec .
class comsat(FS, UG): unixProc(root, root, sys, sys, [], fs, ug) {

main() = loop {
read([var,spool,mail,Rcvr], Msg)

readRec([etc,utmp], Rcvr, Tty),
write(Tty, Msg)

Theloop construct indicates that the operations inside the loop are executed forever, until the process is
killed. These operations make use of an unbound variable Such variables are treated as existentially
qguantified. Operationally, this amounts to binding the variable to an arbitrary value in its domaincahluzs,
nondeterministically chooses some file in the mail directory such that the corresponding user is logged in, and
printing the message on the user’s terminal. Data-nondeterminism, as captured by the use of such unbound
variables, is a key mechanism that simplifies our models.

We now develop a model of a user. The user’s behavior is also highly nondeterministic in nature: he/she
selects an arbitrary file in the system, and may read this file or overwrite it with arbitrary content. The user may
also run arbitrary commands, or send an arbitrary message to an arbitrary user. Arbitrary choice in data values
is captured by using unbound variables. The arbitrary choice among the commands is captured by the guarded
command construct within the loop, which uses the sy@aardl -> Bodyl | - - | GuardN->BodyN

5

The guarded command construct is within a loop, which indicates that the reader will keep performing these
actions indefinitely.

class user(U,G,FS,UG): unixProc(U,U,G,G,[],FS,UG) {
main() = loop {

true

true

true

true

}
Finally, we put all of the classes defined so far into a single system model using a class called init. Note the
use of|| operator, which denotes parallel composition of multiple processes.

class init(FS, UG) {
main() := mailer(FS, UG) || comsat(FS, UG) || user(U, G, FS, UG)

read(F1, C) |

write(F1, C) |

run(lpr, U, U, G, G, Args, FS, UG) |
mailer.send(U1, M1)

o
V V V V

}

3 Detecting System Vulnerabilities

In our approach, we use model checking techniques to analyze the behaviors of the system model. In the sim-
plest case, security properties are invariants: properties that must hold at every state of the system. For instance,
the simple model described in the previous section does not model legitimate ways to modify the password file
(e.g.,passwd); hence, the constancy of the password file is a desired system invariant. In Section 3.3 we
describe how more completefnpora) properties that depend on order of events can be specified.

One of the important features of model checking techniques is their ability to generate counter-examples,
which are sequences of states that lead to violation of the given property. In our application, the counter-
examples correspond to the steps that an attacker can use to exploit system vulnerabilities. However, certain
aspects of vulnerability analysis make current model checking techniques unusable, as explained below.

¢ Infinite-state modelsMany components of the system model described in Section 2 are have infinitely
many reachable states (e.g., the states of the file system). Current model checking techniques work mainly
with finite-state systems.

e Counter-exampled\ot all vulnerabilities may be fixable (e.g., bug-fixes to vendor software). In such cases,
we use intrusion detection techniques for thwarting any attempt to exploit the vulnerabilities. Hence, we
need to identifyall potential vulnerabilities. This is in contrast to traditional design-time applications of
model checking where it suffices to find any one error.

We develop a customized model checker that exploits the characteristics of vulnerability analysis to ad-
dresses the above problems. We use the XSB tabled logic programming system [15] for rapidly prototyping our
model checker. The following features of the XSB system makes it an attractive vehicle to prototype our model
checker:

e Tabling: The XSB system maintains memo tables to remember previously invoked queries (calls) and their
answers. Tabling ensures that the fixed point computations needed in a model checker terminate for finite
models.

e Term ConstraintsThe XSB system provides logical variables that conform to the semantics of the unbound
variables used to model data nondeterminism in our modeling language (see Section 2). Furthermore, the

unification mechanism in XSB permits us to represent and manipulate equality constraints over terms; such
constraints can be naturally used to represent infinite sets of states.

e Programmability: Being a logic programming system, XSB permits one to easily specify interpreters and

metaprograms: a feature that is exploited for constructing abstract system models for systems where in-
finiteness stems from unbounded execution.

In our implementation, we translate the high-level model of the system into a Prolog database (a set of facts)
that represents the system’s transition relation. As noted in Section 2, our modelling language resembles Prolog
in many ways. This factor considerably simplifies the translation.

Although an algorithm for translating our models into Prolog has been developed, we have not implemented
this algorithm at the time of this writing; instead, we hand-translated the model in Section 2. In the following,
we first assume that the property to be verified is specified as a formula in temporal logic [11]. We then describe
the notion of intentions model (see Section 3.3) which alleviates the need to encode complex security properties
in temporal logic. The model checking procedure is implemented as an interpreter, and is evaluated using the
XSB system.

3.1 Model Checking Infinite-State Systems

The infiniteness in the state space of a system arises from two factors— data nondeterminism (infinite branching
factor), and execution histories (infinitely long paths)— each of which is handled using a different feature of
the model checker.

Infiniteness due to data nondeterminism is handled by term constraints. Recall that data hondeterminism
arises from unbound variables in the system model. Term constraints capture the possible values of such vari-
ables succinctly. The constraints are represented and manipulated by the XSB system itself, and need no further
programming. For instance, consider the problem of verifying whethepasswd can be overwritten in
the system model in Section 2. Observe from the example that the system can evolve when an arbitrary user
chooses to perform a write action of some file, or when a user sends mail. With the logic-programming-based
model checker, neither the user nor the message needdtmbdto any particular value: we represent these
as logical variables. Unification and backtracking automatically generate the cases of interest, by binding the
variables only to values that lead to vulnerabilities. For instance, when a user sends mail, thecorosasss
enabled, which sends a notification (usimgte) to the destination specified iatc/utmp . Note that, at this
point, neither the contents nor the permissiongetriutmp are known. The model checker tries each case in
turn, by binding the variables to the needed set of valuelstdfutmp is unreadable or if the required entry
(the destination for notifying incoming mail) is not found, no notification is sent and the system reverts back to
its original state. On the other hand, if the destinatiofor notification is present ifetc/utmp , then a write
to D is issued. Since the contents/efc/utmp are unknown, note thaD will be left as a variable. If the
destinationD can beetc/passwd |, then it is indeed possible to change the password file in our model. Thus,
the model checking algorithm concludes thaeit/utmp specifiegetc/passwd as one of the notification
destinations, then it is possible to violate system security.

Infinite execution sequences are handledabgtractingthe sequences to finite (possibly repeating) seg-
ments of a certain kind. Of particular importance is the abstraction that bounds the lengths of sequences.
Capturing unknown (or don't-care) values by variables can automatically abstract infinite execution sequences.
For instance, consider a user write action to an arbitrary file in the system model in Section 2. This does not
constitute “progress” since it does not enable any state change that was impossible before. The lack of progress
is easily captured by term constraints. In the state before a write operation to an arbitrdry tfile file's
content is represented by a variable, 64y. In state after the write operation, the file’s content is changed to
C’-, which is simply a variant (i.e., identical modulo variable renaming) of the original content. If the effect of
write operation is known (say, the new content)s then the new state is an instance of (i.e., is subsumed by)
the old state: hence, no new transitions are possible. Thus we see that progress can be seen as change modulo
term subsumption.

The above scenario assumed that nothing is known about the initial state of the system: the files, their con-
tents, the relevant permissions, etc. When the system’s initial state is (at least partially) known, aritser’s
action changes the system state; for instance, the constraifditfiainp has no reference tetc/passwd
may no longer true after an arbitramyite action is done, if the access permissiongetd/utmp allow the
write action to succeed. Thus, the state of the system after an arbitrizsy action is different from the

initial state of the system. The model checker will explore the system evaluation from this state, and can again
conclude that there is a potential vulnerability as longeagutmp can be modified by an arbitrary user.

Variable abstraction alone is insufficient in general, and we employ approximations that lose information
by either ignoring state changes (thus pruning execution sequences), or ignoring conditions on state changes
(thus repeating execution sequences). Note that such an abstraction may be “incomplete” in the sense that
vulnerabilities in the original model may not be present in the abstract model. However, this limitation is
reasonable in our case if we assume that the system vulnerabilities will be exploited by human attackers using
their intuition and expertise to come up with attack scenarios. This implies that the sequence of actions that they
would perform to achieve intrusion will typically be a short sequence, and thus it may be acceptable to miss
out vulnerabilities that require long sequences of actions. Based on this assumption, our method uses a search
procedure with iterative deepening, stopping the search after a predetermined depth. The search procedure uses
the programming and tabling capabilities of XSB.

3.2 Generating Counter-Examples

The counter-example traces produced by a model checker correspond directly to attack scenarios. Hence the
set of all counter-examples can be used to drive intrusion detection. Note that, even in the finite-state case,
it is infeasible to enumerate all possible counter-examples. To overcome this problem, we avoid an explicit
enumeration of all counter examples, instead choosing to represent them using a finite-state automaton. The
automaton represents the 6eof counter-examples, such that each exampteC' corresponds to a path in the
automaton. The automata representation is succinct and can be used directly for intrusion detection. Moreover,
such an automaton can be constructed by inspecting the memo tables built during model checking: the table
entries form the states of the automaton and the dependencies between the entries form the transitions.

The automata-based representation of counter-examples extends naturally to the case of infinite-state sys-
tems as well. In this case, each state in the automaton is associated with a set of variables, while the transitions
specify conditions on their values. Such automata have the ability repigseaticcounter-examples: those
that are parameterized with respect to specific system configurations. We can generate such counter-examples
by leaving the initial state of the system unbound and using data nondeterminism to lazily binding the state
variables, as explained earlier with tbemsat example. The automata representing these generic examples
can then be instantiated for particular system configuration parameters to check for vulnerabilities. Thus the
automata themselves are generic with respect to configurations. However, the automata must be regenerated
when system’s capabilities change, e.g., when new services are added.

3.3 Beyond Invariant Properties

In the comsat example explained earlier, the property of interest was an invariant. In general, however, one
would be interested in path properties. For instance, there may be a password changing pasgiahon a

system that allows a user to modify his/her password, and thus change the contents of the password file. Clearly,
execution paths where the password file is changed bygdabavd program, or by a system administrator, do

not correspond to any vulnerabilities.

Path properties can be encoded in temporal logic [11]. They can eliminate “degenerate paths” such as those
where the superuser changes the password file or it is changed fmstwe program. This is done by adding
antecedents to the original safety property that are violated by such degenerate paths.

A problem that arises in the context of vulnerability analysis is that the description of degenerate paths tends
to become very large, since there are many degenerate cases. For instance, there may be many different ways
in which a superuser can change the password file: by overwriting it, by using an editor, by ugiagstle
command, etc. Enumerating all such degenerate paths is impractical since the temporal logic formula becomes
very large and difficult to understand, and hence is likely to contain errors.

To address this problem, we propose the following approach where the original safety property is left
unchanged. In order to eliminate degenerate paths, we develop a second model caleshtioms model.

An intentions model captures the intended outcome of executing every program. These intentions are stated in
terms of the files that may be written or executed in the course of executing the program. The system model has
vulnerabilities if it contains paths to unsafe states for which there exists no corresponding path in the intentions
model.

For example, an intention model of mail daemon would be that it writes files in the diréasaigpool/mail.

The intention model dpr would be that it writes files in the directofysr/spool/lp . The intention model

of passwd program would be that it writefgetc/passwd file. The intention model, by default, will refer to
normalized file names, which correspond to an absolute file names that are not a symbolic links. This would be
appropriate in the case of mail daemon &md. Situations where symbolic links are permitted, will be made
explicit in the intentions model. For instance, an intention modepgbrogram will state that it will overwrite

a file provided as an argument, regardless of whether it is a symbolic link or not.

When an intentions model is used, the model checker must disregard the “intended paths,” i.e., paths where
every action is intended is also in the intentions model. A simple way to do this is to leave the model checker
unchanged, but prune away paths from the counter-example automaton. Clearly, more efficient techniques to
eliminate intended paths can be developed, and is a topic of current research.

3.4 \ulnerabilities in Distributed Systems

Since we model the system as a composition of system of concurrent processes, our analysis can be readily
used,without modificationto detect vulnerabilities in distributed systems. Consider the following example
of vulnerability arising from misconfiguring a distributed system. A user on Apbbb, who was helping

with installation of beta software was includedsys group, but then the group association was not removed
after the installation tasks were done. The configuration scripta fe such thatetc/rc.d/rc executes

the commands iretc/sysconfig . The permissions ofetc/sysconfig are such that it is writable by
members obys group. Using a model that captures the execution behavior of boot-time processes and scripts,
our analyzer will conclude that memberssys can usurp root privileges on hast Assume that the home
directories of system staff are exporteddérom NFS serveB. By su-ing to some system staff’s account, say
sally , bob can modify thesally ’s .login file, and hence gain access to any machine to whkatly ’s

home directory is exported bg. Again, the our analyzer can trace through such an scenario based on the
execution models for login processes and the rules governing NFS exports.

4 Analysis Results

4.1 Wulnerabilities due tocomsat

Given the simple model of a UNIX system described in Section 2, our current implementation identifies the
following vulnerabilities that would ultimately enable the password file to be overwritten. The vulnerabilities
are presented in the format

when <condition>

scenario <exploit>

wherecondition specifies the configuration parameters under whicrettpdoit is possible. As men-

tioned earlier, the configuration parameters can be used to develop rules (or code) that can be fed into configu-
ration checking tools such as COPS and SATAN.

Our prototype system identifies several vulnerabilities in the system, three of which are shown below. The
first one is trivial, and it corresponds to the case when the password file is world-writable. Nevertheless, it is
interesting to note that the use of data-nondeterminism, and its treatment using term-constraints, enables us to
derive this scenario, even when tleec/passwd file is not mentioned in the model.
when FS.resolve(/etc/passwd,U1,G1,write,F1)

scenario
[user(U1,G1,FS,UG).write(/etc/passwd, M)]

The second is theomsat vulnerability described in the introduction. It happens when a udehas
permission to write thietc/utmp file. Note again that this vulnerability was also identified, even when the
model checker was provided no information about the original state of the system.
when

FS.resolve(/etc/utmp,U1,G1,write,F1)
scenario

[user(U1,G1,FS,UG).write(/etc/utmp, (U2, /etc/passwd)),

user(U3,G3,FS,UG) invokes mailer.send(U2, M),
comsat.read(/var/spool/mail/U2, M),
comsat.readRec(/etc/utmp, U2, /etc/passwd),
comsat.write(/etc/passwd, M)]

Another attack scenario is an interesting variation on the previous attack, and does not require write per-
mission to/etc/utmp . It brings together two known exploits, one involving the use of symbolic links and the
other being theomsat vulnerability mentioned above. Although we had developed the models ourselves, we
had not realized that our model contains this vulnerability. It is noteworthy that in spite of the simplicity of the
models used, our model checking procedure identified vulnerabilities that were unknown to us.
when

FS.resolve(/var/spool/mail/U2,U1,G1,write,F1)
scenario

[user(U1,G1,FS,UG).symlink(/var/spool/mail/U2, /etc/utmp),

user(U3,G3,FS,UG) invokes mailer.send(U2, (U4, /etc/passwd)),
user(U5,G5,FS,UG) invokes mailer.send(U4, M),
comsat.read(/var/spool/mail/U4, M),

comsat.readrec(/etc/utmp, U4, /etc/passwd),
comsat.write(/etc/passwd, M)]

4.2 \Vulnerabilities due tolpr

Before analysis, we abstracted the system modelpfor by making the temporary spool file name to be a
constant (i.e., making the counting modulo 1 instead of 1000). The combination of symbolic links and the
standard spool file naming convention introduces the following vulnerability:

when
FS.resolve(F1,U1,G1,write,F2),
FS.resolve(/etc/passwd,U2,G2,read,F3),
FS.resolve(F1,U3,G3,read,F4),
FS.resolve(F5,U3,G3,exec,F6),
FS.getContent(F6,program(lpr))
scenario
[user(U1,G1,FS,UG).write(F1,C1),
user(U2,G2,FS,UG).run(lpr, [/etc/passwd,s]),
user(U3,G3,ug).run(lpr, [F1])
Since we start with an initial state that corresponds to an unbound variable, there are no files that can be printed
in the initial state. The scenario shows that such a file can be created, and later read. It also requires read

permission on the password file.

5 Summary and Future Work

In this paper, we presented a new model-based approach for analyzing configuration vulnerabilities. Whereas
previous approaches relied on expert knowledge to codify causes of configuration vulnerabilities, this step is
not necessary in our approach. Consequently, our approach can not only identify previously exploited vulnera-
bilities, but also discover new ones that have never been exploited.

The results of our analysis can be used in many ways. The first and obvious use is in reconfiguring the
system to eliminate the vulnerabilities identified by model-based analysis. The reconfigured system can be

10

reanalyzed to ensure that (most) vulnerabilities have been eliminated. A second use is to feed the counter-
examples generated by our analysis into an intrusion detection system. The intrusion detection system can now
identify all attempts to exploit the vulnerabilities identified by our analysis, and may be able to prevent them
from succeeding. A third way to use our analysis is to begin with minimal information about the initial state of
the system, in which case our analysis generates assumptions about the initial system that lead to vulnerabilities.
These assumptions correspond to the “vulnerability causes” that can be encoded into configuration checkers
such as COPS and SATAN.

The key technical contributions of this paper are (a) a modelling language that is suitable for modelling
behaviors of system components such as the operating system, privileged programs, etc, (b) development of
specification and verification techniques that can analyze models developed in this language. We developed a
highly simplified model of a UNIX system and a few select programs in our modelling language, and showed
that our verification technique can identify nontrivial vulnerabilities in this system. Our model checker was
able to identify these vulnerabilities in spite of the fact that our models represent infinite-state systems.

The main challenge in using the approach presented in this paper is one of scale. Although our model
checker can easily handle the models described in this paper, more realistic system models will be much larger,
making it significantly harder to perform an accurate analysis. However, we believe this is a temporary diffi-
culty: some of the authors of this paper, as well as a number of other researchers, are developing better and
better model checkers that are able to handle larger and larger systems. A second challenge is the effort required
for developing models. We are investigating source code analysis techniques that can help automate the model
generation process. So far, we have been able to extract reasonable models from shell scripts, such as boot
scripts and login scripts, and are now investigating how these techniques can be extended to more complex
programming languages such as Java or C++.

References

[1] 8lgm Security Advisorieshttp://www.8lgm.org/advisories-f.html

[2] Names left out for anonymous refereeing, Model-Based Vulnerability AnaIyS|s of Computer Systems, 2nd Int’l
Workshop on Verification, Model Checking and Abstract Interpretation, 1998.

[3] R. Baldwin, Rule based analysis of security checking. MIT LCS Technical Report No. 401, 1988.

[4] E. M. Clarke and E. A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal
logic, Proceedings of the Workshop on Logic of Programs, LNCS 131, 1981.

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic verification of finite-state concurrent systems using tem-
poral logic specificationsACM TOPLAS8(2), 1986.

[6] E. M. Clarke, K. McMillan, S. Campos, and V. Hartonas-GarmHausen, Symbolic model checking, Computer Aided
Verification'96, pages 419-422.

[7] E. M. Clarke and J. M. Wing, Formal methods: State of the art and future directions, ACM Computing Surveys,
28(4), December 1996.

[8] D. Farmer and E. Spafford, The COPS Security Checker System, CSD-TR- 993, Department of Computer Science,
Purdue University, 1991.

[9] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[10] G.J. Holzmann, The model checker SPIN, IEEE Transactions on Software Engineering, 23(5):279-295, May 1997.

[11] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specification, Springer-Verlag,
1991.

[12] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[13] J. P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In Proceedings of the
International Symposium in Programming, volume 137 of LNCS, 1982. Springer-Verlag.

[14] R. Ritchey and P. Ammann, Using Model Checking to Analyze Network Vulnerabilities, IEEE Oakland Symposium
on Security and Privacy, 2000.

[15] The XSB logic programming system v2.1, 2000. Available fiwip://www.cs.sunysb.edu/ ~sbprolog

[16] D. Zerkle, K. Levitt, NetKuang—A Multi-Host Configuration Vulnerability Checker, Proc. of the 6th USENIX Secu-
rity Symposium. San Jose, California, July 22-25, 1996, pp. 195-204.

11

