
Model-Based Vulnerability Analysis of Computer Systems�

C.R. Ramakrishnan R. Sekar

cram@cs.sunysb.edu sekar@cs.iastate.edu

Department of Computer Science Department of Computer Science
State University of New York Iowa State University
Stony Brook, NY 11794. Ames, IA 50011.

Abstract

Vulnerability analysis is concerned with the problem of identifying weaknesses in computer systems

that can be exploited to compromise their security. Most vulnerabilities arise from unexpected interac-

tions between di�erent system components such as server processes, �lesystem permissions and content,

and other operating system services. Existing vulnerability techniques (such as those used in COPS and

SATAN) are based on enumerating the known causes of vulnerabilities in the system and capturing these

causes in the form of rules, e.g., a world- or group-writable .login �le is a well known vulnerability that

enables one user to gain all access privileges of another user. However, the generation of the rules relies

on expert knowledge about interactions among many components of the system. Issues such as system

complexity, race conditions, many possible interleavings, hidden assumptions etc. make it very hard even

for experts to come up with all such rules. In contrast, we propose a new model-based approach where

the security-related behavior of each system component is modeled in a high-level speci�cation language

such as CSP or CCS. These component models can then be composed to obtain all possible behaviors of

the entire system. Finding system vulnerabilities can now be accomplished by analyzing these behav-

iors using automated veri�cation techniques (model checking in particular) to identify scenarios where

security-related properties (such as maintaining integrity of password �les) are violated. In contrast to

previous approaches that mainly address well-known vulnerabilities, our model-based approach has the

potential to automatically seek out and identify known and as-yet-unknown vulnerabilities.

Keywords: Vulnerability analysis, intrusion detection, network security, computer security, model check-
ing, automated veri�cation.

1 Introduction

Information and networking technologies are playing increasingly important roles in our infrastructures for
such critical services as power generation and distribution, telecommunication, commerce and banking, and
transportation. Although this change brings about several bene�ts, new dangers arise as well, since damage
to the underlying computing and communication infrastructure can compromise the availability of critical
services. Therefore it is important to secure the computing and networking infrastructures against damage
due to malicious attacks or spontaneous faults. One of the �rst steps in securing a computer system is to
understand the vulnerabilities in the system that can be exploited to compromise its security. In this paper,
we describe a novel technique to identify vulnerabilities that arise from unexpected interactions between
(apparently correct) system components.

1.1 Vulnerabilities in Computer Systems

Some system vulnerabilities arise due to errors in individual system components: e.g., bu�er over
ow attacks
are aimed at memory errors in server processes [3, 1]. However, a majority of vulnerabilities arise due to
interactions among several components such as the operating system kernel, �le system, server processes, etc.
For instance, consider a vulnerability that existed in early versions of the fingerd service [1]. In servicing
a query \�nger username," this program needs to read a �le named .plan in the home directory of the
user username. A malicious user u could symbolically link a �le f as his/her .plan even if the user has no
read access to f . The user can then read the �le f by simply running finger u, since the fingerd server
ran with root privileges. The vulnerability here arises due to the interaction between the way the �nger
server operates and the way the �lesystem implements symbolic links. As a second example, consider the

�This research is supported partially by DARPA-ITO under contract number F30602-97-C-0244 and by the NSF under

grants CCR-9705998 and CCR-9711386.

vulnerability involving the mail noti�cation program comsat, which waits for reports of incoming mail for
any user and prints the �rst few lines of the message on the terminal in which the user is logged on. This
terminal is determined from the �le /etc/utmp, which was con�gured to be world-writable. A malicious user
could modify this �le by substituting the /etc/passwd in the place of the terminal that he/she is logged on.
The user then sends mail to self containing a line that starts with root::0:0:. Of particular signi�cance here
is that the second �eld in this line, which corresponds to the password �eld, is empty, which implies that the
superuser has no password. The comsat program promptly overwrites the password �le with the message.
The user can now login as root without providing a password. This second vulnerability also arose from
an interaction among several components: the comsat program that assumed the correctness of /etc/utmp
�le, the �le system (speci�cally, the permission settings on this �le), and the mail delivery program. Once
again, each of the components seems to exhibit \reasonable behavior," but their combination would permit
a malicious user to compromise system security.

More generally, many vulnerabilities arise from unexpected interactions between di�erent components,
violation of hidden assumptions, improper setting of system parameters and con�gurations, etc. Use of good
software engineering practices has the potential to eliminate some of these vulnerabilities, but given the
fact that new vulnerabilities continue to surface in UNIX server programs that have been operational for
well over a decade, we clearly need alternative mechanisms to guard against vulnerabilities. Consequently,
several recent research e�orts have focussed on vulnerability analysis and intrusion detection techniques
(which detect misuse by run-time monitoring) [2, 10, 12, 13, 14] as a retro�t approach to secure existing
systems.

1.2 Vulnerability Analysis: State of Art vs. New Approach

Research e�orts in vulnerability analysis have focussed primarily on identi�cation of con�guration errors

such as improper �le permission settings. Existing approaches [11, 4, 21] can be broadly characterized as
rule-based, i.e., they employ a set of rules that enumerate known causes for vulnerabilities. The tools then
systematically check the system con�guration to identify if these causes are present in the system. For
instance, a world- or group-writable .login �le is a well known vulnerability that enables one user to gain all
access privileges of another user. Widely used tools, such as COPS and SATAN search for occurrences of such
known vulnerabilities [11]. However, the generation of the rules relies on expert knowledge about interactions
among many components of the system. Unfortunately, few experts have a complete understanding of the
interactions among all components of modern computer system. Issues such as race conditions, many possible
interleavings, hidden assumptions etc. [5] make it very hard for humans to come up with all such rules.

In contrast, we propose a new model-based approach for vulnerability analysis of computer systems. In
our approach, the security-related behavior of each system component (such as the �lesystem and other
subsystems of the OS, system startup processes and other application processes) is modeled in a high-
level speci�cation language. These abstract models can be provided manually or synthesized using existing
program analysis techniques from the source code of each component (if available), or can be supplied
by the vendor for that component. Any possible security-related behavior of the entire system can then
be obtained by composing these component models. System vulnerabilities can therefore be identi�ed by
analyzing these behaviors using automated veri�cation techniques, e.g., model checking [8, 17, 9], for deriving
scenarios where security policies (such as preventing any user from usurping the privileges of another user)
are violated. In this paper, we describe a vulnerability analysis method that we are currently developing
following the model-based approach.

2 Modeling Security-related Behaviors of Systems

The �rst step in our vulnerability analysis approach is to develop abstract models of the security-related
behaviors of various system components. In this section, we �rst describe our model for a small subset of
a UNIX-based system that enables us to capture the vulnerability due to comsat. This subset captures a
simpli�ed view of the �le system, mailer program and the comsat server itself. We will later extend this
model to accommodate several other aspects, such as symbolic links, printing services, etc.

Although it is clear that the modeling language must have facilities to describe concurrent processes
that manipulate structured data, it is currently less obvious what features will enable us to directly describe

2

complex processes. In the following, for the purpose of illustration, we choose a value-passing language
based on Milner's CCS [16] augmented with algebraic datatypes (in the form of Prolog terms), a syntactic
variant of the language described in [18]. In CCS, a system is viewed as a collection of processes that can
communicate (and synchronize by communicating) along channels. Processes may be combined sequentially
(using the `�' operator), or in parallel (using the `jj' operator). Nondeterministic actions can be captured
using the choice operator, `+'. Processes can have parameters that represent the state of a process, or may
be arguments to initialize the process. Recursion is the primary means of iteration in this language. In
addition, we introduce helper functions (units of pure computation) and other features that are needed to
simplify our models.

We begin with a model of the �le system fs as shown below. The �le system state is modeled as a
list of records. A record of the form content(F,C) captures the fact that the �le F contains C; a record of
the form perm(F,U,P) captures that user U has permission P (one of `r', `w' or `x') on �le F. To simplify
the presentation, the model shows only read or write operations on �les, but no �le permission changing
operations. All these operations are accomplished by sending an appropriate message to the fs process. The
notation C?M is used to denote the reception of message M on channel C. Similarly, C!M denotes sending a
message M on channel C. We use the convention that all variable names start with an uppercase letter, while
the names of processes and constants start with a lowercase letter.

fs(S)::= write?(U, F, C)

� if access(S, U, F, 'w')

then fs(add record(S, F, C))

else fs(S).

jj
read?(U, F, Chan)

� if (exists(S, F) && access(S, U, F, 'r'))

then read record(S, F, R) � Chan!R else Chan!error

� fs(S)

We then model the behavior of a mailer program as follows. Again, for simplicity, we do not model a mail
server, but treat it as if the mail sending program directly updates a �le that corresponds to the recipients
mailbox. Note that we use a list to represent �le names, e.g., the name \/etc/passwd" would be represented
as the list ['etc','passwd'].

mailer::= send?(Sender, Receiver, Msg)

� write!('root', ['var', 'spool', 'mail', Receiver], Msg)

� mailer

Note that the mailer program needs to update a �le that is typically owned by the message recipient, and
the the sender does not have write permission on that �le. As such, the mailer program runs with superuser
privileges.

Finally, we model the comsat program and the user behavior as follows.

comsat(CChan) ::= read!('root', ['var', 'spool', 'mail', Receiver], CChan)

� CChan?Msg

� if (Msg 6= error)

then read!('root', ['etc', 'utmp'], CChan)

� CChan?(Receiver, Tty)

� write!('root', Tty, Msg)

� comsat(CChan)

user ::= (write!(U, F, C) + send!(U, Receiver, Msg)) � user

system ::= user jj comsat(cchan) jj mailer jj fs(initState)

The comsat program waits for a message to be delivered to the /var/spool/mail directory. This is done by
sending a request to the �lesystem for a �le in this directory. If the �le exists, then fs would respond with
the contents of the �le in the channel CChan. Then comsat would proceed to read the /etc/utmp �le to obtain
the terminal on which the recipient of the message is logged on, and print the message on this terminal, and
then proceed to do the same thing all over. (Note that in our simpli�ed model, comsat may announce the
same message many times.) We point out the use of unbound variable Receiver in the �rst line of comsat.

3

Such variables are treated as being existentially quanti�ed| in particular, the read operation will read any
one �le f in the /var/spool/mail directory, and moreover, further occurrences of Receiver will all refer to
this �le. (The semantics of such variables is similar to that of variables in logic programming languages.)
Use of such variables enables us to develop a very natural speci�cation of a user: the user may write an
arbitrary �le with arbitrary content, or send an arbitrary message to an arbitrary user.

The behavior of the entire system is captured as a parallel composition of the comsat, mailer, �lesystem
and user interactions. The user interactions are captured by the user process, which nondeterministically
writes arbitrary �les and sends mail to arbitrary users. Once again, we use logic variables to denote that the
target �les and message recipients may be arbitrary.

3 Detecting System Vulnerabilities

Once we have modeled a system, we can analyze all system states that can be reached by some execution
of the system. In the simplest case, the security violations can be described as propositions on states, for
instance, labeling states as safe and unsafe. In the simple model described in the previous section, we
can label those states where the content of the password �le have been modi�ed as unsafe states (since an
ordinary user may be able to obtain superuser privileges by such modi�cationy). In general, however, we
will need to label entire execution sequences, rather than individual states, as safe or unsafe. For instance,
in a more complex model of the system, an unsafe execution sequence will be one where a password �le
is modi�ed without involving the passwd program, or even more generally, when the password of a user is
changed by someone di�erent from the user and the superuser. We can use formulas in temporal logics [15]
to express such path-based properties, such as ordering relationships among events.

Temporal logics have been extensively used for describing correctness properties of concurrent systems
such as hardware and communication protocols. For �nite-state systems, temporal properties can be veri�ed
with respect to a system speci�cation using model checking techniques [8, 17, 9]. One of the imporatant
features of model checking techniques is their ability to generate counterexamples: sequences of states that
lead to violation of the property to be veri�ed. In our application, the counterexamples correspond to the
steps that an attacker can use to exploit system vulnerabilities. It should be noted that, in contrast to typical
applications of veri�cation techniques, we are interested in generating all counter examples in the case of
vulnerability analysis. This is because we may not be able to �x all of the vulnerabilities, as some of them
may depend on bug-�xes to vendor software. In such cases, we have to rely on intrusion detection, which
is a runtime monitoring technique that detects attempts to exploit the vulnerabilities. The traces produced
by a model checker correspond directly to the exploitation attempts, and thus, getting an exhaustive list
aids in the development of e�ective intrusion detection systems. One of the problems in this context is that
there may be many attack scenarios that are equivalent. Since a human may have to ultimately sort through
these scenarios, it is necessary to present only a minimal set. Identifying such a set of scenarios that cover
the rest is a research issue.

A second problem in our case is that the systems we consider are in�nite-state, and hence we cannot
readily apply the available model checking techniques. There are two main ways to ensure termination of
the the model checker in spite of the in�niteness of its search space. One of them is to use abstraction to
map the in�nite-state model checking problem to an \equivalent" �nite-state one. Another is to modify
the search strategy to ensure that only �nite portions of the in�nite state space will be explored. The
soundness and completeness of these strategies will depend on the property of interest. For instance, in the
case of vulnerability analysis, we are interested in generating all sequences of state transitions that lead to
an unsafe state. If we make use of a strategy that performs bounded-depth search, then the strategy will be
\incomplete" in that it will not generate scenarios longer than the depth parameter. This limitation is quite
reasonable in our case if we assume that the system vulnerabilities will be exploited by human attackers
using their intuition and expertise to come up with attack scenarios. This implies that the sequence of
actions that they would perform to achieve intrusion will typically be a short sequence, and thus it may be
acceptable to miss out vulnerabilities that require long sequences of actions. Based on this assumption, our
method uses a search procedure with iterative deepening, stopping the search after a predetermined depth.

yNote that the simpli�ed model has no way for the password �le to be changed legitimately; thus, all modi�cations are to

be treated as attacks.

4

In our implementation, we �rst translate the high-level models of the system into Prolog facts. The
model checking procedure is implemented as a meta interpreter (over these facts) in Prolog, evaluated using
tabled resolution [19, 7] in XSB [20]. We use the power of logical variables to succinctly capture system
variables with as-yet-unknown values. With uni�cation, which binds these variables only when neeeded, we
ensure that case-splits are done lazily. We augment the speci�cation language with constructs to annotate
the trace, so that the �nal traces are human-readable.

Although model checking possesses several advantages over other techniques for vulnerability analysis, it
also has the drawback of being potentially slow. To speed up the process of verifying system security when
some aspect of the system state changes (e.g., �le permissions are changed), we can use the model checker
to generate simple rules that capture conditions for the existence of vulnerabilities. Using our approach, we
can accomplish this by leaving the initial state of the system unspeci�ed, i.e., a variable. State changes are
re
ected by the instantiations to the variable corresponding to the initial state. When a compromised state
is reached, the instantiations spell out the conditions on the initial state that can lead to intrusions. We
can capture these conditions in the form of rules, which can then be used to perform faster vulnerability
analysis. However, the rules may need to be regenerated the system's capabilities change, (e.g., addition
of new services, or change of con�guration of existing services). Development of incremental techniques for
determining the validity of rules in the presence of system changes, and regeneration of minimal rule sets
are topics of future research.

4 Preliminary Results

Given the simple model of a UNIX system described in Section 2, our current implementation identi�es the
following vulnerabilities that would ultimately enable the password �le to be overwritten. The vulnerabilities
are presented in the format

when <vulnerability>

<exploit scenario>

The �rst vulnerability, which was described earlier in the introduction, happens when a user U1 has permission
to write the /etc/utmp �le.

when [perm(U1,[/etc,/utmp],w)]

[[U1, writes, [/etc,/utmp], with, (U2, [/etc,/passwd])]

[U3, sends msg, M, to, U2]

[comsat sees mail for, U2, reads,(U2,[/etc,/passwd]),from /etc/utmp,

overwrites, [/etc,/passwd], with message, M,)]]

The second vulnerability is similar to the �rst one, but rather than using mail delivery as the mechanism to
update the spool �le, the user directly overwrites the spool �le in this case.

when [perm(U3,[/etc,/utmp],w), perm(U1,[mailDir,U2), w)]

[[U1,writes,[mailDir,U2],with,M]

[U3,writes,[/etc,/utmp],with,(U2, [/etc,/passwd])]

[comsat sees mail for, U2, reads,(M ',' [/etc,/passwd]),from /etc/utmp,

overwrites, [/etc,/passwd], with message, M)]]

Finally, the trivial case when the password �le is world-writable:

when [perm(U1,[/etc,/passwd],w)]

[[U1,writes,[/etc,/passwd],with,M]]

4.1 Adding Symbolic Links

We enhanced the model to introduce symbolic links so as to capture intrusions that are based on the fact
that many programs perform insu�cient permission checking on such �les. In the new model, content of �les
may be normal(C), which denotes an ordinary �le with content C, or link(F), which denotes a symbolic

5

link to �le F. File access functions are updated to resolve symbolic links. With this change, the following
additional vulnerabilities are identi�ed by our system. Neither require write access to the utmp �le, but rely
on write permission on the spool �le. By symbolically linking the spool �le to the utmp or password �le and
sending a message to self, one can overwrite the password �le:

when [perm(U1,[mailDir, U2],w)]

[[U1,symlinks,[mailDir,_U2],to,[/etc,/utmp]]

[U3, sends msg, (U2,[/etc,/passwd]), to U2]

[comsat sees mail for U2, reads,(U2, [/etc,/passwd]),from /etc/utmp,

writes[/etc,/passwd] with (U2,[/etc,/passwd])]]

when [perm(U1,[mailDir, U2],w)]

[[U1,symlinks,[mailDir,U2],to,[/etc,/passwd]]

[sends msg M to U2]]

Although we have not modeled the finger vulnerability described in the introduction, it should be clear
that it can be captured in our model with an appropriate choice of the property to be veri�ed.

4.2 Adding Lpr

Finally, we added a model of the printer program lpr to our system. This program �rst copies the �le to be
printed to a spool directory, and then prints it. It cycles through a �xed, �nite set of names for �les in the
spool directory. (In the model, we have set the size of this set to 1, but it could be any small number.) To
avoid copying large �les, this program o�ers an option to symbolically link a �le rather than copy it over.
This combination of features introduces the following vulnerability:

when [perm(U1,F1,w),perm(U2,/etc/passwd,r),perm(U3,F1,r)]

U1 writes file F1

U2 prints file /etc/passwd with option -s

U3 prints file F1

Since we start with an initial state that corresponds to an unbound variable, there are no �les that can be
printed in the initial state. The assumptions in the �rst line above simply indicate that such a �le can be
created, and later read. It also requires read permission on the password �le since that is needed for printing
it.

5 Automating Model Generation from Implementations

So far we have assumed the existence of models describing behaviors of the various components. Recall
that rule-based systems depend on expert knowledge of the behavior of the composite system. In con-
trast, the model-based approach requires description of individual system components one at a time, and
each component itself often very well understood. In some cases, when source code is available, we can
deploy available program analysis technology to automate the generation of these models themselves. For
components without source code, we assume that the vendors will provide the needed model.

Based on control-
ow analysis of programs, we can automatically build conservative models that cover
all executions of the program. We plan to �rst build analyzers to extract control
ow of shell scripts, and
use the control
ow information to construct an execution model. For instance, consider the fragment of
/etc/rc.d/rc script from Linux kernel 2.0.30:

runlevel = $argv1

for i in /etc/rc.d/rc$runlevel.d/S*; do

...

$i start

Since argv1is a runtime argument, we conservatively assume that runlevel can take any value. By the
semantics of the for statement, we can determine that i takes values that match the regular expression

6

/etc/rc.d/rc*.d/S*. Given the current con�guration of the system, we can instantiate i to every �le that
matches /etc/rc.d/rc*.d/S*. We then construct models for each of these scripts, and compose them in
order to obtain a model for /etc/rc.d/rc. The same approach can be used to construct execution models
for programs written in other languages, such as C, C++ and Perl. It should be noted that, for security
related behaviors, we need to infer the control and data
ow only to know the sequence of system calls are
made, and �les accessed. From the modeling experience we have aquired thus far, it appears that the current
program analysis techniques are powerful enough to infer the above information accurately.

6 Summary

The salient advantages of the approach described in this paper are:

� Our model-based approach has the potential to automatically seek out and identify known and as-yet-

unknown vulnerabilities. In contrast, the rule-based approaches are limited to examining the system for
known vulnerabilities. By composing the models of subcomponents, including con�guration scripts, we
derive a model of the entire system and hence can detect authorization leaks that arise from \deeper"
faults (e.g., programs that themselves are invoked from .login or scripts that get executed at boot
time from the rc �les). It should be noted that most system programs are controlled by con�guration
scripts, and it is cumbersome (if not impossible) to introduce new rules that check for vulnerabilities
associated with each con�guration. By treating con�guration scripts as any other system component
and deriving abstract execution models for them, the model-based approach can be applied to detect
authorization leaks in any system component| from boot-time processes and login processes (local as
well as network) to application-speci�c processes such as CGI scripts.

� Our approach can be used for troubleshooting a system, as it not only tells us whether there is a
problem, but can generate concrete scenarios that exhibits the vulnerability. To aid in troubleshooting,
we ensure that the scenario set is in some sense minimal.

� We can use our technique for automatic generation of a rule base that can be used to perform vulnera-
bility analysis more e�ciently. To accomplish this, we perform perform model checking with incomplete
information about initial system con�guration. The model-checking process produces vulnerability sce-
narios that are conditional upon the (unspeci�ed) initial con�guration. Each of these conditions then
capture a potential vulnerability that can be checked using a rule.

� Our analysis can be coupled tightly with intrusion detection systems. Note that intrusions are ef-
fected by exploiting vulnerabilities in the system. Misuse intrusion detection techniques are based
on specifying rules that capture the exploitation of vulnerabilities. Speci�cally, for each vulnerability
identi�ed by our analysis, we can either recon�gure the system to eliminate the vulnerability, or when
this is not feasiblez, we can generate rules for use in an intrusion detection system. In this manner,
intrusion detection mechanisms can then be adapted to recognize any action that threatens to exploit
a system vulnerability, and not just those that are known (by past experience or expert knowledge) to
be potentially dangerous.

The method sketched in this paper is a �rst step towards applying a model-based approach to vulnerability
analysis. For the approach to be used in practice, we need to design a modeling language with constructs
that permit succinct description of real-life systems, strengthen the model checking techniques to handle the
new constructs as well as to infer minimal sets of attack scenarios.

References

[1] 8lgm Security Advisories, http://www.8lgm.org/advisories-f.html.

zIn many cases, we may not be in a position to rectify a problem either because the recti�cation will interfere with proper

operation of other system components, or because the �x involves a vendor-provided software in binary form.

7

[2] D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A. Valdes, Next-generation Intrusion Detection Expert
System (NIDES): A Summary, SRI-CSL-95-07, SRI International, 1995.

[3] T. Aslam, I. Krsul and E. Spa�ord, A Taxonomy of Security Faults, Proceedings of the National
Computer Security Conference, 1996.

[4] R. Baldwin, Rule based analysis of security checking. MIT LCS Technical Report No. 401, 1988.

[5] M. Bishop, M. Dilger , Checking for Race Conditions in File Access". Computing Systems 9(2), 1996,
pp. 131-152.

[6] M. Bishop and B. Bailey, A critical analysis of vulnerability taxonomies, TR CSE-96-11, Dept. of Comp.
Sci., University of California at Davis, 1996.

[7] W. Chen and D.S. Warren, Tabled evaluation with delaying for general logic programs, Journal of the
ACM, 43(1):20{74, January 1996.

[8] E. M. Clarke and E. A. Emerson, Design and synthesis of synchronization skeletons using branching-time
temporal logic, Proceedings of the Workshop on Logic of Programs, LNCS 131, 1981.

[9] E. M. Clarke, E. A. Emerson, and A. P. Sistla, Automatic veri�cation of �nite-state concurrent systems
using temporal logic speci�cations, ACM TOPLAS, 8(2), 1986.

[10] D. Denning, An Intrusion Detection Model, IEEE Transactions on Software Engineering, Feb 1987.

[11] D. Farmer and E. Spa�ord, The COPS Security Checker System, CSD-TR- 993, Department of Com-
puter Science, Purdue University, 1991.

[12] C.C.W. Ko , Execution Monitoring of Security-Critical Programs in a Distributed System: A
Speci�cation-Based Approach", Ph.D. Thesis, Department of Computer Science, University of Cali-
fornia at Davis, August 1996.

[13] C. Ko, G. Fink, and K. Levitt, Automated detection of vulnerabilities in privileged programs by exe-
cution monitoring, Computer Security Application Conference, 1994.

[14] T. Lunt, A survey of Intrusion Detection Techniques, Computers and Security, 12(4), June 1993.

[15] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Speci�cation,
Springer-Verlag, 1991.

[16] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[17] J. P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systems in Cesar. In Proceedings

of the International Symposium in Programming, volume 137 of Lecture Notes in Computer Science,
Berlin, 1982. Springer-Verlag.

[18] Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, Terrance Swift, S.A. Smolka, and D.S.
Warren, E�cient model-checking using tabled resolution, Proceedings of CAV'97, June 1997.

[19] H. Tamaki and T. Sato, OLDT resolution with tabulation, International Conference on Logic Program-
ming, pages 84{98. MIT Press, 1986.

[20] The XSB logic programming system v1.8, 1998. Available from
http://www.cs.sunysb.edu/�sbprolog.

[21] D. Zerkle, K. Levitt , NetKuang{A Multi-Host Con�guration Vulnerability Checker, Proc. of the 6th
USENIX Security Symposium. San Jose, California, July 22-25, 1996, pp. 195-204.

8

