On Preventing I ntrusions by Process Behavior M onitoring1

R. Sekar

Department of Computer Science
lowa State University, Ames, |A
sekar@sedab.cs.iastate.edu

Abstract

Society's increasing reliance on retworked information
systems to suppart criticd infrastructures has prompted
interest in making the information systems survivable,
so that they continue to perform criticd functions even
in the presence of vulnerabiliti es susceptible to mali-
cious attadks. To enable vulnerable systems to survive
attadks, it is necessary to deted attadks and isolate fail-
ures resulting from attadks before they damage the
system by impading functionality, performance or se-
curity. The key reseach problems in this context in-
clude:

e deteding in-progress attacks before they cause
damage, as oppced to deteding attadks after
they have succealed,

* locdizing and/or minimizing damage by isolating
attadked comporentsin red-time, and

e tradngtheorigin of attacks.

We aldress the detedion problem by red-time event
monitoring and comparison against events known to be
unaccetable. Red-time detedion dfferentiates our
approach from previous works that focus on intrusion
detedion by pat-attadk evidence analysis. We aldress
the isolation and tradng problems by suppating auto-
matic initiation d readions. Readions are programs
that we develop to respondto attadks. A readion's pri-
mary goal is to isolate compromised comporents and
prevent them from damaging aher comporents. A re-
adion's mndary goal isto aid in tradng the origin of
attac, e.g., by providing an illusion o successto the
attadkers (enticing them to corntinue the atad<) while
ensuring that the dtadk causes no camage.

Our approac to deteding attadks is based on spedfy-
ing permissble process behaviors as logicd assertions

T. Bowen

M. Segal
Bellcore

Morristown, NJ
{bowen,ms} @bell core.com

on sequences of system cdls and condtions on the val-
ues of system cdl arguments. We mmpil e the spedfi-
cdions into finite state automata for efficient runtime
detedion d deviations from the spedfied (and hence
permisshle) behavior. We seamlesdy integrate detec-
tion and readion by designing ou spedfication lan-
guage to also alow spedficaion d readions.

1. Introduction

Approaches to intrusion detedion can be broadly di-
vided into anomaly detection and misuse detection.
Anomaly detedion based approaches first crede apro-
file that describes normal behaviors and then deted
deviations from this profile [Fox90, Lunt88, Lunt92,
Anderson9g. In contrast, misuse detection based ap-
proaches [Porras92, lgun93 Kumar94] define and look
for predse sequences of events that damage the system.
Anomaly detedion approaches possss the alvantage
that leaning to identify normal behavior can be auto-
mated, but they are prone to false positives, espedally
when permissble but previously uneaned behavior
ocaurs. Misuse detedion approaches are more predse
and lessprone to false positives. However, since misuse
detedion approacdhes require spedficaion o damaging
events, which is usualy manua and based on pevi-
ously known attadks, they are less effedive ajainst
newly discovered vunerabiliti es and attacks.

A specification-based approach, first proposed by Ko
et al. [Ko94, Ko9g|, aims at overcoming the &owve
drawbadk of misuse detedion. Instead of describing
the events occurring in known attadks, which may or
may nat ocaur in future atads, a spedficaion-based
approach describes a program'’s intended behavior. De-
viations from intended behavior can be flagged as in-
trusions, thus enabling detedion o previoudy un-

! This projed is suppated by Defense Advanced Reseach Agency's Information Techndogy Office (DARPA-ITO) under the
Information System Survivability Program, under contrad number F3060297-C-0244 The views and conclusions contained in
this document are those of the aithors and shoud na be interpreted as representing the official palicies, either expressed or im-
plied, of the Defense Advanced Research Projeds Agency or the U. S. Government.

known attadks. Our approach uses manua prodiction
of spedficdions, which while having the drawbad of
requiring a human expert, has the alvantage of mini-
mizing false pasitives, espedally those that arise when
intended bu infrequently exhibited behavior is ob-
served. Thus, we can continue to retain the predsion o
misuse detedion and can therefore initiate defensive
adions as ©0nas any violations are detected.

An owerview of our spedficaion-based approach for
improving survivability was presented in [Sekar9§].
Our approach comprises a spedficaion language, a
compiler for the spedficaion language, and a runtime
exeaution environment. This paper provides a more in-
depth treament of our spedficaion language, and ou-
lines an approach for compili ng the spedfications into
exeautable modues for efficient monitoring o program
behaviors at runtime. While our approach applies in
principle to any modern operating system, our imple-
mentation is Pecific to Linux.

The rest of this paper is organized as follows. In Sec-
tion 2 we give abrief overview of our approad, in
Sedion 3 dscussrelated work as it appliesto ou sped-
fication language, in Sedion 4we present our language
and pradicad examples of its use, and in Sedion 5we
describe languege compil ation.

2. Overview of Approach

We model the survivable system as a distributed system
consisting d hosts interconreded by a network. The
network and the hosts are assumed to be physicdly
seaure, but the network is interconreded to the pulbic
Internet. Since dtadkers do nd have physicd accessto
the hosts that they are dtading, all attadks must be
launched remotely from the pulic network. Regard-
less of how the atad is delivered, any damage to a
target host is effeded via the system cdls made by a
processrunning onthe target host.”> Thus, it is possble
in theory to deted all attadks by observing ony the
system cdls made by processes exeauting onthe hosts
comprising the system, and to prevent damage by fil-
tering ot damage-causing system cdls before they are
exeauted. Basing ou techniques on system cdl obser-
vation has an important advantage in its ability to de-
fend existing software gplicaions withou modifying

2 This observation daes nat hold for some denial-of-service
attadks such as ping-of-deah that exploit errors in operating
system kernel implementations. We monitor network padkets
to ded with this classof attads, but this approadh is not dis-
cused further in this paper.

their source @de. We therefore develop a high-level
spedficaion language cdled Auditing Spedfication
Language (ASL) for spedfying namal and abnamal
behaviors of processs as logicd assertions on the se-
quences of system cdls and system cdl argument val-
ues invoked by the process ASL spedficaions are
compiled into opimized programs for efficient detec-
tion o deviations from the spedfied behavior. When
discrepancies are deteded at runtime, automatic defen-
sive adions, also described in ASL, to contain or isolate
the damage ae initiated. A simple defense is to termi-
nate processes that deviate from spedfied behavior, but
this approach may nat be desirable since it may aert
attadkers that the dtadk has been deteded. Instead, we
may want to entrap attadkers into continuing their ac-
tivities © that we can observe and dacument their ac-
tions. This can be acomplished using isolation tech-
niques that enable the compromised processto continue
to run, while ensuring that the process canna damage
the rest of the system. As a result, the atadkers may
believe that they are succeealing, while in redity, they
are simply wasting their time and resources. Our defen-
sive readions are dso written in ASL, which enables a
close yet flexible cuding between detedion and reac-
tion cgpabilities.

Our behavioral asrtions are divided into two caego-
ries, similar to correaness properties of distributed
systems:

* locd corrednessassertions involving the adions
of asingle processin isolation, and

* noninterference a&<rtions that ensure that the
concurrent adions of multiple proceses do nd
interfere with ore another

To ill ustrate the concept of locd corredness consider a
privileged program with a buffer overflow vulnerability
(such asthe f i nger d program exploited by the Inter-
net worm) that allows an attadker to exeaute the data
inpu to the program. Since the inpu data can be con-
structed to be amachine language program, the vulner-
ability allows exeaution o arbitrary programs with the
authority of the ataded program, which in the case of
fingerd isroot. A popuar attad to cause exeaution o
aprogram using execve() to exeaute "/usr/bin," thus
providing an interadive shell with root privilege, a-
though aher options are posshle. The popuar attadk
can be prevented by the spedficaion shown below,
which prevents the program from execve’ing arbi-
trary programs, while till permitting it to exeaute the
program(s) that it may need to exeaute in order to pro-
vide itsnormal function

execve(f) | f I= “/usr/ucb/finger”
-> exit(-1)

As explained in Sedion 4 the example reads as fol-
lows. Whenever fingerd attempts an execve()
system cdl, if the name of the file passed as the first
argument to execve() isnot /usr/ucb/finger

then an exit(-1) is performed before the
execve()

To illustrate the mncept of norrinterference consider
an attad that exploits a race ondtion in a privileged
program. The typicd race ondtion exists becaise in
an attempt to corredly manage file permisgonsin pro-
grams whose dfedive user and red user are different
(for example setuid to root programs), programmers
use two system cdls, access() and open() when
opening files. Both access() and open() ched
file permissons, but access() performs the ded
with resped to red user, while open() chedks with
resped to effedive user. Therefore, to ensure that the
privileged program does nat open a file for which the
red user does not have permisson, the access(),
open() pair is locdly sufficient. However, the se-
guence is insufficient when interference is posshle.
Ancther process can change the underlying file in be-
tween access() andopen() , so that the red user
has permissons for the file cheded by access() ,
but not for the file checked by open() . While this
appeas complicaed, from a pradica point of view the
second pocess merely neals to exeaute two UNIX"
commands, rm and link, to acomplish it. For
corred permisson cheding, we neeal to ensure that
access() andopen() are eeauted withou inter-
ference by ather processes. This requires that the data
read by access () is not modified by another process
before the completion o the open() . We cature
the non-interference requirement using the nation d an
atomic sequence, which has the semantics that if any
other processisales g/stem cdls that modify the datain
the @omic sequence we deted the modificaion as
violation d the spedficaion. In the example shown
below, the notation “a..b " stands for the occurrence
of an event a followed byevent b.

nonatomic (f) in
(access(f,mode) .. open(f)) -> exit(-1)

2.1. System Overview

UNIX is a registered trademark licensed exclusively
through X/Open Company Ltd.

Our intrusion detedion/prevention system consists of
an dffline and a runtime cmponrent as depicted in Fig-
uresland 2

The offline system generates detedion engines based

[M
Program with ; (ASL spedfica-
possble vulner- \‘Q’ tionfor moni-
abilities \ ‘/ i

Intended be-
havior of P '
(manual s/other

documentation)

Attadk adviso- C
ries, maili ng
lists, hacker web (.C o Class
Stes definition o M)

C++ Compiler

System Call
Detedion En-
gine

Figure 1 - Offline system for production of

detection engines

on the ASL behavioral spedficdions, and the runtime
system exeautes the generated engines. For eat pro-
gram P to be defended, a spedficaion M is developed
by a system seaurity administrator who is famili ar with
intended behavior of the P (as can be determined from
its manual pages or other documentation) as well as
spedfic known vunerabiliti es obtainable from sources
such as attadk advisories. The ASL compil er translates
Minto a C++ classdefinition, caled C. Cisthen com-
piled by the C++ compiler and linked with a runtime
infrastructure to produce adetedion engine. The run-
time infrastructure provides the mechanism for inter-
cepting system cdls; delivering them to the detedion
engine and poviding functions the detedion engine
uses to take resporsive adions.

Figure 2 shows how the detedion engines generated by
the offline comporent are used at runtime. When pro-
gram P exeautes as process V,, it is monitored using
objed Q, which is an instantiation o C. For simplicity,
we aame | isthe processID. System cdls made by
V, are intercepted by the system cdl interceptor just
before, and just after the system cdl's kernel level
functionality is exeauted. At ead interception, the sys-
tem cdl information is passd to Q through method
invocaion. The interception enables the system cdl
detedion engin€'s infrastructure and Q to deted se-

guences of system cdls requested by V, which deviate
from expedation, and to modify system cdl exeaution
to prevent deteded deviations from causing damage.

We implement the system cdl interceptor within the
operating system kernel. Other alternatives include in-
terception o system cdls as they passthroughthe sys-
tem cdl library, | i bc, or using the system cdl trac-
ing and process control fadliti es of many UNIX vari-
ants. However, these gproaches do nd offer the same
level of seaurity as our kernel-based approad, since

V.
]
(Processrunning

program P)

System Call Detedion
Engine

fiem Call Interceptor

-

Operating System Kernel

Figure 2 - Runtime system for execution of
detection engines

It is aso douliful that

they can be eaily bypassed.
either approach can be made & efficient as the kernel
approach since the kernel approach alone dlows inter-
ception and modificdion withou process context
switching.

2.2. Salient Features of Our Approach

» Prevention. The preventive aility makes it fea
sible to continue to alow the exeaution d pro-
grams that are known to contain exploitable vul-
nerabilities. Withou preventive ailiti es, the
potential of damageis © grea that use of vulner-
able programs must be prohibited urtil the pro-
gram is repaired. The same reasoning even ap-
pliesto programs from untrusted sources. With-
out asaurance of damage prevention, the danger
of damage from untrusted programs predudes
their exeaution, but with damage prevention,
even untrusted programs can be exeauted.

* Programmability enables a system administrator
to respond quickly to a newly discovered vuner-
ability, withou having to wait for a vendar-
suppied patch.

* Automated response. Unlike previous approaches
that focuseed mainly on intrusion detedion, our
approach integrates detedion and readion within
auniform framework, since both are contained in
the same spedficaion. Automation reduces the

ned for constant involvement of teams of human
experts, thus providing a more wst-effedive so-
lution.

e Deception. Our approach all ows the development
of readions that both isolate the atadked process
to prevent damage, and deceve the dtader into
believing that the atad is siccesul. Deception
enables us to observe and dacument attacker be-
havior, either for apprehending attadkers or to
gain a better understanding d the system vulner-
abiliti es.

e Dynamically tunable monitoring. Our technique
dlows the granuarity of monitoring to be
changed onthe fly at runtime. We can use alow-
level of monitoring undr normal condtions, but
can quickly incresse the level of monitoring
when errors or suspicious activiti es are detected.

3. Related Work

Use of a spedficaionbased approach for intrusion
detedion wasfirst proposed by Ko et al. [Ko94, Ko9g).
Similar to their approach, we model the behavior of a
process in terms of the system cdls and their argu-
ments. However, their approach analyzes logs of sys
tem cdlsto deted deviations from spedficaion, and so
are limited to pcst-attack detedion. Our system inter-
cepts ystem cdls as they exeaute, so in addition to
deteding ceviations, we can enforce the spedfied be-
haviors at runtime to prevent damage. Runtime detec-
tion demands efficient exeaution d spedficaions, so
our spedficdion language design emphasizes effi-
ciency. [Ko96 uses a spedficaion language based on
context-free grammars augmented with state variables,
while our spedficaion language is closer to regular
languages augmented with state variables. Use of
regular languages allows the compilation o spedfica
tions into an extended finite-state auitomaton (EFSA),
which is a finite-state machine that is augmented with
state variables. Such an EFSA permits efficient runtime
cheding, while using boundd resources (CPU or
memory) that can be determined a priori. In addition,
we believe that regular languages makes our spedfica
tions easier to understand and more cncise. Although
regular grammars are less expressve than context-free
grammars, the difference is much less pronourced
when these grammars are augmented with state vari-
ables.

Forrest et al. [Forrest97, Kosoresow97] developed in-
trusion cetedion tedhniques inspired by immune sys-
tems in animals. They charaderize “self” for a UNIX
processin terms of sequences of system cdls that are
made by the processunder normal condtions. Intrusion
is deteded by monitoring for “foreign” system cdl se-

guences. Their reseach results are largely comple-
mentary to ous, in that their main focus is on learning
normal behaviors of processes, whereas our focus is on
specifying and enforcing these behaviors efficiently.

Goldberg et al. [Goldberg96] developed the Janus envi-
ronment for confining helper applications (such as
those launched by web-browsers) so that they are re-
stricted in their use of system cdls. Like our tedh-
niques, their techniques prevent unauthorized opera-
tions, such as attempts to modify auser’s. | ogi n file.
But their approach is more of a finer-grained access
control mecdhanism rather than an intrusion detedion o
prevention mechanism. The key distinction between the
two medianisms is as follows. Access control meda-
nisms restrict access rights for eat process to the
minimum rights required for the process s functionality,
while intrusion detedion erify that a process uses its
accessrights in the intended fashion. For instance, at-
tadks based onrace ondtions and urexpeded interac-
tions among multi ple processes manifest themselves as
unintended use of access rights. Consequently, our
spedficaion language must be &le to express &
guencing relationships among multiple system cdls
made by ore or more processes, wheress Jnus only
permits restriction d accessto individua system cdls
made by a single process

Our approac to isolation has ©me similarities with the
approach uwsed in the Decetion Toodkit (DTK)
[Cohen9§). In particular, when an intrusion is deteced,
our approach enables defenses that decéave the atadker
with the illusion d success The DTK employs a simi-
lar strategy. However, with DTK, decedtion depends
uponenticing the atadker to use phony \ersions of the
attadked service The red serviceis nolonger available
at the DTK server, which contrasts with ou approad,
where standard server functionality is dgill present for
legiti mate uses.

As compared to ou ealier work in [Sekar98], this pa-
per presents a significantly improved version o ASL. It
also oulines an approach for compili ng the high-level
spedficaions into finite-state aitomata that perform
efficient runtime monitoring d process behavior. Im-
provements to ASL described in this paper are & fol-
lows. We have developed a more degant approach for
deding with race ondtions and aher smilar errors
that result due to interferencein data accesby multiple
processes. The pattern languege for behavioral spedfi-
cdion hes aso been improved by separating dfferent
classs of patterns. To further improve @nciseness of
spedficaions, the nation d event abstradions has been
introduced. Another important improvement is the

introdwction o an interface definition comporent to
ASL so asto decoude the ASL compiler from the spe-
cifics of the events monitored by the detedion engine.
As aresult, we can nov write ASL spedfications that
model system behaviors in terms of any observable
events, as oppased to being limited to olservation d
system cdls. Moreover, the ASL compiler need na be
changed to ded with these new event types — we sim-
ply neel to link the cde produced by the ASL com-
piler with appropriate runtime infrastructure that can
deliver these new events to the detedion engine.

4. Auditing Specification Language (ASL)

We model the behavior of a processin terms of the
system cdls the process makes. We tred these system
cdls as events, which have the general form
e@a,,...,a,), with e denoting the event name and
a,...,a, denoting the event arguments. Two events
are associated with each system call, namely the entry
to the system call and exit from the system call. We
distinguish system call entry events from system call
exit events by prefixing the $-symbol to exit events.

4.1. I nterface Declarations

The interface between the detection engine and the
monitored processes supports the conveyance of events
from the process to the detection engine, and the con-
veyance of response functions from the detection en-
gine to the monitored process. The functionality of the
interfaces isrealized via a set of interface functions that
deliver events to the detection engine and provide
mechanisms for invoking response actions. For gener-
dity, the functionality provided by the interface is
specified in ASL via interface declarations. These
declarations specify

e datatypes that can be exchanged over the inter-
face

« events delivered over the interface in terms of
their names, arguments and types

+ external functions’ provided by the interface that
can beinvoked by the detection code

We describe each of these components below.

4.1.1 ASL Data Types

Built-in types in ASL include bit, byte, short,
i nt,long, doubl e, and string. All of the inte-
gral types excluding bi t and byt e are either signed
or unsigned. Their sizes coincide with the norm for the
specific host for which the ASL specification is being

% We call the response function external functions to differen-
tiate them from internal functions that are built into ASL.

applied. The string type is a variable length byte array
prefixed with a 2-byte length field. ASL supports
multi-dimensional arrays of built-in types.

Foreign types, correspond to data that can be ex-
changed on one or more of the interfaces, but whose
representation is opaque to ASL. Foreign types are de-
signed with the intent of modeling data within the vir-
tual memory space of a monitored process. Depending
on the particular implementation approach used in the
detection engine, it may or may not be easy (or even
possible) to access such data directly. To address this
problem, we have developed class types that cannot be
directly accessed in ASL, but can only be accessed us-
ing member functions defined on the type. Class types
correspond to abstract data types. A sample class defi-
nition corresponding to a C-style string is:

class CString {
string getVal () const;
voi d setVal (string s);

}
A more complex definition suitable for manipulating
data associated the stat system call is given below.

cl ass StatBuf {
i nt getDev()const;
i nt getlno()const;
i nt get Mbde() const;

int getAt

i me()const;
int getMinme()const;
int getCtine()const;

Note that the return type of a member function could
itself be aforeign type. Whether a member function
changes the value of the objed or not is given by the
presence or absence of the const keyword in the dec-
laration d the function. This fad is used by the ASL
typechedker to ensure that expressons in ASL do nd
cause unexpeded errors when evaluated at runtime.

Since ASL spedficaions may be compiled into detec-
tion engines that run within an operating system kernel,
safety and reliability are espedally important. Two
important languege mechanisms in ASL that promote
safety and reliability are strong typing and the dsence
of pointer types.

4.1.2. External Functions

External functions are functions that are defined ouside
of the detedion engines, but can be accesd from the
detedion engines. Semanticdly, they are no dfferent
from member functions assciated with foreign types.
In ather words, member functions are simply external
functionsthat use adifferent syntax.

The primary purpose of external functions is to invoke
suppat functions needed by the detedion engine or
readion operations provided by the system cadl inter-
ceptors. For instance, when an event for opening a file
is receved by a detedion engine, the detedion engine
may neel to resolve the symbadlic links and references
to “.” and “..” in the file name to oltain a canonicd
name for file. The detedion engine may use asuppat
function dedared as follows to find the canoricd file

name:
string real path(CString s);

The detedion engine may aso need to ched the file's
access permissons, which may be dore using a sup-
port function dedared as foll ows:

St at Buf stat(const Cstring s);

In ASL system cdl names either represent an event
(i.e., invocdion d a system cdl by a monitored proc-
es9 or are a omporent of a readion taken by the de-
tedion engine (i.e., a statement in the areadion po-
gram). We use the same syntax for system cdlsin bah
cases, sincethe context resolves any ambiguity.

4.2. Modules

The ASL spedficaions are structured as a olledion o
parameterized modues, eatr of which consists of a
colledion d state variables and rules. State informa-
tion can be retained acossmulti ple rules within a mod-
uleviathe state variables.

As an aid to programmability, modues may be param-
eterized. Parameterization enables edficaion o ab-
strad behaviors that can be aistomized by providing
values for these parameters. A typicd use of param-
eterizdion is to allow a general-purpose modue to be
used in nealy identicd situations that differ only in a
few minor details. The process of generating a com-
pilable modue from a parameterized modue is known
as modue instantiation.

Ancther important role of modues is that they provide
a medhanism for dynamicdly dtering the degree of
monitoring, posshbly in resporse to suspicious events.
In particular, the ad¢ion swi t ch Mdul eNane can
be used to start monitoring with resped to a modue
named Modul eNane. It is also useful when a process
usestheexecve() system cdl to owerlay itself with a
new program. The swi t ch adion can then be used to
perform monitoring that is appropriate for the new pro-
gram. Findly, if a processis discovered to be ampro-
mised, we can ater the behavior of future system cdls
made by the processin such a fashion as to isolate the

process from the system. This may also be acom-
plished by switchingto a new spedfication.

4.3. Event Patterns

ASL general event patterns are used to spedfy valid or
invalid behaviors. An atomic pattern is of the form
ea,,...,a,) |C, where e denctes an event and C is a
bodean-valued expresson on a,,...,a,. C may contain
standard arithmetic, comparison and logicd operations.
C may also contain comparisons of the form x = expr
where x is hew variable, with the semantics being that
of binding the value of expr to x. A primitive patternis
obtained by combining atomic patterns with the dis-
junction operator | | , and pasbly precaling the entire
expresson with the complement operator ‘!’. As an
example of aprimitive pattern, consider:

I'((open(f)|real path(f)=/hone/*/.pl an)
[l (close(f))||(exit(f))

In this pattern, a shorthand ndation/ home/ */ isused
to refer to any diredory that is immediately contained
within / hone. The a&owve primitive event pattern cap-
tures al system cdls other than those for opening
“.plan” files, closing files or terminating processes.
(For ill ustrative purposes this example is smplified, it
does nat, for example, permit the opening d some nec-
essry files, such as dynamicdly loaded libraries.)

General event patterns are obtained by combining
primitive patterns using temporal operators. Such op-
erators enable us to cgpture sequencing a timing rela-
tionships among system cdls:

* Sequential composition: p,; p, denotes the event
pattern p, immediately followed by pttern p, .

+ Alternation: p,||p, denotes the occurrence of

either p, or p,.

* Repetition: p{n,;,n,} denotes at least n, repeti-
tions and at most n, repetitions of p. p{n,;} and
p{, n,} are shorthand for p{n,,e} and p{0,n,}
respedively. The notation pLC is dorthand for
p{0, oo} .

* Real-time constraints: p within [t ,t,] denotes
the occurrence of events correspondng to pattern
p occurring owver a time interval. The shorthand
for [0,1] is [t], whereas the shorthand for [t,e0] is
[t].

e Atomicity: nonatomic d in p corresponds to an
occurrence of pattern p within which the data
item d isnot accessed atomicaly.

For convenience we define the operator “..” that can be

oriy to |m|t|ve patterns. p, .. p,is equivalent
to pv('(pl P2)DiP2 e, p, followed by p,with
possbly other events occurring in between. The re-
striction that “..” be gplied orly to primitive patterns
is impaosed since the operator has unintuitive semantics
on ¢eneral event patterns.

We ill ustrate the use of temporal operators using sev-
eral simple examples below. Note that in general, we
wish to take readive adion when the behavior of a
monitored process fails to satisfy certain properties.
Hence, we typicdly develop petterns that are the nega-
tion d asertions describing namal behaviors.

e el;le2*; el asertsthat el must occur twice
with nointervening e2. This corresponds to the
negation d the property that e1 must always be

followed by e2 before asecond acurrence of
el.

e (el;'e2*) within [t,] captures viola
tion o property that el is followed by e2
within timet

e el;!le2*; e3 captures violation o property
where e2 must always occur between el and e3

e e{k} wthin [t] captures violation o
property that e occurs less than k times within
timet

4.4. Event Abstractions

An event abstradion is a @mnvenience mechanism al-
lowing programmer definition o abstrad events com-
prising arbitrary event patterns. Event abstradions
alow the programmer to name and trea complex event
patterns as if they were primitive events. To ill ustrate
the use of event abstradions, note that many UNIX
system cdls have overlapping functionality. When we
write behavioral spedficaions, it is cumbersome to
write several variants of the spedfication based onthe
exad system cdls used by a particular program. For
convenience, we group similar system cdls < that all
of the cdlsin ore group can be viewed as implementa-
tions of ahigher level abstrad system cdl. For instance,
the creat () and open() system cdls can bah be
used to open new files, so we define the abstradt event
wri t eOpen which captures this commonality. Then,
a single behavioral spedficaion wsing writ eOpen
can be used to monitor processes that open new files
using either cr eat () or open() .

event writeQpen(path) =
open(path, flags)
fl ags& O VWRONLY| O_APPEND| O_TRUNC) | |
open(path, flags, node)
fl ags& O VWRONLY| O_APPEND| O_TRUNC) | |
creat (path, node);

Code Example 1 - Definition of wri t eQpen()
Abstract Class

Different levels of abstraction may be desired in differ-
ent contexts, and hence there may be overlaps among
different user-defined abstract events. For instance, we
may have an abstract event that corresponds to
r eadOpen, and another that corresponds to any open,
regardless of whether it is for reading or writing. For
simplicity, we regtrict the definition of abstract events
to be primitive event patterns.

4.5. Rules

A ruleis of the form pat - action, where pat is a pat-
tern of the form described above, and action is a se-
guence of responsive steps to be initiated when an
event matching the pattern occurs. Actions may be
empty, variable assignment, function invocation, or
switch. Function invocation causes the specified func-
tion to be executed by the runtime infrastructure, and
thus may be used by the detection engine for purposes
such as reading or writing data in the monitored proc-
€ess, or executing arbitrary system callsin the monitored
process. The switch SpecNane action enables
switching to the behavioral specification named Spec-
Nare for monitoring.

5. Example Behavior Specifications
In this section we illustrate ASL using several example
specifications.

5.1. Finger Daemon

The following specification restricts the finger dae-
mon" so that it can open only specific files for reading,
cannot open any file for writing, cannot execute any
file, and cannot initiate a connection to any host. If any
specified behavior is attempted, the system call associ-
ated with the attempt does not execute. Instead, an error
code is returned or the process terminated. For events
whose arguments are not of interest, it is not necessary
to specify the arguments. We make use of a support
function, inTree, which determines whether a file
resides within a directory or its descendents. The ex-

* The specification pertains to the GNU finger program, and
in particular, the finger daemon running as the master server.
Note that GNU finger is implemented differently from the
BSD finger daemon, and does not need to execve the finger
program.

ample shows only a subset of those system calls that
must be disallowed for an adequate defense.

open(file, mode)|
((f = realpath(file)) &&
((f I= “/etc/utmp”) &&
(f '= “/etc/passwd”) &&
linTree(f,“/usr/spool/finger™)) ||
(mode = O_RDONLY))
-> fail(-1,EACCESS)
execve || connect || chmod || chown
|| charp || create || truncate
|| sendto || mkdir

-> exit(-1);

Code Example 2 - ASL Specification
for Monitoring f i nger d

5.2. Race Conditions

We illustrate two approaches to protect against race
condition attacks. Our first approach monitors for an
access() followed by an open() and ensures that
both use identical conditions for checking permission.
Identical in this case means that the effective user at the
time of open() isthe same as the real user at the time
of access().

Rprogl defines two state variables and an event ab-
straction for use in the rules defined subsequently. The
event abstraction simplifies the structure of the rules. In
the first rule, the comparisonsin accl event definition
bind the temporary variable ruid . Whenever the
monitored process performs an open() following an
access() on the same file, we temporarily set the
effective user 1D of the monitored process to the value
of the real user ID before the open() executes. Be-
fore doing this, we save the current value of the effec-
tive user ID in the state variable savedEuid , and set a
flag changedEuid to record that we have temporar-
ily changed the effective user ID. When open() com-
pletes, we use the values stored in the state variables to
restore the original effective user ID.

int savedEuid;
bit changedEuid;

event accl(name, ruid) =
access(name, mode)|(ruid = getuid());

accl(name, ruid)..open(namel, flags)|
(name = namel)

-> changedEuid = 1;
savedEuid = geteuid();
setreuid(-1,ruid);

$open(f, fl)|(changedEuid = 1)
-> changedEuid = 0;
setreuid(-1,changedEuid);

Code Example 3 - ASL Specification r Progl
for a Race Condition Vulnerability

The second dfense against the race vulnerability uses
the concept of atomic sequences. The racevulnerabil-
ity exists becaise two system cdls access() and
open() must be used to accomplish what is esentially
a single function, that is, opening a file with resped to
red user's permisgons. We can exeaute asequence of
system cdls as if they were dl a singe system cdl by
pladngthem in an atomic sequence & foll ows:

nonatomic (f) in
(access(f,md) .. writeOpen(f))
-> fail(-1,EACCESS)

An atomic sequence is a sequence of system cdls exe-
cuted by process P whose exeaution appeas not to be
interleaved with the system cadls of any ather concur-
rently exeauting process Atomic sequences are simil ar
to transadions in databases. Atomic sequences depend
on the definition d read and write sets for all system
cdls. We dso nae that runtime chedking o atomicity
requires coordination among the monitors for different
processs, sinceit depends nat only on the system cdls
performed by a process being monitored, but aso the
cdls made by ather process

5.3. Program from Untrusted Source

To ensure that a program from an urtrusted source does
not damage the host exeauting it, we want to ensure
that the program can read orly world readable files, can
write only within the /tmp diredory, canna exeaute
any programs, and canna perform network operations.

open(file, mode) |
[(linTree(realpath(file), “/tmp”) &&
(mode & (O_WRONLY|O_APPEND|
O_CREAT | O_TRUNO)))||
laccessible(realpath(file), mode,
“nobody™))
-> fail(-1,EACCESS);

exec || connect || bind || chmod ||
chown || chgrp || create ||
truncate || sendto || mkdir

-> exit(-1);

Code Example 4 - ASL Spedfication sandbox
for Untrusted Programs

5.4.Using Spedfication for Isolation

When we deted an attadk on processV, , we can use the
switch adion to switch to a spedficaion that con-
tains ASL rules to isolate V;. The isolation spedfica-
tion contains rules that modify the behavior of system
cdls made by V; in such a way that V, is prevented
from exeauting orerations that can damage the surviv-
able system. For example, the isolation spedficaion
can perform one or more of the following:

e return faked return value. When a system cadl
that can paentially damage the system isinvoked
by the isolated process we can prevent the sys-
tem cdl from being completed, and instead re-
turn afaked (but legitimate) return value.

* logthe adivity for later analysis.

* reduce limits on resources that the isolated proc-
esscan consume.

e redrict access to files We can use the
setuid() system cdl to change the dfedive
user ID of the processto that of a user with very
few accessrights and we can use the chroot()
system cdl to change the roat diredory of the
compromised process

To ill ustrate this idea consider the modification to the
previous edficaion for the finger daamon which
implements isolation. In particular, we introduce the
rule:

execve ->
chroot(“/altroot”); setuid(-1);

nice(100); switch ge nericlsolate;

Thisrule dhangestheroot of the monitored processto a
dey file system (cdl ed altroat), changes the user ID
to nobody reduces the priority of the process and fi-
nally switches to a new monitoring spedficaion caled
genericlsolate

module genericlsolate
connect
-> sleep(60); fail(-1,ETIMEDOUT);
bind

in
-> sleep(5); fail(-1,EADDRINUSE);
recv
-> sleep(1);
open
-> sleep(1);
end

Code Example 5 —ASL Spedfication

for Damage Prevention
As down, genericlsolate gives only a few of the
rules that would be needed for isolation. Since the iso-
lated processis operating in a deoy file system, file
system operations are dlowed. However, network op-
erations are restricted. Most operations are sowed
down using sleep() , so that the CPU and resource
usage of the atadked hast are reduced, but the dtadker
will probably attribute the delay to namal host or net-
work congestion.

6. Compilation of ASL

The main task in trandating an ASL spedficaioninto a
C++ classdefinition is to trandate the patterns into an
extended finite-state aitomaton (EFSA). An EFSA is

similar to a finite-state aitomaton, with the following
differences:

* |n addition to the control state of an FSA, an
EFSA can make use of a fixed set of state vari-
ables.

* The EFSA makes transitions based on events,
event arguments and condtions on event argu-
ments and state variables. The transitions may as-
signh rew values to state variables.

An EFSA may be deterministic (DEFSA) or nonceter-
ministic (NEFSA). For the sake of efficiency, we d-
ways prefer to generate aDEFSA rather than a NEFSA.
However, this is not aways possble & conversion o
NEFSA into a DEFSA can cause unaccetable explo-
sion in spacerequirements. For traditional FSA, every
nonckterministic automaton can be @nverted into an
equivalent deterministic automaton with at most an
exporential increase in the number of (control) states.
For performance aiticd applications (e.g., lexicd
analysis phase of a compiler), this increase in state
spaceis quite accetable, espedally becaise the worst
case behavior is unusual. For EFSA, the explosion in
Size is exporential in the product of the number of
control states and the range of values that can be &
sumed by eath of the auxiliary state variables. For in-
stance, a deterministic EFSA that is equivalent to a
nonceterministic EFSA with ore integer (32-bit) state
variable and N control states can have 2V'Z" states!
This problem leaves us with two choices:

* restrict the dassof ASL patterns 9 that they can
be compiled into DEFSA, or

e do nd convert an NEFSA into an EFSA, and
simulate the NEFSA at runtime.

Note that at runtime, the transitions of an EFSA are
represented in code, whereas its current state (which
includes the wntrol state and the state variables) is
stored in a data structure. Sincewe plan to combine dl
patterns in ore ASL spedficaion into a single EFSA,
there is only one instance of the transition relation at
runtime. To suppat nonceterminism, we permit multi-
ple instances of the dynamic state of the EFSA. These
multiple instances cgpture dl of the states the NEFSA
could have readed after examining its input up to this
point.

If an EFSA nedds to make atwo-way nondeterministic
transition onan event e, we perform a “fork” operation
onthe EFSA, i.e., replicae its current state. The replica
follows one of the non-deterministic choices, while the
parent foll ows the other choice This approac can lead
to an unbouned increase in the number of instances of

EFSA, but unbouneéd growth shoud happen orly
when certain unwsually repetitive sequences of system
cdlsare observed at runtime, and henceis nat a serious
issle in pradice We ae airrently working on tedh-
niques that can avoid unboundd growth by restricting
the dassof patterns permitted in ASL.

The dtarting pants for our algorithm for generating
EFSA from ASL patterns are the seminal papers by
Brzozowski [Brzozowski64] and Berry and Sethi
[Berry86]. However, these papers address regular ex-
pressons and classcd FSA, whereas we must address
condtions on event arguments and state variables that
can be complex data structures. Our ealier work on
first-order term-matching [Sekar95] provides the start-
ing pant for addressng this asped. By combining and
extending these two techniques, we developed an algo-
rithm for generating EFSA from a restricted class of
ASL spedfications. A detailed description d this algo-
rithm is beyond the scope of this paper, so we only
provide adescription d how we map an NEFSA into
C++ code.

At code generation time, the EFSA generated from
ASL spedficaionsisturned into a C++ class Spedfi-
cdly, one dassis generated from eat ASL spedfica
tion. This class has one member function for eath
event, and these member functions have the same hum-
ber and types of arguments as the event. When the
runtime infrastructure intercepts an event, it delivers it
to the gpropriate detedion engine by invoking the
correspondng member. For instance, the runtime infra-
structure invokes the open_ent ry method when a
monitored program enters an open system cdl, and the
open_exi t method when the processis abou to exit
this gystem cadl.

The trangitions in the EFSA are trandated into code &
follows. We maintain a list of adive EFSA instances at
runtime. When an event is delivered, we go through
the list of EFSA instances and for ead of them, make a
trangition besed onits current state and the newly de-
livered event. If multiple transitions exist out of the
current EFSA state for this event, then copies of the
EFSA are made (using the fork operation mentioned
ealier), so that there is one EFSA to make eab o
these transitions. If there is no transition for an EFSA
instance, then it is “kill ed” and any resources used for
the instance ae released.

7. Conclusions and Future Work

In this paper we presented an approach for intrusion
detedion that is based onspedfying the valid behaviors
of proceses in terms of system cdl sequences together
with constraints on the agument values that the proc-

eses can make. We described our spedficaion lan-
guage and illustrated it with several examples. Based
on these examples, we ae optimistic that concise and
clea spedfications of seaurity-related behaviors can be
developed with relative eae in the ASL language.
These examples aso indicae that the gproach can
successully prevent (or at least quickly deted) attadks.
Additional preliminary evidence in this context was
presented in [Sekar98] where we examined the atadk
advisories from CERTOover the past five yeas and
concluded that most of them can be deteded by ou

approach.

We ae ontinuing to refine and experiment with our
spedficaion language. We ae dso developing ago-
rithms for compiling ASL spedficaions into determi-
nistic EFSA, rather than nondeterministic EFSA. In
paralel, we ae dso in the process of developing me-
dium to large-scde experiments designed to assessthe
performanceimpad of our online monitoring approach.
Our preliminary indications are that indeed we can do
such monitoring wsing ou current, kernel-level inter-
ception approach easily, espedally since our EFSA
enable dficient cheking o spedficaion assrtions at
runtime.

References
[Anderson9g D. Anderson, T. Lunt, H. Javitz, A. Ta-
maru, and A. Valdes, Next-generation Intrusion De-
tedion Expert System (NIDES): A Summary, SRI-CS._-
95-07, SRI International, 1995

[Adam96] T. Adam, I. Krsul and E. Spafford, A Tax-
onamy of Seaurity Faults, National Computer Security
Conference, 1996

[Berry86] G. Berry and R. Sethi, From Regular Expres-
sions to Deterministic Automata, Theoretical Com-
puter Science 48 pp 117-126, 1986

[Bishop9q M. Bishop and M. Dilger , Chedking for
Race Condtions in File Access Computing Systems
9(2), pp. 131-152, 1996

[Brzozowski64] JA. Brzozowski, Derivatives of
Regular Expressons, Journal of ACM Vol. 11, No.4,
pp. 481-494, 1964

[Cai98] Y. Cai. A SpedficaionBased Approach for
Intrusion Detedion. M.S. Thesis, Department of Com-
puter Science, lowa State University, Dec1998

[CERT98] CERT Coordination Center Advisories
1988-1998
http://www.cert.org/advisories/index.html.

[Cheswick92] W.R. Cheswick, An evening with ber-
ferd, in which a dadker is lured, endured and studied,
Winter USENIX Conference, 1992

[Cohen98 Fred Cohen and Assaciates, The Deceotion
Todkit Home Page, http://www.all .net/dtk/dtk.html.

[Conret72] J. Conret et d., Software Defenses in Red-
Time Control Systems, |IEEE Fault-Tolerant Comp.
Sys., 1972

[Denning87 D. Denning, An Intrusion Detedion
Model, IEEE Trans. on Software Engineering, Feb
1987.

[Forrest97] S. Forrest, S. Hofmeyr and A. Somayaji,
Computer Immundogy, Comm. of ACM 40(10), 1997.

[Fox9(q K. Fox, R. Henning, J. Reed and R. Simonian,
A Neural Network Approach Towards Intrusion Detec-
tion, National Computer Security Conference, 199Q

[Goldberg96] I. Goldberg, D. Wagner, R. Thomas, and
E. Brewer, A Seaure Environment for Untrusted Helper
Applicaions, USENIX Security Symposium, 1996

[Hlady95 M. Hlady, R. Kovacevic, J. J. Li. et a., An
Approach to Automatic Detedion d Software Fail ures,
Proc. |IEEE 6" International Symposium on Software
Reliability Engineering, 1995

[Ilgun93 K. llgun, A red-time intrusion detedion
system for UNIX, IEEE Symp. on Security and Privacy,
1993

[Ko94 C. Ko, G. Fink and K. Levitt, Automated de-
tedion d vulnerabilities in privileged programs by
exeaution monitoring, Computer Security Application
Conference, 1994

[Ko9g C. Ko, Exeaution Monitoring d Seaurity-
Criticd Programs in a Distributed System: A Spedfi-
caion-Based Approadh, Ph.D. Thesis, Computer Sci-
ence, University of California at Davis, 1996

[Kosoresow97] A. Kosoresow and S. Hofmeyr, Intru-
sion cetedion va system cdl traces, |IEEE Software
'97.

[Kumar94] S. Kumar and E. Spafford, A Pattern-
Matching Model for Intrusion Detedion, National
Computer Security Conference, 1994

[Landwehr94] C. Landwehr, A. Bull, J. McDermott and
W. Choi, A Taxonamy of Computer Program Seaurity
Flaws, ACM Computing Surveys 26(3), 1994

[Lunt92] T. Lunt et a., A Real-Time Intrusion Detec-
tion Expert System (IDES) - Final Report, SRI-CSL-92-
05, SRI International, 1992.

[Lunt93] T. Lunt, A survey of Intrusion Detection
Techniques, Computers and Security, 12(4), June 1993.

[Mukherjee94] B. Mukherjee, L. Todd Heberlein, Karl
N. Levitt. Network Intrusion Detection, |EEE Network,
pp.26-41, May/June 1994.

[Porras92] P. Porras and R. Kemmerer, Penetration
State Transition Analysis - A Rule Based Intrusion De-
tection Approach, Computer Security Applications
Conference, 1992.

[Sekar95] R. Sekar, I.V. Ramakrishnan and R. Ramesh,
Adaptive Pattern Matching, SSAM Journal of Comput-
ing, 1995.

[Sekar98] R. Sekar, Y. Cai and M. Segal, A Specifica-
tion-Based approach for Building Survivable Systems,
21st National Information Systems Security Confer-
ence.

[Spafford91] E. H. Spafford. The Internet Worm Inci-
dent, Technical Report CSD-TR-993, Purdue Univer-
sity, West Lafayette, IN, September 19, 1991.

[Vankamamidi98] R. Vankamamidi. ASL: A specifica-
tion language for intrusion detection and network
monitoring. M.S. Thesis, Department of Computer Sci-
ence, lowa Sate University, Dec 1998.

[Yang98] G. Yang. A Real-time Packet Filtering Mod-
ule for Network Intrusion Detection System, M.S. The-
sis, Department of Computer Science, lowa Sate Uni-
versity, Jul 1998.

