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Abstract

Attacks which exploit memory programming errors
(such as buffer overflows) are one of today’s most seri-
ous security threats. These attacks require an attacker to
have an in-depth understanding of the internal details of
a victim program, including the locations of critical data
and/or code. Program obfuscation is a general technique
for securing programs by making it difficult for attackers
to acquire such a detailed understanding. This paper de-
velops a systematic study of a particular kind of obfusca-
tion called address obfuscation that randomizes the loca-
tion of victim program data and code. We discuss differ-
ent implementation strategies to randomize the absolute
locations of data and code, as well as relative distances
between data locations. We then present our implemen-
tation that transforms object files and executables at link-
time and load-time. It requires no changes to the OS ker-
nel or compilers, and can be applied to individual appli-
cations without affecting the rest of the system. It can be
implemented with low runtime overheads. Address ob-
fuscation can reduce the probability of successful attacks
to be as low as a small fraction of a percent for most
memory-error related attacks. Moreover, the random-
ization ensures that an attack that succeeds against one
victim will likely not succeed against another victim, or
even for a second time against the same victim. Each
failed attempt will typically crash the victim program,
thereby making it easy to detect attack attempts. These
aspects make it particularly effective against large-scale
attacks such as Code Red, since each infection attempt
requires significantly more resources, thereby slowing
down the propagation rate of such attacks.

1 Introduction

The C and C++ languages are popular primarily because
of the precise low-level control they provide over sys-
tem resources, including memory. Unfortunately, this
control is more than most programmers can handle, as
evidenced by the host of memory-related programming

errors which plague software written in these languages,
and continue to be discovered every day. Attacks which
exploit memory errors such as buffer overflows consti-
tute the largest class of attacks reported by organizations
such as the CERT Coordination Center, and pose a seri-
ous threat to the computing infrastructure.

To date, a number of attacks which exploit memory
errors have been developed. The earliest of these to
achieve widespread popularity was the stack smashing
attack [31, 27], in which a stack-allocated buffer is in-
tentionally overflowed so that a return address stored on
the stack is overwritten with the address of injected ma-
licious code. (See Figure 1). To thwart such attacks,
several approaches were developed, which, in one way
or another, prevent undetected modifications to a func-
tion’s return address. They include the StackGuard [11]
approach of putting canary values around the return ad-
dress, so that stack smashing can be detected when the
canary value is clobbered; saving a second copy of re-
turn address elsewhere [9, 6]; and others [16].

The difficulty with the above approaches is that while
they are effective against stack-smashing attacks, they
can be defeated by attacks that modify code pointers
in the static or heap area. In addition, attacks where
control flow is not changed, but security-critical data
such as an argument to chmod or execve system call
are changed, are not addressed. Recently, several new
classes of vulnerabilities such as the integer overflow
vulnerability (reported in Snort [34] and earlier in sshd
[35]), heap overflows [23] and double-free vulnerabil-
ities [2] have emerged. These developments lead us
to conclude that additional ways to exploit the lack of
memory safety in C/C++ programs will continue to be
discovered in the future. Thus, it is important to develop
approaches that provide systematic protection against all
foreseeable memory error exploitations.

As a first step towards developing more comprehensive
solutions against memory exploits, we observe that such
exploits require an attacker to possess a detailed under-
standing of the victim program, and have precise knowl-



— Stack Growth —

Base
Pointer

Return

Addresg

Function
Parameters

Local
Variables

Injected

Buffer Code

< Increasing Address —

Figure 1: A buffer overflow in which the current function’s return address is replaced with a pointer to injected code.

edge of the organization of data and code within the vic-
tim program memory. Code obfuscation is a general
technique that attempts to secure programs by making
them hard to understand. It is typically implemented us-
ing a set of randomized, semantics-preserving program
transformations [38, 10, 4]. While code obfuscation is
concerned primarily with preventing the understanding
and reverse engineering of binary code, our interest lies
in obfuscations which modify the internal runtime be-
havior of programs in ways that don’t affect the ob-
servable semantics, but do create unpredictability which
makes it difficult to successfully craft attacks which ex-
ploit memory errors.

Forrest, et.al. [17] suggested the use of randomized pro-
gram transformations as a way to introduce diversity into
applications. Such diversity makes it necessary for at-
tackers to analyze each copy of the victim program in-
dependently, thereby greatly increasing the cost of de-
veloping attacks. They presented a prototype imple-
mentation that performed one particular kind of random-
ization: the randomization of the addresses of stack-
resident data. Their implementation modified the gcc
compiler to insert a random amount of padding into each
stack frame. Our paper extends this basic idea, and
presents a systematic study of the range of address ran-
domizations that can be achieved using program trans-
formation.

Address obfuscation is a program transformation tech-
nique in which a program’s code is modified so that each
time the transformed code is executed, the virtual ad-
dresses of the code and data of the program are random-
ized. As we will show, this makes the effect of most
memory-error exploits non-deterministic, with only a
very small chance of success. Attackers are forced to
make many attempts on average before an attack suc-
ceeds, with each unsuccessful attack causing the target
program to crash, increasing the likelihood that the at-
tack will be detected. Moreover, an attack that succeeds
against one victim will not succeed against another vic-
tim, or even for a second time against the same victim.
This aspect makes it particularly effective against large-
scale attacks such as Code Red, since each infection
attempt requires significantly more resources, thereby

greatly reducing the propagation rate of such attacks.

The PaX project has also developed an ap-
proach for randomizing the memory regions oc-
cupied by program code and data, called Ad-
dress Space Layout Randomization (ASLR) (See
http://pageexec.virtualave.net for docu-
mentation on PaX project.) Rather than viewing address
obfuscation as a program transformation, they view it
as an operating system feature. In particular, they have
modified the Linux kernel so that it randomizes the
base address of different sections of memory, such as
the stack, heap, code, and memory-mapped segments.
A key benefit of this approach is that it requires no
changes to individual applications (other than having
the compiler generate position-independent code).
However, since the approach incorporates no analysis
of the applications, it is difficult to perform address
randomizations beyond changes to the base addresses
of different memory segments. In contrast, a program
transformation approach will permit randomization of
the locations of individual variables and routines within
these memory sections. Such randomization makes
it difficult to carry out attacks that rely on relative
distances between variables to modify critical data, e.g.,
a string used as an argument to execve. Moreover,
it introduces significant additional diversity into the
program, as it is no longer possible to craft attacks by
knowing just the offsets in the base address of various
memory segments. (These offsets can potentially be
learned by exploiting vulnerabilities that may allow
attackers to read contents of victim program memory
without crashing it.)

The current generation of compilers and application bi-
nary interfaces limit how much randomization is possi-
ble, and at what stage (compile-time, link-time, load-
time or runtime) such randomization can be performed.
Our implementation focuses on techniques that can be
smoothly integrated into existing OS environments. The
key contribution of this paper is to develop and ana-
lyze the range of address obfuscations that can be im-
plemented effectively with low runtime overheads. The
principal benefits of this approach are:

e [t systematically protects against a wide range of at-
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Figure 2: Targets of memory error exploits, and effectiveness of defenses against them.

tacks which exploit memory programming errors, in-
cluding stack smashing, heap-overflow, integer over-
flow, and typical format-string attacks.

e [t can be easily applied to existing legacy code with-
out modifying the source code, or the underlying op-
erating system. Moreover, it can be applied selec-
tively to protect security-critical applications with-
out needing to change the rest of the system.

e The transformation is fast and introduces only a low
runtime overhead.

Applicability to legacy code without source-code or op-
erating system changes provides an easy migration path
for existing systems to adopt address obfuscation. Such
a solution can also be ported more easily to proprietary
operating systems. Finally, the approach can be easily
combined with existing techniques, such as Stackguard
and Formatguard, to provide additional security.

1.1 Overview of Address Obfuscation and How it
Works.

We start with the observation that the goal of an attacker
is to cause the target program to execute attack-effecting
code. This code itself may be provided by the attacker
(injected code), or it may already be a part of the pro-
gram (existing code). A direct way to force execution
of such code is through a change to the control flow of
the program. This requires the attacker to change a code
pointer stored somewhere in memory, so that it points to
the code of their choice. In such a case, when the cor-
rupted code pointer is used as the target of a jump or
call instruction, the program ends up executing the code
chosen by the attacker. Some natural choices for such
code pointers include the return address (stored on the
stack), function pointers (stored on the stack, static area
or the heap), the global offset table (GOT) that is used
in the context of dynamic linking, and buffers storing

longjmp data. An indirect way to force execution of
attack-effecting code is to change security-critical data
that is used by the program in its normal course of ex-
ecution. Examples of such data include arguments to a
chmod or execve system call, variables holding secu-
rity critical data such as a flag indicating whether a user
has successfully authenticated herself, etc.

There are essentially two means by which an attacker
can exploit a memory error: by overwriting a pointer
value, or by overwriting non-pointer data. Since code
sections cannot be overwritten in most modern operating
systems, there are three possible combinations of goals
and means: corrupting a code-pointer, corrupting a data-
pointer, or corrupting non-pointer data. Of these, the two
pointer-corrupting attacks involve overwriting a pointer
with the address of data or code chosen by the attacker.
These two kinds of attacks require the attacker to know
the absolute address of such data or code, and hence we
call them absolute address-dependent attacks. The third
kind of attack is called relative address-dependent, be-
cause it does not overwrite pointers, and requires only
relative address information — in particular, an attacker
needs to know the relative distance between a buffer
(which is overrun) and the location of the data item to be
corrupted. Figure 2 shows these three classes of attacks,
further subdivided based on the pointer or data value that
is targeted by an attack. It shows which of today’s pro-
tection schemes (including ours) protect against them.
As it shows, Stackguard, Libverify and RAD protect
against buffer overrun attacks that overwrite the return
address. PointGuard [13] is an approach that encrypts
stored pointer values (by xor-ing them with a random
number). It can be thought of as obfuscating pointer val-
ues as opposed to the addresses pointed by them. The
benefit of their approach is that the probability of an at-
tack making a successful guess is smaller than with ad-



dress obfuscation. A drawback is that it does not pro-
vide protection against attacks that modify non-pointer
values, e.g., attacks that modify critical data, or inte-
ger subscripts. A concrete example of such an attack
is the recent integer overflow exploit [20], which is pro-
tected by address obfuscation. The PaX project’s ASLR
approach provides protection against pointer-based at-
tacks in much the same way as address obfuscation, but
not against data attacks that exploit relative distances be-
tween variables. A more detailed comparison of our ap-
proach with these approaches can be found in Sections 5
and 3.

1.2 Organization of the Paper.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe several possible obfuscating trans-
formations, and describe our implementation approach.
Section 3 discusses the effectiveness of our approach
against different attacks, and analyzes the probability of
mounting successful attacks. Runtime overheads intro-
duced by our approach are discussed in Section 4, fol-
lowed by a discussion of related work in Section 5. Fi-
nally, Section 6 provides a summary and discusses future
work.

2 Address Obfuscation

2.1 Obfuscating Transformations

The objectives of address obfuscation are to (a) random-
ize the absolute locations of all code and data, and (b)
randomize the relative distances between different data
items. These objectives can be achieved using a combi-
nation of the following transformations:

I. Randomize the base addresses of memory regions.

By changing the base addresses of code and data seg-
ments by a random amount, we can alter the absolute
locations of data resident in each segment. If the ran-
domization is over a large range, say, between 1 and 100
million, the virtual addresses of code and data objects
become highly unpredictable. Note that this does not in-
crease the physical memory requirements; the only cost
is that some of the virtual address space becomes unus-
able. The details depend on the particular segment:

1. Randomize the base address of the stack. This trans-
formation has the effect of randomizing all the ad-
dresses on the stack. A classical stack-smashing at-
tack requires the return address on the stack to be set
to point to the beginning of a stack-resident buffer
into which the attacker has injected his/her code.
This becomes very difficult when the attacker cannot
predict the address of such a buffer due to random-
ization of stack addresses. Stack-address randomiza-

tion can be implemented by subtracting a large ran-
dom value from the stack pointer at the beginning of
the program execution.

2. Randomize the base address of the heap. This trans-
formation randomizes the absolute locations of data
in the heap, and can be performed by allocating a
large block of random size from the heap. It is
useful against attacks where attack code is injected
into the heap in the first step, and then a subsequent
buffer overflow is used to modify the return address
to point to this heap address. While the locations
of heap-allocated data may be harder to predict in
long-running programs, many server programs be-
gin execution in response to a client connecting to
them, and in this case the heap addresses can become
predictable. By randomizing the base address of the
heap, we can make it difficult for such attacks to suc-
ceed.

3. Randomize the starting address of dynamically-
linked libraries. This transformation has the effect of
randomizing the location of all code and static data
associated with dynamic libraries. This will prevent
existing code attacks (also called return-into-libc at-
tacks), where the attack causes a control flow trans-
fer to a location within the library that is chosen by
the attacker. It will also prevent attacks where static
data is corrupted by first corrupting a pointer value.
Since the attacker does not know the absolute loca-
tion of the data that he/she wishes to corrupt, it be-
comes difficult for him/her to use this strategy.

4. Randomize the locations of routines and static data
in the executable. This transformation has the effect
of randomizing the locations of all functions in the
executable, as well as the static data associated with
the executable. The effect is similar to that of ran-
domizing the starting addresses of dynamic libraries.

We note that all of the above four transformations are
also implemented in the PaX ASLR system, but their
implementation relies on kernel patches rather than pro-
gram transformations. The following two classes of
transformations are new to our system. They both have
the effect of randomizing the relative distance between
the locations of two routines, two variables, or between a
variable and a routine. This makes it difficult to develop
successful attacks that rely on adjacencies between data
items or routines. In addition, it introduces additional
randomization into the addresses, so that an attacker that
has somehow learned the offsets of the base addresses
will still have difficulty in crafting successful attacks.

II. Permute the order of variables/routines.

Attacks that exploit relative distances between objects,
such as attacks that overflow past the end of a buffer to



overwrite adjacent data that is subsequently used in a
security-critical operation, can be rendered difficult by a
random permutation of the order in which the variables
appear. Such permutation makes it difficult to predict
the distance accurately enough to selectively overwrite
security-critical data without corrupting other data that
may be critical for continued execution of the program.
Similarly, attacks that exploit relative distances between
code fragments, such as partial pointer overflow attacks
(see Section 3.2.3), can be rendered difficult by permut-
ing the order of routines. There are three possible rear-
rangement transformations:

1. permute the order of local variables in a stack frame
2. permute the order of static variables

3. permute the order of routines in shared libraries or
the routines in the executable

I11. Introduce random gaps between objects.

For some objects, it is not possible to rearrange their rel-
ative order. For instance, local variables of the caller
routine have to appear at addresses higher than that of
the callee. Similarly, it is not possible to rearrange the
order of malloc-allocated blocks, as these requests arrive
in a specific order and have to be satisfied immediately.
In such cases, the locations of objects can be random-
ized further by introducing random gaps between ob-
jects. There are several ways to do this:

1. Introduce random padding into stack frames. The
primary purpose of this transformation is to random-
ize the distances between variables stored in differ-
ent stack frames, which makes it difficult to craft at-
tacks that exploit relative distances between stack-
resident data. The size of the padding should be rel-
atively small to avoid a significant increase in mem-
ory utilization.

2. Introduce random padding between successive
malloc allocation requests.

3. Introduce random padding between variables in the
static area.

4. Introduce gaps within routines, and add jump in-
structions to skip over these gaps.

Our current implementation supports all the above-
mentioned transformations for randomizing the base ad-
dresses of memory regions, none of the transformations
to reorder variables, and the first two of the transforma-
tions to introduce random gaps.

2.2 Implementation Issues

There are two basic issues concerning the implementa-
tion of the above-mentioned transformations. The first
concerns the timing of the transformations: they may be

performed at compile-time, link-time, installation-time,
or load-time. Generally speaking, higher performance
can be obtained by performing transformations closer to
compilation time. On the other hand, by delaying trans-
formations, we avoid making changes to system tools
such as compilers and linkers, which makes it easier for
the approach to be accepted and used. Moreover, per-
forming transformations at a later stage means that the
transformations can be applied to proprietary software
that is distributed only in binary form.

The second implementation issue is concerned with the
time when the randomization amounts are determined.
Possible choices here are (a) transformation time, (b)
beginning of program execution, and (c) continuously
changing during execution. Clearly, choice (c) increases
the difficulty of attacks, and is hence preferred from the
point of security. Choices (a) or (b) may be necessitated
due to performance or application binary interface com-
patibility considerations. For instance, it is not practical
to remap code at different memory locations during pro-
gram execution, so we cannot do any better than (b) for
this case. In a similar manner, adequate performance
is difficult to obtain if the relative locations of variables
with respect to some base (such as the frame pointer for
local variables) is not encoded statically in the program
code. Thus, we cannot do any better than choice (a) in
this case. However, choice (a) poses some special prob-
lems: it allows an attacker to gradually narrow down the
possibilities with every attack attempt, since the same
code with the same randomizations will be executed af-
ter a crash. To overcome this problem, our approach
is to periodically re-transform the code. Such retrans-
formation may take place in the background after each
execution, or it may take place after the same code is ex-
ecuted several times. With either approach, there still re-
mains one problem: a local attacker with access to such
binaries can extract the random values from the binary,
and use them to craft a successful attack. This can be
mitigated by making such executables unreadable to or-
dinary users. However, Linux currently makes the mem-
ory maps of all processes to be readable (through the
special file /proc/pid/maps), which means a local
user can easily learn the beginning of each memory seg-
ment, which makes it much easier to defeat address ob-
fuscation. In particular, the attacker can easily figure out
the locations of the code segments, which makes it pos-
sible to craft existing code attacks. This is a limitation
of our current implementation.

Our approach is to delay the transformation to the lat-
est possible stage where adequate performance is ob-
tainable. In our current implementation, the transfor-
mation is performed on object files (i.e., at link-time)
and executables. For ease of implementation, we have



fixed many randomizations at transformation time, such
as the gaps introduced within the stack frame for any
given function, the locations where libraries are loaded,
etc. This means that programs have to be periodically (or
frequently) re-obfuscated, which may be undesirable as
the obfuscation interacts with other security procedures
such as integrity-checking of executables. We therefore
plan to move towards options (b) and (c) in the future.

Next, we describe our approach for implementing most
of the above-mentioned transformations. Our imple-
mentation targets the Intel x86 architectures running
ELF-format [30] executables on the Linux operating
system.

2.3 Implementation Approach

Our implementation transforms programs at the binary
level, inserting additional code with the LEEL binary-
editing tool [40]. The main complication is that on most
architectures, safe rewriting of machine code is not al-
ways possible. This is due to the fact that data may be
intermixed with code, and there may be indirect jumps
and calls. These two factors make it difficult to extract a
complete control-flow graph, which is necessary in order
to make sure that all code is rewritten as needed, without
accidentally modifying any data. Most of our transfor-
mations, such as stack base randomization are simple,
and need to be performed in just one routine, and hence
are not impacted by the difficulty of extracting an accu-
rate control-flow graph. However, stack-frame padding
requires a rewrite of all the routines in the program and
libraries, which becomes a challenge when some rou-
tines cannot be accurately analyzed. We take a conserva-
tive approach to overcome this problem, rewriting only
those routines that can be completely analyzed. Further
details can be found in Section 2.3.4.

2.3.1 Stack base address randomization

The base address of the stack is randomized by extra
code which is added to the text segment of the program.
The code is spliced into the execution sequence by in-
serting a jump instruction at the beginning of the main
routine. The new code generates a random number be-
tween 1 and 10%, and decrements the stack pointer by
this amount. In addition, the memory region correspond-
ing to this “gap” is write-protected using the mprotect
system call. The write-protection ensures that any buffer
overflow attacks that overflow beyond the base of the
stack into the read-only region will cause the victim pro-
gram to crash.

2.3.2 DLL base address randomization

In the ELF binary format, the program header table
(PHT) of an executable or a shared library consists of

a set of structures which hold information about var-
ious segments of a program. Loadable segments are
mapped to virtual memory using the addresses stored
in the p_vaddr fields of the structures (for more de-
tails, see [30]). Since executable files typically use (non-
relocatable) absolute code, the loadable segments must
reside at addresses specified by p_vaddr in order to en-
sure correct execution.

On the other hand, shared object segments contain
position-independent code (PIC), which allows them to
be mapped to almost any virtual address. However,
in our experience, the dynamic linker almost always
chooses to map them starting at p_vaddr, e.g., this
is the case with 1ibc.so. 6 (the Standard C library)
on Red Hat Linux distributions. The lowest loadable
segment address specified is 0x42000000. Executa-
bles start at virtual address 0x08048000, which leaves
a large amount of space (around 927MB) between the
executable code and the space where shared libraries
are mapped. Typically, every process which uses the
dynamically-linked version of 1ibc.so.6 will have
it mapped to the same base address (0x42000000),
which makes the entry points of the 1ibc. so. 6 library
functions predictable. For example, if we want to know
the virtual address where function system () is going
to be mapped, we can run the following command:

$ nm /1ib/i686/1libc.so.6 | grep system
42049e54 T __libc_system

2105930 T svcerr_systemerr

42049e54 W system

The third line of the output shows the virtual address
where system is mapped.

In order to prevent existing code attacks which jump to
library code instead of injected code, the base address of
the libraries should be randomized. There are two basic
options for doing this, depending on when the random-
ization occurs. The options are to do the randomization
(1) once per process invocation, or (2) statically. The
trade-offs involved are as follows:

1. Dynamically randomize library addresses using
mmap. The dynamic linker uses the mmap system
call to map shared libraries into memory. The dy-
namic linker can be instrumented to instead call a
wrapper function to mmap, which first randomizes
the load address and then calls the original mmap.
The advantage of this method is that in every pro-
gram execution, shared libraries will be mapped to
different memory addresses.

2. Statically randomize library addresses at link-time.
This is done by dynamically linking the executable
with a “dummy” shared library. The dummy library
need not be large enough to fill the virtual address



space between the segments of the executable and
standard libraries. It can simply introduce a very
large random gap (sufficient to offset the base ad-
dresses of the standard libraries) between the load-
addresses of its text and data segments. Since
shared libraries use relative addressing, the segments
are mapped along with the gap.

On Linux systems, the link-time gap can be cre-
ated by using the 1d options -Tbss, ~Tdata and
-Ttext. For example, consider a dummy library
which is linked by the following command:

$ 1d -o libdummy.so —-shared
dummy.o -Tdata 0x20000000

This causes the load address of the text segment of
libdummy.so to be 0x00000000 and the load
address of data segment to be 0x20000000, cre-
ating a gap of size 0x20000000. Assuming the
text segment is mapped at address 0x40014000
(Note: addresses from 40000000 to 40014000
are used by the dynamic linker itself: /1ib/1d-
2.2.5.s0), the data segment will be mapped at
address 0x60014000, thereby offsetting the base
address of /1ib/i1686/1ibc.so.6.

The second approach does not provide the advantage of
having a freshly randomized base address for each in-
vocation of the program, but does have the benefit that
it requires no changes to the loader or rest of the sys-
tem. We have used this approach in our implementation.
With this approach, changing the starting address to a
different (random) location requires the library to be re-
obfuscated (to change its preferred starting address).

2.3.3 Text/data segment randomization

Relocating a program’s text and data segments is desir-
able in order to prevent attacks which modify a static
variable or jump to existing program code. The easi-
est way to implement this randomization is to convert
the program into a shared library containing position-
independent code, which, when using gcc, requires
compiling with the flag —~fPIC. The final executable
is created by introducing a new main function which
loads the shared library generated from the original pro-
gram (using dlopen) and invokes the original main.
This allows random relocation of the original program’s
text and data segments. However, position-independent
code is less efficient than its absolute address-dependent
counterpart, introducing a modest amount of extra over-
head.

An alternative approach is to relocate the program’s code
and data at link-time. In this case, the code need not be
position-independent, so no performance overhead is in-
curred, Link-time relocation of the starting address of

the executable can be accomplished by simple modifica-
tions to the scripts used by the linker.

Our implementation supports both of these approaches.
Section 4 presents the performance overheads we have
observed with each approach.

2.3.4 Random stack frame padding

Introducing padding within stack frames requires that
extra storage be pushed onto the stack during the ini-
tialization phase of each subroutine. There are two basic
implementation issues that arise.

The first issue is the randomization of the padding size,
which could be static or dynamic. Static randomization
introduces practically no runtime overhead. Dynamic
randomization requires the generation of a random num-
ber at regular intervals. Additionally, the amount of extra
code required for each function preamble is significant.
Moreover, if the randomization changes the distance be-
tween the base of the stack frame and any local variable
(from one invocation of a function to the next) then sig-
nificant changes to the code for accessing local variables
are required, imposing even more overheads. For these
reasons, we have currently chosen to statically random-
ize the padding, with a different random value used for
each routine.

The second issue concerns the placement of the padding.
As shown in Figure 3, there are two basic choices: (1)
between the base pointer and local variables, or (2) be-
fore parameters to the function:

1. Between the base pointer and local variables.

This requires transformation of the callee to modify
the instruction which creates the space for the local
variables on the stack. Local variables are accessed
using instructions containing fixed constants corre-
sponding to their offset from the base pointer. Given
that the padding is determined statically, the trans-
formation simply needs to change the constants in
these instructions. The main benefit of this approach
is that it introduces a random gap between local vari-
ables of a function and other security-critical data on
the stack, such as the frame pointer and return ad-
dress, and hence makes typical stack-smashing at-
tacks difficult.

2. Before parameters to the function.
This is done by transforming the caller. First, the set
of argument-copying instructions is located (usually
PUSH instructions). Next, padding code is inserted
just before these instructions. The primary advan-
tage of this approach is that the amount of padding
can change dynamically. Disadvantages of the ap-
proach are (a) in the presence of optimization, the
argument-pushing instructions may not be contigu-
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Figure 3: Potential locations of padding inserted between stack frames.

ous, which makes it difficult to determine where the
padding is to be introduced, and (b) it does not make
stack-smashing attacks any harder since the distance
between the local variables and return address is left
unchanged.

We have implemented the first option. As mentioned
earlier, extraction of accurate control-flow graphs can be
challenging for some routines. To ensure that our trans-
formation does not lead to an erroneous program, the
following precautions are taken:

e Transformation is applied to only those routines for
which accurate control-flow graphs can be extracted.
The amount of padding is randomly chosen, and
varies from 0 to 256, depending on the amount of
storage consumed by local variables, and the type of
instructions used within the function to access local
variables (byte- or word-offset). From our expe-
rience on instrumentation of different binaries, we
have found that around 95 — 99% of the routines are
completely analyzable.

e Only functions which have suitable behavior are in-
strumented. In particular, the function must have at
least one local variable and manipulate the stack in a
standard fashion in order to be instrumented. More-
over, the routines should be free of non-standard
operations that reference memory using relative ad-
dressing with respect to the frame pointer.

e Only in place modification of the code is performed.
By in place, we mean that the memory layout of the
routines is not changed. This is done in order to
avoid having to relocate the targets of any indirect
calls or jumps.

These precautions have limited our approach to instru-
ment only 65% to 80% of the routines. We expect that
this figure can be improved to 90+% if we allow modifi-
cations that are not in-place, and by using more sophis-
ticated analysis of the routines.

2.3.5 Heap randomization

The base address of the heap can be randomized using
a technique similar to the stack base address randomiza-
tion. Instead of changing the stack pointer, code is added
to allocate a randomly-sized large chunk of memory,
thereby making heap addresses unpredictable. In order
to randomize the relative distances between heap data, a
wrapper function is used to intercept calls to malloc,
and randomly increase the sizes of dynamic memory al-
location requests by 0 to 25%. On some OSes, includ-
ing Linux, the heap follows the data segment of the exe-
cutable. In this case, randomly relocating the executable
causes the heap to also be randomly relocated.

3 Effectiveness

Address obfuscation is not a foolproof defense against
all memory error exploits, but is instead a probabilis-
tic technique which increases the amount of work re-
quired before an attack (or sequence of attacks) suc-
ceeds. Hence, it is critical to have an estimate of the
increase in attacker work load. In this section, we first
analyze the effectiveness of address obfuscation against
previously reported attacks and attack variations (“clas-
sic” attacks). Then we discuss attacks that can be specif-
ically crafted to exploit weaknesses of address obfusca-
tion.
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Figure 4: Format of an attack which uses a large buffer overflow to increase the odds of success.

3.1 Classic Attacks

Address obfuscation provides good protection against
the majority of the “classic” attacks. Most of these at-
tacks involve overwriting of a single pointer or datum
without any ability to read the memory contents before
attacking. Against address obfuscation, an attacker is
forced to make guesses about the address of one or more
program values in order to succeed.

3.1.1 Stack Smashing Attacks

A classic stack-smashing attack is absolute address-
dependent, since the absolute address of the injected
code must be placed in the return address stored in the
stack frame. Let N be the size of the virtual address
space available for the initial random stack offset, and
assume that the stack offset is chosen randomly from
{0...N — 1} (with a uniform distribution). Further-
more, we don’t wish to allow an offset of zero, and
Linux requires that the stack pointer be a 32-bit word-
aligned address, which reduces the set of possible off-
sets to {4,8,...N}. (In this analysis, we assume that
the one-time offset NV is much larger than the effect of
stack-frame padding, and hence ignore the latter. The
purpose of stack-frame padding is to introduce signifi-
cant additional randomization into the addresses so that
attacks become difficult even if an attacker has somehow
learned the value of NV.)

Assuming the attacker knows the value of N, the at-
tacker can guess an address randomly and have a %
chance of success. Moreover, if the guess happens to
be wrong, then the program will likely crash, and will
have to be restarted. At this time, a new random value
for stack offset will be generated, which means that each
failure does not provide any information to the attacker.
Thus, the probability of a successful attack after k£ at-
tempts is given by 1 — (1 — 4)*. From this, it can be
shown that the probability of success approaches 0.5 af-
ter about % attempts.

The attacker can improve the odds of success by increas-
ing the size of the attack data. This can be done by writ-
ing to the buffer a block containing copies of a guessed
address G (enough copies to be relatively sure that the
return address is overwritten — in our implementation,

of the order of 256 copies), followed by a block of K
NOPs, and then the attack code. As long as G falls
somewhere in the block of NOPs (or directly equals the
first instruction of the inject code), the attack will suc-
ceed. This is illustrated in Figure 4, which shows the
overlap between the stack values (along the top), and the
attack data (along the bottom). When the current func-
tion returns, execution will jump to the guessed address
G, which the attacker hopes will be within the range of
the NOPs or the first instruction of the injected code.

The insertion of K NOPs increases the odds of success
by a factor of K to %, reducing the average number of
attempts for a reasonable chance of success to roughly
8%. Fortunately, K is limited in size because the at-
tacker must avoid writing to the read-only stack padding.
If the overflow runs into the read-only region, a seg-
mentation fault will occur, preventing the attack from
succeeding. This restricts the value of K to be much
smaller than N. C programs tend not to use too much
stack space; in the example programs of Figure 5, the
amount of average stack storage allocated ranged from
1 to 4 kilobytes. For such programs, the maximum ratio
of N to K will be 2.5 - 10%, and the odds of a single at-
tack succeeding will be ﬁ, resulting in about 3000
attempts, or 12 megabytes of data transmitted, for a rea-
sonable (= 0.5) probability of success. While this may
seem like a small number, note that:

e cvery failure will cause a branch to a random ad-
dress, which is highly likely to cause the target pro-
gram to crash, so an attacker is not simply free to
keep trying different addresses until an attack at-
tempt succeeds. Instead, the repeated crashing of the
program is likely to raise suspicion of the intruder’s
presence.

e the total amount of data that needs to be sent by the
attacker is obtained by multiplying the size of attack
data by the number of attack attempts. This number
will be of the order of %, and is largely independent
of the size of data used in each attack attempt.

3.1.2 Ecxisting code attacks

Existing code attacks, also called return-into-libc at-
tacks, typically involve overwriting the return address



on the stack with the address of existing code, typically a
function in the standard C-library, such as execve. The
arguments to this function will be taken from the stack,
which has been overwritten by the same buffer overflow
to contain the data chosen by attacker. In order for such
an attack to succeed, the attacker needs to guess the lo-
cation of the vulnerable function. With a randomization
of the order of 100MB, and given the constraint that the
base addresses of libraries and the executable must start
at a multiple of page size (4KB), the probability of suc-
cess is of the order of 4 - 1073,

Attacks that corrupt other stack-resident function point-
ers are all similar to an existing code attack, and the
probability of a successful attack remains the same as
with existing code attacks.

3.1.3 Format-String Attacks

A format-string vulnerability [33] occurs whenever a
program contains a call to the print £ family of func-
tions with a first parameter (format string) that is pro-
vided by an attacker. Since the format string provides a
great deal of control over the behavior of print f func-
tion, the ability of an attacker to provide a format string
can be likened to the ability to execute attacker-chosen
code. For this reason, most techniques developed to deal
with buffer overflows are not effective against format
string attacks.

The common form of this attack uses the somewhat ob-
scure $n format parameter, which takes a pointer to an
integer as an argument, and writes the number of bytes
printed so far to the location given by the argument.
The number of bytes printed can be easily controlled
by printing an integer with a large amount of padding,
e.g., $432d. The printf function assumes that the
address to write into is provided as an argument, i.e., it
is to be taken from the stack. If the attacker-provided
format string is stored on the stack, and if printf can
be tricked into extracting arguments from this portion
of the stack, then it is possible for an attacker to over-
write an arbitrary, attacker-specified location in memory
with attacker-specified data. Such an attack can be used
to change return values without trampling over canary
values used by StackGuard and other approaches.

The format-string attack described above is an absolute-
address dependent attack. It requires the attacker to
know the absolute location where the return address is
stored on the stack, and the absolute location where the
attack code is present. This means that the probability
of a successful attack using this approach cannot be any
larger than that for stack-smashing attacks.

Certain kinds of format-string vulnerabilities can be ex-
ploited to read stack contents. In particular, if the vulner-
able print £ (or variant) call is one that sends its output

to the attacker, then the attacker can potentially learn the
randomizations used in the program, and use this knowl-
edge to craft a successful attack. (See Section 3.2.1 for
details.)

3.1.4 Data Modification Attacks

Attacks which target non-pointer data values are one of
the most difficult to defend against. For instance, a string
which contains a shell command may be stored adja-
cently to the end of a buffer with an overflow vulnera-
bility. In this case, an attacker can overflow the buffer
with ASCII text containing a different command to be
executed. The success of the attack depends only upon
the relative distance between the buffer and the com-
mand string. Furthermore, even if the relative distance
is randomized, the attacker can use blank characters as
padding to increase the odds of success. If the attacker
pads the injected string with more blanks than the max-
imum increase in distance between the buffer and the
shell string, then the odds of success are high, especially
when the data is located in the static area. If it is lo-
cated on the stack, then the introduction of blanks (or
other padding characters) may corrupt critical data on
the stack, which may cause the program to crash. For
this reason, such padding may not be very successful for
stack-resident data.

Our current implementation provides limited protection
against this attack, in the case where the data resides on
the stack or heap. In the case of heap, if the overflow
attack overwrites critical data within the same malloc-ed
block as the target of the copy operation, then random-
ization does not help. Otherwise malloc randomization
is effective, with the effectiveness increasing proportion-
ately with the number of malloc blocks that are overwrit-
ten by the attack. Similarly, if the buffer and vulnerable
data appear on the same stack frame, our current imple-
mentation does not provide any help. However, if they
reside in different stack frames, then some level of pro-
tection is available, depending on the distance between
the buffer and the vulnerable data.

The scope of protection can be expanded using the tech-
nique presented in [16], where all of the sensitive data
(such as function and data pointers) can be located at
addresses below the starting address of any buffer. Since
the overflows can only move upward in memory, they
can never reach from the buffer to a sensitive data loca-
tion without crossing over into previous stack frames, in
which case the return address will be corrupted.

Our current implementation provides no protection
against relative address-dependent overflows that cor-
rupt data in the static area. A fuller implementation of
address obfuscation, which includes reordering of static
variables as well as padding between them, will indeed



provide a good degree of protection against data modifi-
cation attacks in the static area.

3.1.5 Heap Overflow and Double-Free Attacks

Due to the lack of adequate checking done by mal-
loc on the validity of blocks being freed, code which
frees the same block twice corrupts the list of free blocks
maintained by malloc. This corruption can be ex-
ploited to overwrite an arbitrary word of memory with
an arbitrary value [2]. A heap overflow attack achieves
the same effect through a buffer overflow that also cor-
rupts the data structures maintained by malloc [23].

Both of these are absolute address-dependent attacks,
and the protection provided by address obfuscation is
quite good, as the address of a single word is random-

. 8 .
ized over 1% possible values.

3.1.6 Integer Overflow Attacks

Integer overflow attacks exploit an integer overflow to
bypass runtime checks in a program. Since an integer
has a fixed size, an overflow during a computation causes
it to change its value in an undefined manner (typically,
the value “wraps around” from a large positive value to
a small negative one, or vice-versa). Due to the wrap-
around, boolean conditions which test the values of inte-
gers resulting from arithmetic overflow are often incor-
rectly evaluated. For example, if ¢ is sufficiently large,
the expression ¢ 4+ 5 can overflow, resulting in a nega-
tive value, and causing the condition ¢ + 5 > limit to
evaluate to false, when it should be true. This effectively
disables the bounds checking, allowing an overflow at-
tack to be performed in spite of the bounds checking.

The level of protection provided by address obfuscation
from these kinds of attack is the same as for normal
buffer overflow attacks. In particular, if the target cor-
rupted by an attack is a pointer, then the probability of
a successful attack is low. This was the case with the
recent Snort integer overflow vulnerability. If the attack
targets security critical data, then the protection is sim-
ilar to that for relative address attacks. In particular, a
good degree of protection is available for heap-resident
data, while the level of protection for stack resident data
is some what lesser. As an example, the sshd integer
overflow attack involved overwriting a critical piece of
string data with a null character, which was interpreted
by the sshd server to mean that no password was re-
quired for a user to log in. Address obfuscation provides
a good degree of protection against such an attack, while
some of the related approaches such as PointGuard can
be defeated by this attack.

3.2 Specifically Crafted Attacks

We have identified three specific attacks which can be
used to attempt to defeat address obfuscation when the
victim program contains the “right” vulnerability. These
occur when (1) a program has a bug which allows an
attacker to read the memory contents, or (2) an overflow
exists that can be used to modify two pointer values (a
buffer pointer and a function pointer), or (3) an overflow
can be used to overwrite just the lower part of a pointer.
In the case of (1), the attacker can craft an attack that
succeeds deterministically. In the case of (2) and (3),
the probability of success is significantly higher than the
classic attacks, but far from deterministic.

We note all of the attacks discussed in this section re-
quire vulnerabilities that are very uncommon. More-
over, although our current implementation is vulnerable
to these attacks, a full implementation of address obfus-
cation, employing all of the transformations described
in Section 2.1, and using dynamically changing random
values, will be much less vulnerable.

3.2.1 Read/Write Attacks

If a program contains a bug which allows an attacker
to print the values stored in arbitrary memory locations,
then most of the existing security schemes can be com-
promised if there is a vulnerability somewhere in the
program. In the case of address obfuscation, the attacker
can compare pointer values stored in the program against
a local, non-obfuscated copy, and possibly decipher the
obfuscation mapping. A specific instance of this occurs
when an attacker can control the format-string passed
to a printf, provided the vulnerable print statement
sends its output to the attacker [29]. Given such a vulner-
ability, an attacker can send a format string that would
cause the stack contents to be printed. From the out-
put, the attacker can guess with a high probability (or
with certainty, if no stack frame padding is used) the lo-
cations holding saved frame pointer and return address.
By comparing these values with those that can be ob-
served on their local version of the vulnerable program
that has not been obfuscated, the attacker can identify the
obfuscation mapping. Armed with this mapping, the at-
tacker can develop an attack that will succeed with a high
probability. This time, the attacker will use the standard
format-string attack that uses the n% directive.

We point out that changing just the base addresses of dif-
ferent memory regions, as done with PaX ASLR, does
not help with this attack. Most other techniques, such as
PointGuard and StackGuard are also vulnerable to this
attack. In the case of PointGuard, the obfuscated stack
can be compared to a non obfuscated process, and the
xor mask value can be inferred. In the case of Stack-
Guard, the stack can be examined to determine the ca-



nary value, and then stack smashing can be used.

Address obfuscation, as implemented now, seems to pro-
vide some additional protection over ASLR: it is no
longer possible to deterministically identify the location
of frame pointer or return address. But this added dif-
ficulty does not translate into additional protection: the
format-string based read attack does not cause the pro-
gram to crash, so the attacker can perform multiple at-
tacks to read the stack multiple times until he/she can de-
termine the frame pointer with certainty. However, if the
stack-frame padding is varied continuously at runtime,
then address obfuscation will provide significant degree
of protection. In this case, the location of the buffer, the
saved frame pointer, as well as the return address, will
change between the time the attacker read the contents
of the stack and the time he/she tries to modify the return
address. This will significantly decrease the chances of
a successful attack. Probability of a successful existing-
code attack can also be decreased significantly by using
the more general form of address obfuscation of code,
which involves reordering routines, etc.

3.2.2 Double Pointer Attacks

A program which contains a both a (preferably stack-
allocated) pointer to a buffer and a buffer overflow vul-
nerability can be exploited to work around obfusca-
tion. For example, consider the following code frag-
ment, which is similar to one suggested for defeating
StackGuard [7]:

void
f (char *user_inputl, char *user_input2) {
char *bufl = malloc(100);
char buf2[100];
strcpy (buf2, user_inputl);
strncpy (bufl, user_input2, 100);

The steps required to exploit this code are as follows.
First, the attacker can guess an address G likely to be
valid (somewhere in the heap is a good choice). Sec-
ond, the first strcpy to buf2 can be overflowed to
overwrite the the top stack locations with G, setting
both bufl and the saved return address to equal G.
Once this is done, the strcpy to bufl will copy
user_input2 to G. user_input2 should contain
the injected code. When the function returns, it will
jump to address G, which is the start of the code injected
viauser_input?2.

The probability of success with this attack is propor-
tional to the probability of guessing a valid address G in
memory. This probability is small for programs that use
small amounts of memory as compared to the amount
of randomization. For instance, if the program uses a
megabyte of memory, then the probability success (with

a 100MB padding) is one in a hundred. The same line of
reasoning holds with PointGuard: the attacker can over-
write buf 1 and the return address with GG, but these val-
ues will be interpreted as G xor M where M is the
xor mask used by PointGuard to encrypt pointers. This
means that the probability of success is proportional to
that of guessing a G such that G zor M corresponds
to a writable portion of the memory. This probability is
given by (size of data memory used by program)/(size of
address space), a quantity that is smaller than the corre-
sponding number for address obfuscation.

3.2.3 Partial Overwrite Attacks

A partial overwrite attack is an attack which overwrites
only part of a targeted value. For example, under the
x86 architecture, an overflow could overwrite just the
least significant byte of the return address. (This is hard
to achieve if the buffer overflow was the result of an
unchecked st rcpy or similar function, since the termi-
nating null character would clobber the rest of the return
address. Thus, we need a buffer overflow that does not
involve strings.) Since the only transformation made to
code addresses is that of changing the base address, and
since the quantity of change is constrained to be a multi-
ple of the page size (4096 bytes on Linux), the location
pointed by the return address is predictable when we we
change its last 8 bits.

If exploitable code (i.e., code that can be used as a tar-
get in the case of existing code attacks) can be found
within 256 bytes of the return address of a function with
buffer-overflow vulnerability, then this attack will work
against address obfuscation. However, it is very unlikely
that such exploitable code can be found, so the attack
suggested in [3] is more elaborate. Specifically, the at-
tack involves the use of a call to the print £ function
in the caller code that precedes the call to the function
with buffer overflow vulnerability. The attack then mod-
ifies the return address so that a return goes to the in-
struction that calls print f. The argument of the vul-
nerable function, which was attacker-provided, now be-
comes the argument to printf. At this point, the at-
tacker can print the contents of the stack and then pro-
ceed as with the case where a format string bug allowed
the attacker to read the stack contents.

Note that the stack-frame padding significantly increases
the difficulty of carrying out this attack. In particular,
there is a significant level of uncertainty (of the order of
128 bytes) in the distance between the vulnerable buffer
and the return address, which the attacker can overcome
only through guessing. If additional code address obfus-
cation transformations are used, (for instance, reordering
of routines or introducing gaps within routines) then the
attack becomes even harder.



Program Combination (1) Combination (2)
% Overhead | Standard Deviation || % Overhead | Standard Deviation
(% of mean) (% of mean)

tar -1 34 0 5.2
wu-ftpd 0 1.4 2 2.1
gv 0 6.1 2 7.1
bison 1 2.0 8 2.3
groff -1 1.1 13 0.7
gzip -1 1.9 14 2.5
gnuplot 0 0.9 21 1.0

Figure 5: Performance overhead introduced by address obfuscation.

4 Performance

We have collected performance data on the implementa-
tion of randomization of different memory regions. The
following randomizations were implemented:

e relocating the base of the stack, heap, and code re-
gions

e introduction of random gaps within stack frames,
and at the end of memory blocks requested by mal-
loc. The stack frame gaps were determined statically
for each routine, while the malloc gaps can change
with each malloc request.

We studied two different approaches for randomizing the
start address of the executable:

e Combination 1: static relocation performed at link-
time.

o Combination 2: dynamic relocation performed at
load-time.

Both approaches incorporate all of the transformations
mentioned above. Note that dynamic relocation requires
the executable be compiled into position-independent
code, which introduces additional runtime overheads.

Figure 5 shows the performance overheads due to the
two combinations of transformations. All measurements
were taken on an 800 MHz, Pentium III, 384 MB RAM
machine with Red Hat 7.3 Linux OS. Average execution
(system + user) time was computed over 10 runs. The
overheads measured were rounded off to the nearest in-
tegral percentage. (Further precision was meaningless,
given the standard deviations shown in the table.)

From the table, we see that combination (1) incurs
essentially no runtime overhead (note that the nega-
tive overheads are below the standard deviation and are
hence not statistically significant).

Combination (2) has noticeable runtime overhead. This
is because it requires position-independent code, which
is less efficient, since it performs extra operations before
every procedure call, and every access to static data. On

the other hand, when code is already being distributed in
DLL form, combination (2) provides broad protection
against memory error exploits without any additional
overhead.

5 Related Work

5.1 Runtime Guarding Against Stack-Smashing
and Format String Attacks

These techniques transform or augment a program to
protect the return address or other specific values from
being overwritten. Stackguard [11] is a modified version
of the gcc compiler in which the generated code places
canary values around the return address at runtime, so
that any overflow which overwrites the return address
will also modify the canary value, enabling the overflow
to be detected. StackShield [6] and RAD [9] are based
upon a similar modification to the compiler, but keep a
separate copy of the return address instead of using ca-
nary values. Libsafe and Libverify [6] are dynamically
loaded libraries which provide protection for the return
address without requiring recompilation. Etoh and Yoda
[16] use a source-code transformation approach which
uses both canary values and relocates stack-allocated ar-
rays so that they cannot overflow into local variables.
FormatGuard [12] transforms source code using a mod-
ified version of cpp (the C Preprocessor) combined with
a wrapper function for the print £ function, so that
format-string attacks are detected at runtime.

While these techniques are useful for guarding against
specific attacks, their drawback is that they can deal with
only a small subset of the total set of memory exploits
shown in Figure 2.

5.2 Runtime Bounds and Pointer Checking

These techniques prevent buffer overflows by check-
ing each memory access operation that can potentially
cause a memory error to ensure that it does not hap-
pen. Approaches used to insert the required checks have
included source-to-source translation [25, 5], specially



modified compilers [36, 22], binary rewriting [19], and
virtual machines/interpreters [24]. All of the above tech-
niques currently suffer from significant drawbacks: run-
time overheads that can often be over 100%, restriction
to a subset of C-language, and changes to the memory
model or pointer semantics. In contrast, the focus of this
paper is on techniques that produce very low overheads
and are fully compatible with all C-programs.

5.3 Compile-Time Analysis Techniques

Compile-time analysis techniques [18, 32, 37, 14, 26]
analyze a program’s source code to determine which
array and pointer accesses are safe. While these ap-
proaches are a welcome component of any program-
mer’s debugging arsenal, they generally suffer from one
or more of the following shortcomings: they do not de-
tect all memory errors, they generate many false positive
warnings, and/or they do not scale to large programs.
The focus of our work is the development of techniques
that require no additional effort on the part of program-
mers, and hence can be applied to the vast base of ex-
isting software, in binary form, with no programmer ef-
fort.

Hybrid approaches perform runtime memory-error
checking, but also use static analysis to minimize the
number of checks. CCured [28] and Cyclone [21] are
two recent examples of this approach. One difficulty
with these approaches is that they are not 100% com-
patible with existing C-code. Moreover, they disable ex-
plicit freeing of memory, and rely on garbage collection.

5.4 Code Obfuscation

Code obfuscation [38, 10, 4] is a program transforma-
tion technique which attempts to convolute the low-
level semantics of programs without affecting the user-
observable behavior, making obfuscated programs dif-
ficult to understand, and thereby difficult to reverse-
engineer. The key difference between program obfusca-
tion and address obfuscation is that program obfuscation
is oriented towards preventing most static analyses of a
program, while address obfuscation has a more limited
goal of making it impossible to predict the relative or ab-
solute addresses of program code and data. Other anal-
yses, including reverse compilation, extraction of flow
graphs, etc., are generally not affected by address obfus-
cation.

5.5 Randomizing Code Transformations

As mentioned earlier, address obfuscation is an instance
of the broader idea of introducing diversity in nonfunc-
tional aspects of software, an idea suggested by For-
rest, Somayaji, and Ackley [17]. Their implementation
model was called a randomizing compiler, which can

introduce randomness in several non-functional aspects
of the compiled code without affecting the language se-
mantics. As a proof of concept, they developed a mod-
ification to the gcc compiler to add a random amount
of padding to each stack allocation request. This trans-
formation defeats most stack-smashing attacks prevalent
today, but does not work against the large overflow at-
tacks of the sort described in Section 3.

In the past year or two, several researchers [8, 1, 39, 15]
seem to have independently attempted to develop ran-
domization as a practical approach to defeat buffer-
overflow and related attacks. Work by Chew and
Song [8] randomizes the base address of the stack, sys-
tem call numbers, and library entry points, through a
combination of a program loader modifications, ker-
nel system call table modifications, and binary rewrit-
ing. Xu, Kalbarczyk, and Iyer developed transparent
runtime randomization [39], in which the Linux ker-
nel is modified to randomize the base address of stack,
heap, dynamically loaded libraries, and GOT. The PaX
project’s address space layout randomization (ASLR)
approach [1] randomizes the base address of each pro-
gram region: heap, code, stack, data. Of these, the
ASLR approach is the most advanced in terms of its
implementation. As noted earlier, ASLR is vulnera-
ble to attacks that rely on adjacency information such
as the relative addresses between variables or code, and
attacks that can provide information about the base ad-
dresses of different memory segments. The introduction
of additional randomization in address obfuscation, in
the form of random-sized gaps within stack frames and
blocks allocated by malloc, reordering of (and ran-
dom padding within) code and static variables, can ad-
dress these weaknesses. Another important difference
between the above works and ours is that our obfusca-
tions are implemented using program transformations,
whereas the other works are implemented using operat-
ing system modifications. For this reason, our approach
can be more easily ported to different operating systems.
Moreover, it can protect individual (security-critical) ap-
plications without having to make any changes to the rest
of the system.

The PointGuard [13] approach complements ours in that
it randomizes (“encrypts”) stored pointer values, as op-
posed to the locations where objects are stored. The
encryption is achieved by xor’ing pointer values with a
random integer mask generated at the beginning of pro-
gram execution. It shares many of the benefits (such as
broad protection against a wide range of pointer-related
attacks) and weaknesses (susceptibility to attacks that
read victim process memory to identify the mask). The
principal differences are that (a) PointGuard does not
protect against attacks that do not involve pointer values,



e.g., attacks that modify security-critical data through a
buffer overflow, and (b) probability of successful attacks
is smaller with PointGuard than with address obfusca-
tion since the range of randomization can be as large as
the address space. It should also be noted that Point-
Guard is dependent on the availability of accurate type
information. Many C-language features, such as the
ability to operate on untyped buffers (e.g., bzero or
memcpy), functions that take untyped parameters (e.g.,
printf), unions that store pointers and integer values
in the same location, can make it difficult or impossible
to get accurate type information, which means that the
corresponding pointer value(s) cannot be protected.

6 Conclusion

We believe that address obfuscation has significant
potential to constrain the increasing threat of widely
spread buffer overflow-type of attacks. By randomly
re-arranging the memory space that holds a computer
program and its data during execution, the core vulner-
ability that buffer overflow attacks have been exploiting
is addressed — namely, the predictable location of con-
trol information and critical data. Unlike many existing
techniques, which deploy attack-specific mechanisms to
overcome known attack scenarios, address obfuscation
is a generic mechanism that has a broad range of appli-
cation to many memory error-related attacks.

Since each system is obfuscated differently, even if an
attacker successfully subverts one system on a network,
the attack will have to essentially start over from scratch
and make many attempts before a second system can
be subverted. In the context of self-replicating attacks,
this factor will greatly slow down the spread of worms
and viruses. Thus, address obfuscation provides a sim-
ple and effective solution to combat the spread of viruses
and worms which replicate by exploiting memory errors.

Our main goal for the future is to improve the quality of
randomization that can be done at the binary level. In
particular, we are interested in randomizing the relative
distances between objects in all regions of a program,
instead of just the stack and heap, as is the case with our
current implementation. There are basically two avenues
for this work. The first is a tool that works with existing
binary files. Such a tool will be restricted in the types of
obfuscations which can be applied, but will have a wide
potential impact. Addressing relative-distance issues re-
quires both inserting padding between and permuting the
order of data and code, which requires the relocation of
affected addresses. Performing these sorts of relocations
on binaries is not always feasible due to the difficulty of
distinguishing pointers from non-pointers, sizes of data
objects, and code from data. We plan on developing
better analysis tools, and combining this with a flexi-

ble transformation strategy that applies as many obfus-
cations as possible within the limits of the analysis.

The second avenue is to augment binaries with an extra
section that contains the information required to safely
perform relocations. This approach requires a relatively
minor change to the compiler infrastructure, as the in-
formation required is similar to the information already
being generated to support the linking of object mod-
ules. Given the extra information, a program can be ob-
fuscated at link- or load-time in a more thorough manner
which will change all relative and absolute addresses in
every program region.
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