Effective Function Recovery for COTS Binaries using
Interface Verification

Rui Qiao and R. Sekar
Stony Brook University

Stony Brook, NY, USA

ABSTRACT

Function recovery is a critical step in many binary anal-
ysis and instrumentation tasks. Existing approaches rely
on commonly used function prologue patterns to recognize
function starts, and possibly epilogues for the ends. How-
ever, this approach is not robust when dealing with different
compilers, compiler versions, and compilation switches. Al-
though machine learning techniques have been proposed, the
possibility of errors still limits their adoption.

In this work, we present a novel function recovery tech-
nique that is based on static analysis. Evaluations have
shown that we can produce very accurate results that are
applicable to a wider set of applications.

1. Introduction

Functions are among the most common constructs in pro-
gramming languages. While their definitions and declara-
tions are explicit in source code, at the binary level, much
information has been lost during the compilation process.
Nevertheless, numerous binary analysis and hardening tech-
niques require function information. For reverse engineering
tasks such as decompiling [16, 14, 25], function boundary
extraction provides the basis for recovering other high level
constructs such as function parameters or local variables. In
addition, many binary analysis and instrumentation tools
are designed to operate on functions. These include binary
differencing [15, 11], security policy enforcement [9, 24, 8,
31, 32], type inference [20], in-depth binary analysis such as
vulnerability detection [30], and more. Given this common
requirement, when function boundaries are not available, the
first task of many tools is to identify them [7, 17, 28, 9].

Identifying function boundaries is challenging for stripped
COTS binaries since they lack debug, relocation, or symbol
table information. In order to identify function boundaries,

*This work has been submitted to CCS 2016. The title and ab-
stract have been changed in this technical report, but the rest is
identical to what was submitted to CCS 2016.

TThis work was supported in part by grants from NSF (CNS-
1319137) and ONR (N00014-15-1-2378).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9... $15.00
DOI: 10.1145/1235

previous approaches employed a strategy that combines call
graph traversal and function prologue pattern matching [1,
7, 17]. Specifically, a binary is first recursively traversed
from its entry points (available from binary metadata sec-
tions), direct control flow transfers are followed, and any
targets of direct call instructions are marked function starts.
This procedure ends when no new code is reachable. How-
ever, since indirect control flow transfer targets cannot be
statically resolved, indirectly reachable functions are not
identified. To deal with this problem, function prologue pat-
tern matching is typically used for the “gap” area: if com-
monly used prologue patterns like push %ebp; mov %esp,
%ebp is matched, a function start is identified. The prob-
lem with this pattern matching based approach is that it
is not robust. For example, different compilers can use dif-
ferent prologue patterns. Moreover, compiler optimizations
can move code around therefore predefined patterns may not
be matched. The situation is exacerbated when supporting
binaries compiled with different compilers, using different
compiler versions, or different optimization levels/switches.
As a matter of fact, a study has shown that existing tools
have an unsatisfactory performance in correctly identifying
functions [6].

To overcome the limitation of pattern-matching, machine-
learning based approaches have been proposed for function
extraction [23, 6, 27]. The idea is to use a set of bina-
ries to train a model for function prologues (and optionally,
epilogues). This approach is beneficial because it builds a
more complete model, reduces manual efforts, and is able
to improve the accuracy to above 95%. However, like other
machine learning based approaches, their results are depen-
dent on a good training set, and may require some parameter
tuning. More importantly, the recovered boundaries are not
accurate enough for many downstream applications. One
prominent class is binary instrumentation, which has strin-
gent requirement for the quality of recoverd functions: take
the extensively studied control-flow integrity (CFI) [2, 35,
34, 31, 32] as an example, the results produced by above
systems cannot be easily used for instrumentation and en-
forcement because even a single unidentified function start
may break the instrumented binary.

In this work, we develop a static analysis based approach
for function boundary extraction. Unlike previous approaches,
all of which operate on a “best effort” basis, our approach
is designed to provide the soundness properties required for
several classes on instrumentation applications. Specifically,
we make the following contributions:

o [unction identification by checking function interface prop-


10.1145/1235

erties. We show that function interface properties, as
compared to function prologue patterns, can provide valu-
able evidence for function identification.

e Systematic approach. We show that functions can be
systematically recovered with a technique that combines
function start address enumeration and function interface
verification.

e In-depth evaluation. We perform comprehensive evalua-
tions with more than 1000 binaries compiled from three
different languages, three compilers, and four optimiza-
tion levels, and have achieved better results than state-
of-the-art machine learning based systems with a common
dataset.

e Soundness. A salient feature of our approach is that the
recoverd functions are not only of high quality, but are
also sound for many analysis and instrumentation appli-
cations.

2. Problem
2.1 Definitions

Program binaries are organized into sections. Each sec-
tion may contain code, data, metadata, or other auxiliary
information. A code section consists of a sequence of bytes
which is interpreted by the CPU as instructions and gets ex-
ecuted at runtime. There may be metadata about the code
sections (and data sections), most notably the symbol table,
which denotes the symbol type (e.g., function), start offset,
and size of each symbol. However, symbol tables are usually
stripped off before binaries are distributed.

A function is a sequence of bytes in a code section. These
bytes may not be physically contiguous, e.g., there could be
embedded data in the midst of a function. Functions can
be next to each other, or there can be extra padding bytes
between them.

Our task is to recover bytes belonging to each function.
Similar to prior work [6, 27], correctness is determined by
matching the start and end address for each function with
symbol table information. Note that start and end address
are determined by the smallest and largest address of all
bytes of the function, respectively.

2.2 Function Identification Challenges

Functions may not be directly reachable. Although a
fraction of functions in a binary are reachable from direct
calls, a significant number of functions are only reachable in-
directly. Identifying the exact set of function pointer values
is an undecidable problem in general, so call graph traversal
cannot be used to uncover all of the functions.

Unreachable functions. Note that some functions may
simply be unreachable. Such dead code may exist for several
reasons, e.g., when a compiler inlines a function at every call
site. While the recovery of reachable functions is critical for
all binary analysis and instrumentation applications, some
applications such as binary comparison and forensics require
the recovery of unreachable functions as well.

Compiler optimizations. To squeeze performance gains,
compilers may generate code in unusual ways. For instance,
contrary to the high level abstraction that a function has a
single entry point, a function in a binary may have multiple

entries. Moreover, instead of being entered via a call in-
struction, tail call optimizations results in the use of jumps
to enter a function. Because of these, it is challenging to
differentiate between intra- and inter-procedural control flow
transfers to determine whether the target is a function start.

2.3 Maetrics

We use the same metrics, precision, recall, and FI as in
previous work [6, 27]. Their definitions are as follows. In
these equations, TP denotes the number of true positives
for identified functions, FP denotes false positive, while FN
denotes false negatives.

TP
= — 1
Recall TP+ FN (1)
Note that recall captures the fraction of functions in the

binary that are correctly identified by an approach.

. TP
Precision = TP+ FP (2)
Note that precision represents the conditional probabil-
ity that a true function has been identified whenever our
approach reports a function.
Typically, these two metrics are combined using a har-
monic mean into a quantity called F1-score.

= 2 - Precision - Recall

3)

Precision + Recall
3. Background and Approach Overview

3.1 Disassembly

Disassembly is usually the first step for any binary analy-
sis. There are two major techniques for disassembly: linear
sweep and recursive traversal [26]. Each of these techniques
has some limitations: linear sweep may erroneously treat
embedded data as code, while recursive traversal suffers from
completeness problems due to difficulties in statically deter-
mining indirect control flow targets.

Recent advances have shown that robust disassembly can
be achieved with linear disassembly and error correction
mechanisms [35]. More specifically, the disassembly algo-
rithm works by first linearly disassembling the binary, and
then checking for errors such as (1) invalid opcode; and (2)
direct control transfer outside the current module or to the
middle of an instruction. These errors arise due to embed-
ded data and are thus corrected by identifying data start
and end locations so that disassembling can skip over them.
More details can be found in Reference [35].

Since the disassembly technique has been shown to be
correct for a wide range of complicated and low-level bi-
naries [35], in this work, we utilize the same technique for
disassembly. One benefit of having correct disassembly is
that only instruction beginnings are considered candidates
for function starts, rather than every byte in the program
text. Moreover, complete disassembly is the basis for in-
depth analysis, which provides further information for de-
termining function boundaries.

3.2 Overview of Approach

The key idea of our approach is that of enumerating pos-
sible function starts, and then using a static analysis to con-



firm them. From a high level, our approach works by itera-
tively uncovering definite or possible functions and verifying
them as desired. Directly reachable functions are identified
first, and then possible indirectly reachable functions are
enumerated and checked. Finally, unreachable functions are
handled.

Possible function start addresses are enumerated in two
ways. Directly reachable functions can be readily enumer-
ated. Moreover, no confirmation is needed for such func-
tions. For indirectly reachable functions, code addresses
buried in all binary sections serve as proper function start
candidates, while for unreachable functions, the first instruc-
tions of unclaimed code regions are considered.

Since functions interact with each other through inter-
faces, we can spot spurious functions by checking whether
they satisfy properties associated with function interfaces.
This includes how control flow can be directed to function
starts, and how arguments can be passed.

In the following sections, we elaborate on approaches for
enumerating possible function starts, determining function
boundaries, and verifying their interfaces.

4. Function Starts
4.1 Definite Start Identification

Functions, as seen from the assembly level, are code snip-
pets that are called. Therefore, with the disassembly ob-
tained using the approach described earlier, the targets for
direct call instructions are definite function starts. They are
first collected.

4.2 Possible Start Enumeration

As compared to directly called functions, some functions
are only reachable indirectly. As a register or memory loca-
tion is used as the operand, the target is not explicit. More-
over, static analysis cannot resolve the exact set of targets,
because it is an undecidable problem.

One property of indirectly reachable functions is that their
addresses are taken and stored somewhere in the binary. If
we were able to locate these addresses, the start points of
these functions can be identified. However, due to lack of
debug or relocation information, it is difficult to parse the
binary and tell which bytes are function addresses. To ad-
dress this problem, we consider all possible indirectly reach-
able function start addresses, and then check them based on
further mechanisms.

The naive approach for function start enumeration is to
regard each instruction as a candidate. However, as most
instructions in a binary are not function starts, this would
give us an unnecessarily large set for further (more expen-
sive) analysis and lead to unduly long analysis time.

Therefore, we need a much smaller yet safe superset. To
that end, we choose an approach that is similar to the static
analysis in BinCFI [35]. Specifically, we scan through the
code and data sections of the binary using an n-byte win-
dow to extract constants, where n is the number of bytes
for a word in the architecture. For each such constant, we
consider it as a candidate for a function start if it satisfies
the following properties:

e The constant address falls into the code segments;

e The constant address conforms with instruction bound-
aries.

The reason why the starts of indirectly reachable functions
are included in this set is that their addresses are taken and
stored in the binary, and a brute force scan would uncover all
of them. Note that this holds for both indirectly called func-
tions and those reached by indirect jumps (i.e., indirect tail
calls). Furthermore, as discussed and evaluated in BinCFI,
function pointers are typically not involved in pointer arith-
metic, therefore the identified constants are a safe superset.
On the other hand, as will be shown in Section 7.4.3, this is
a much smaller set than that which includes the address of
each instruction.

Despite smaller, this candidate set cannot be considered
as the exact set of indirectly reachable function starts, as
there are many spurious items. We point out these identified
constants can at least belong to the following categories:

1. True function pointers;
2. Other code pointers;

3. A byte sequence misinterpreted as function pointer can-
didate by coincidence.

Therefore, we would need further mechanisms to remove
the candidates belonging to the second and third category,
which are to be explained in Section 6.

4.2.1 Unreachable functions

Other than directly and indirectly reachable functions,
there are functions that are not reachable at all. For reasons
discussed in Section 2.2, we also try to identify unreachable
functions. The basic idea is to analyze the “gap” area, i.e.,
code regions that are not covered by already identified func-
tions. This procedure is performed after the determination
of directly reachable functions and verification of indirectly
reachable functions.

Because functions may have padding bytes after its end,
we consider the first non-NOP instruction in each gap as
a potential function start. The CFG is traversed and the
potential function end can be identified. If this potential
function does not take all the space of the current gap, the
remaining region is considered as a new gap, and the process
continues until all gaps have been analyzed.

Although our gap exploration seems similar to prior work
[1, 17, 7], there are several prominent differences. First,
we examine gap areas after indirectly reachable functions
are determined, therefore the regions left are much smaller.
Second, by skipping NOP instructions and embedded data
identified by our disassembly algorithm, we increase the like-
lihood that the starting byte of a gap is a function start.

Third, and most important, the identified functions are checked

to see if they conform to a function interface.

5. Function Boundaries

Other than function starts, we also want to identify their
corresponding ends: obviously, function boundaries are the
actual desired output. To identify function ends, control-
flow graph (CFQG) traversal is used. Specifically, from a
function entry, all possible paths are followed until control
flow exits the function. Note that for conditional jumps,
both branches are taken.

Note that although most functions exit with return in-
structions, there are cases where other control flow types
are used. For example, a function may call the exit function



08054070 <bfd_fopen>:

8054070 8b 44 24 04 mov O0x4 (%esp) ,%eax
8054074: 8b 54 24 08 mov 0x8(%esp) ,%hedx
8054078: 8b 4c 24 Oc mov Oxc (%esp) ,%ecx

0805407c <bfd_fopen.>:

805407c: 56 push %esi
805407d: 57 push %edi
805407e: 53 push %ebx
805407f: 55 push %ebp
8054080 83 ec 14 sub $0x14,%esp
8054083 8b f9 mov %ecx,%edi
8054085: 8b f2 mov Y%edx,%esi
8054087 : 6a 00 push $0x0
8054089 68 b4 00 00 00 push $0xb4
805408e: 8b e8 mov %eax,%ebp

Figure 1: An example function with multiple entries

to terminate the program. Mechanisms are required to deal
with such exceptional cases.

5.1 Non-return and Tail-Called Functions

To determine non-returning functions, a simple analysis
is developed. First, we collect a list of library functions
that are documented to never return. We then analyze each
directly reachable function of the binary. If it calls known
non-return function on each of its control flow path, it is also
recognized as a non-returning function and added to the list,
and so on.

Identification of tail calls serves two purposes: determin-
ing the end of the old function, and detecting start of the
new one.

The detection of tail call works by checking each direct
jump instruction in the analyzed binary:

1. If the target is a procedure linkage table (PLT) entry or
a known function start, it is recognized as a tail call.

2. If the target address is larger than next definite function
start, or smaller than the current function start, it is rec-
ognized as a tail call.

While the first case is straight-forward, the second case
works because jumping beyond the next function start indi-
cates inter-procedural control flow transfer, hence a tail call
is identified. In addition, according to our definition in Sec-
tion 2.1, a function start (and entry) is the smallest address
of all its bytes. Hence jumping to an address smaller than
current function start also indicates a tail call.

Note that our second case would work correctly with multi-
entry functions. Multi-entries are mostly generated by com-
piler to allow different interfaces into the function. There-
fore, the entry snippets are usually different straight-line
code prologues which lead to the shared function body, and
there is no control flow from an entry backwards to an-
other entry of smaller address. A typical multi-entry func-
tion is shown in Figure 1. In this example, bfd fopen and
bfd fopen. are two entries of the same function, and the
first entry takes arguments from stack while the second one
takes arguments from registers.

6. Interface Property Checking

As discussed in Section 4, non-function-starts could be in-
cluded in our list of possible function start address. There-
fore, their derived functions are spurious hence need to be
removed. We develop function interface verification mecha-
nisms for this purpose.

6.1 Control Flow Properties

Our control flow verification is based on a simple strategy:
targets reached by intra-procedural control flow transfers are
not function starts. Two cases are included: conditional
jumps and table jumps.

Conditional jumps are used for implementing two-way intra-
procedural branches and therefore not targeting functions.
Similarly, table jumps that are typically compiled from switch-
case statements are for multi-way branches. Different from
these control flows, functions are called.

Although conditional jumps and their targets are explicit,
situations are different for table jumps. A table jump is ba-
sically an indirect jump whose target value originates from
a jump table, the association with which is not explicit. We
therefore developed a static analysis for this purpose. Our
approach is similar to previous work [10, 22]: we perform
backwards program slicing from each indirect jump instruc-
tion, and then compute an expression for the jump target.
If the expression matches commonly used table jump pat-
terns, the indirect jump is recognized as a table jump. We
then extract the address of jump table and its bound, and
collect the target addresses inside that table. Finally, these
addresses are removed from the set for enumerated function
starts.

Note that we take a conservative strategy for our table
jump identification: whenever an indirect jump might not
be a table jump, we discontinue its further processing. More-
over, once the jump table bound cannot be precisely deter-
mined, we use the smallest value that is safe. This way
we will not incorrectly remove true function starts but only
keep more spurious ones, which can be checked with further
mechanisms.

6.2 Data Flow Properties

As discussed, control flow property verification may not
be sufficient for identifying (and discarding) all non-function
code pointers. Therefore, we use another interface verifica-
tion scheme that is based on data flow properties.

6.2.1 The stack interface

Our first data flow verification mechanism is concerned
with the stack interface: the proper use of return address
and arguments is checked. This is because, stack is not only
used by functions for local storage, but also for information
passing between callers and callees.

Since stack is operated by almost every function, one
might consider other stack related properties for function
verification. One possible alternative is stack pointer preser-
vation. The observation is that a function usually allocates
stack space at its prologue, and deallocates the same size
at the epilogue, therefore stack pointer is preserved for the
function invocation. On the other hand, if an internal in-
struction is misinterpreted as function start, then when this
“function” returns, the original epilogue would likely deallo-
cate stack space that was not allocated. In other words, the
stack pointer is not preserved and its value becomes larger



0805ce70 <get_date>: // real function start
805ce70: 55 push %ebp

805ce71: 57 push %edi

805ce72: 56 push Yesi

805ce73: 53 push %ebx

805d900: 5b pop %ebx // spurious function start
805d901: b5e pop %esi

805d902: 5f pop %edi

805d903: 5d pop %ebp

805d904: c3 ret

Figure 2: Stack pointer is not preserved for a spuri-
ous function

(assuming stack grows downwards), hence a spurious func-
tion is detected.

One such example is shown in Figure 2. In this code
snippet, address 0x805d900 has been identified as a func-
tion start candidate. However, its “function” body from
0x805d900 to 0x805d904 indicates that the stack pointer is
not preserved (increases by 16).

Although this criteria looks promising, the complication
is that stack pointer preservation does not always hold for
all functions. One such case is for functions that return a
struct: the caller allocates space for the struct (usually on
the stack), and pushes its pointer as the implicit first argu-
ment and then makes the call; the callee does not explicitly
return the struct, but just fills the content using the passed
pointer. When the callee returns, the implicit struct pointer
is popped by the callee. Therefore, this action would in-
crease stack pointer by 4 (for 32 bit architecture). Another
situation is closely related to calling conventions. Although
for cdecl calling convention (Figure 3) which is common for
the UNIX environment on x86-32 architecture, it is the caller
that cleans up the stack arguments and callee preserves stack
pointer, for other calling conventions such as stdcall and
fastcall, it is the callee that cleans up the stack arguments,
therefore leaving the stack pointer to a higher location.

Due to this problem, the simple stack pointer preservation
verification is not used. Instead, a more general and calling
convention agnostic mechanism is adopted. Specifically, the
following properties are verified:

e The return address should only be used by return instruc-
tions of the callee.

e The stack arguments and callee-save registers’ should be
properly used. More precisely, before function returns,
callee-save registers should be restored to their original
values, and not be assigned with stack arguments?.

Take the spurious function in Figure 2 as an example, the
“return address” is popped by instruction 0x805d900 to ebx,
and the “stack arguments” are saved to callee-save registers
esi, edi and ebx before the “function” returns. Hence it
violates both rules and fails the verification. Note that these
properties are commonly violated by spurious functions, as

lebx, esi, edi, ebp are callee-save registers for all common calling
conventions.

2Scratch registers such as eax, edx and ecx have no such restric-
tions and are not checked.

Calling convention | Stack cleanup by Argument passing
cdecl caller stack
stdcall callee stack
fastcall callee ECX, EDX then stack

Figure 3: Arguments passing for different calling
conventions

stack allocation and register preservation instructions which
“compensate” stack deallocation and register restores appear
at early parts of real functions and are typically not included
by spurious ones.

6.2.2 Register arguments and eflags

Data flows into a function may not be only through stack,
but also via registers. However, the eflags register is not
used as a means for information passing between functions.
For further data flow verification, our second mechanism
checks if only allowed registers are used for information pass-
ing.

Note that the rules for function argument passing are dic-
tated by calling conventions: i.e., whether arguments are
passed through stack or registers or both, and in what or-
der they are passed. Figure 3 shows the commonly used
calling conventions for UNIX environment. For each calling
convention, the first several arguments are passed using the
registers listed (if there are any), with the specified order.
The remaining ones are passed through stack. The allowed
register arguments are derived from the union of all com-
mon calling conventions, combined with other factors such
as regparm attribute of functions®.

On the other hand, the actual argument passing behav-
ior for a function can be inferred by analyzing its code. A
function’s register arguments are determined using liveness
analysis: if a register is live at “function” entry, we consider it
as an argument. This is because, the live register indicates
its use is before define in the function body, therefore it
must have been defined before the call and information is
passed through it. However, there is an exception: callee-
save instructions at function beginning “use” callee-save reg-
isters with the purpose of preserving them to stack. Since
this does not represent information passing, they should not
be considered as real uses. Our analysis currently adopts
a simple strategy by not considering commonly used callee-
save instructions (e.g., push%ebx) as register uses. With
the analysis results, a function is recognized as spurious if a
“non-argument” register is detected live at function entry.

Similarly, the information passing behavior through eflags
could also be analyzed through liveness analysis. Any live
flag would indicate intra-procedural data flow between the
interface and therefore fail the verification.

7. Evaluation

7.1 Dataset

We used two datasets for evaluation. Our first dataset is
the same as that used by most recent works in this area,
namely, ByteWeight [6] and the work of Shin et al [27].
Although our approach itself is platform-neutral, our cur-
rent implementation is limited to x86-32/Linux platform.

3The attribute allows the annotated function to pass 1-3 argu-
ments through registers, following the order: EAX, EDX, ECX.



Hence our comparison focuses on the subset of the results
for this platform. This dataset consists of 1032 binaries
from binutils, coreutils and findutils. They are com-
piled with GNU (gcc) or Intel (icc) compilers, from no
optimization to the highest optimization. These binaries
include 303,238 functions and totaling 138,547,936 bytes,
which gives a rough estimate of average function length of
449 bytes.

Our second dataset is the set of SPEC 2006 programs.
As compared to the first dataset, which are mostly operat-
ing system utilities written in C, SPEC programs are more
diverse in terms of their applications, as well as the program-
ming languages used (C, C++, Fortran). To compile these
programs, we used the GCC compiler family (gcc, g+ +,
and gfortran) and LLVM (clang, clang+ +), with the
most commonly used optimization level: —02.

7.2 Implementation

Our main analysis framework is implemented in Python,
and consists of about 2900 lines of code. For the disassm-
bler, we used objdump and reimplemented the error correc-
tion algorithm from BinCFI [35]. The main framework also
includes all major components described, including function
start identification, CFG traversal, and control flow analysis,
but not data flow interface verification.

The current implementation of the data flow interface ver-
ification is based on Jakstab [18] and therefore limited to the
x86-32 platform. Jakstab is an analysis platform that per-
forms abstract interpretation on binaries and identifies an
over-approaximation of the possible indirect targets, there-
fore it is able to resolve certain indirect control transfers.
However, this technique is limited due to precision loss in
the static analysis.

We used Jabstab mainly because it has an extensible data-
flow analysis framework. We first modified the interface of
Jakstab so that the analysis can work on a specified address
range, instead of the whole binary. For stack analysis, we
also defined our own abstract domain, which is similar to
the one described in Reference [24]. In short, each domain
element is a sum of a symbolic base value which denotes
the original register value upon function entry, and a con-
stant. The analysis produces at the function end the ab-
stract value of each register and memory location, and how
it has changed against the initial value.

Figure 4 shows the initial and end states from our anal-
ysis of the example described in Figure 2. In this figure,
the capitalized REG is the symbolic value denoting the initial
value of reg upon function entry. The right two columns
show the end states for “function” [0x805d900, 0x805d904]
and [0x805ce70, 0x805d904], respectively. For “function”
[0x805d900, 0x805d904], since callee-saved registers (ebx,
esi, edi, ebp) derive their value from “stack arguments,”
it is recognized as spurious. On the other hand, “function”
[0x805ce70, 0x805d904] passes stack usage verification. Note
that due to the approximations used in the analysis, some
register values could be set to TOP (i.e., unknown) at the end
of a function, but the interface properties can typically be
verified despite this.

The same analysis also keeps track of stack locations that
have been accessed. The ones above return address are con-
sidered as stack arguments and therefore their number can
be determined. For liveness analysis, we use the standard
backwards data-flow analysis algorithm by computing gen

Initial End state (for “function”
state [0x805d900, 0x805d904]

End state (for “function”
[0x805¢e70, 0x805d904]

ebx = EBX | ebx = *(ESP) ebx = EBX

esi = ESI esi = *(ESP + 4) esi = ESI

edi = EDI edi = *(ESP + 8) edi = EDI

ebp = EBP | ebp = *(ESP + 12) ebp = EBP
ret_addr = *(ESP + 16) | ret_addr = *(ESP)

Figure 4: The analysis states of example code

Func start Func boundary
Tool Precision | Recall F1 Precision | Recall F1
ByteWeight 0.9841 0.9794 | 0.9817 0.9278 0.9229 | 0.9253
Neural 0.9956 0.9906 | 0.9931 0.9775 0.9534 | 0.9653
Ours 0.9895 0.9962 | 0.9928 0.9818 0.9831 | 0.9824

Figure 5: Function boundary identification results
from different tools

and kill sets, for registers and eflags.

7.3 Summary of Results

Figure 5 summarizes function start and boundary iden-
tification results for the first dataset. Since the two most
recent work [6, 27] achieved good results and outperformed
previous tools (such as IDA), we only compare our results
with them. Because we tested with the same dataset, we
directly use the numbers reported by them.

As shown in the figure, our system produced better func-
tion boundary results than previous works. For function
start, our results are better than ByteWeight, and compara-
ble to the neural network system: while they achieved better
precision, we had higher recall, and the F1-scores are close.

7.3.1 Segmented Results

In this section, we present segmented results for our first
dataset, based on different compilers and optimization lev-
els. As shown in Figure 6, precision and recall are relatively
stable for all optimization levels, but have slight decrease
for higher levels. Moreover, our system performs better on
gce than icc binaries, probably due to the differences in
optimization techniques used.

7.4 Detailed Evaluation
7.4.1 SPEC 2006 Results

Figure 7 shows the function boundary identification re-
sults for our second dataset: SPEC 2006 programs. We
can see that our system performance is quite stable across
a wide range of applications written in three different lan-
guages (C, C++ and Fortran) and compiled with two com-
pilers (GCC and LLVM)*. Since prior work [6, 27] did not

4LLVM does not have an official frontend for Fortran, therefore
the corresponding experiments were omitted, and are denoted as
“” in the figure.

gce icc
Precision | Recall F1 Precision | Recall F1
00 0.9848 0.9932 | 0.9890 0.9841 0.9926 | 0.9883
O1 0.9986 0.9999 | 0.9992 0.9828 0.9926 | 0.9927
02 0.9964 0.9975 | 0.9970 0.9512 0.9462 | 0.9487
03 0.9954 0.9963 | 0.9958 0.9511 0.9461 | 0.9486

Figure 6: Segmented results



GCC LLVM

Program Language | Suite Reachable func start [ All func boundary Reachable func start [ All func boundary

Precision |  Recall | Precision | Recall Precision | Recall | Precision | Recall
400.perlbench [¢] int 0.9513 1.0000 0.9555 0.9994 0.9964 0.9957 (6) 0.9910 0.9904
401.bzip2 C int 1.0000 1.0000 0.9877 0.9877 1.0000 1.0000 0.9870 0.9870
403.gcc C int 0.9840 1.0000 0.9765 0.9910 0.9812 1.0000 0.9620 0.9825
429.mcf C int 1.0000 1.0000 0.9706 0.9706 1.0000 1.0000 0.9706 0.9706
445.gobmk [¢] int 0.9725 1.0000 0.9724 0.9992 0.9950 1.0000 0.9948 0.9988
456.hmmer C int 0.9956 1.0000 0.9960 0.9980 1.0000 1.0000 0.9937 0.9854
458.sjeng C int 1.0000 1.0000 0.9932 0.9932 1.0000 0.9905 (1) 0.9856 0.9786
462.libquantum C int 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
464.h264ref C int 0.9979 1.0000 0.9963 0.9981 0.9976 1.0000 0.9962 0.9962
433.milc C fp 0.9946 1.0000 0.9919 0.9959 1.0000 1.0000 0.9959 0.9959
470.1bm C fp 1.0000 1.0000 0.9643 0.9643 1.0000 1.0000 0.9630 0.9630
482.sphinx3 C fp 0.9955 1.0000 0.9941 0.9941 1.0000 1.0000 0.9970 0.9970
471.omnetpp C++ int 0.9988 1.0000 0.9658 0.9995 0.9929 0.9994 (1) 0.9915 0.9994
473.astar C++ int 1.0000 1.0000 0.9898 0.9898 1.0000 1.0000 0.9898 0.9898
483.xalancbmk C++ int 0.9895 1.0000 0.9650 0.9998 0.9801 1.0000 0.9808 0.9999
444 .namd CH++ fp 1.0000 1.0000 0.9905 0.9905 0.9787 1.0000 0.9717 0.9904
447 .dealll C++ fp 0.9759 1.0000 0.9786 0.9988 0.9542 1.0000 0.9724 0.9972
450.soplex C++ fp 0.9972 1.0000 0.9968 0.9989 0.9939 1.0000 0.9946 0.9989
453.povray C++ fp 0.9692 1.0000 0.9969 0.9994 0.9955 1.0000 0.9955 0.9994
410.bwaves Fortran fp 1.0000 1.0000 0.9412 0.9412 - - - -
416.gamess Fortran fp 0.9574 1.0000 0.9537 0.9948 - - - -
434.zeusmp Fortran fp 0.9063 1.0000 0.9222 0.9651 - - - -
435.gromacs Fortran fp 0.9931 1.0000 0.9937 0.9964 - - - -
436.cactusADM Fortran fp 0.9985 1.0000 0.9985 0.9992 - - - -
437.leslie3d Fortran fp 1.0000 1.0000 0.9375 0.9375 - - - -
454 .calculix Fortran fp 0.9840 1.0000 0.9851 0.9851 - - - -
459.GemsFDTD Fortran fp 1.0000 1.0000 0.9610 0.9487 - - - -
465.tonto Fortran fp 0.9901 0.9997 (1) 0.9682 0.9569 - - - -
481.wrf Fortran fp 0.9880 1.0000 0.9924 0.9927 - - - -
C average C both 0.9909 1.0000 0.9832 0.9910 0.9975 0.9988 0.9864 0.9871
C++ average C++ both 0.9901 1.0000 0.9791 0.9967 0.9850 0.9998 0.9852 0.9964
Fortran average Fortran fp 0.9817 1.0000 0.9653 0.9718 - - - -

[Average all | both | 0.9876 | 1.0000 | 0.9760 | 0.9857 | 0.9929 | 0.9992 | 0.9860 | 0.9905 |

Figure 7: SPEC 2006 results

test with SPEC, and have no evaluations on other languages
such as C++ or Fortran, only our results are presented.

C++ programs. One thing to note is that our function
boundary analysis for C+4 programs is a slightly different
from C and Fortran programs. This is due to the exception
handling feature of the C++ language. Specifically, C++
exception handling results in a stack unwinding operation,
followed by a control transfer to exception handler code (also
called a “landing pad”) in a caller. Since metadata is required
to guide this handling, ELF binaries contain such “call frame
information” in DWARF format in their .eh frame sections.

We need to properly deal with C++ exception handling
because it is a special form of indirect control transfer. If
it is not considered, our control flow traversal would not
include the landing pads (which actually belong to the func-
tion), and our boundary identification would be incorrect.
Therefore, we parse the exception handling metadata and
the find landing pads to extend the CFG for each function.

Note that exception handling information must be present
in every binary, including stripped binaries.

7.4.2  Contributions of Each Step

To understand how each step of analyses contributes to
the finally identified functions, we list the corresponding re-
sults for SPEC 2006 programs in Figure 8. To conserve
space, only GCC (-O2) compiled programs are shown.

We can see that direct calls contribute to the largest num-
ber of identified functions. (Note that this includes direct
calls made within functions that are only indirectly reached.)
The number of direct tail calls varies across programs, but
they aren’t uncommon in optimized binaries.

“Indirect”(ly) reached functions are largely program de-
pendent. Our system successfully identified a large num-

ber of functions of category “indirect” for the programs that
make extensive use of indirect calls (e.g., 445.gobmk, 403.gcc),
and most of C++ programs that have an abundance of vir-
tual function calls. “Gap” represents our last resort for iden-
tifying functions. It uncovers unreachable functions in most
cases, but there can be a few false negatives for some pro-

grams.

7.4.3  Pruning Spurious Functions

Binary Total Direct Direct Indi- Gap FALSE
call tail call rect neg.
400.perlbench 1742 48.16% 4.59% 37.54% 9.70% 0.00%
401.bzip2 81 60.49% 4.94% 9.88% 24.69% 0.00%
403.gcc 4653 68.41% 4.32% 20.03% 7.01% 0.24%
429.mcf 34 70.59% 5.88% 17.65% 5.88% 0.00%
445.gobmk 2543 26.23% 4.76% 66.50% 2.52% 0.00%
456.hmmer 504 54.76% 5.36% 5.56% 34.33% 0.00%
458.sjeng 146 71.92% 6.16% 8.90% 13.01% 0.00%
462.libquantum 109 67.89% 6.42% 6.42% 19.27% 0.00%
464.h264ref 535 79.44% 4.11% 7.29% 9.16% 0.00%
433.milc 246 79.27% 1.63% 3.25% 15.85% 0.00%
470.1bm 28 71.43% 7.14% 21.43% 0.00% 0.00%
482.sphinx3 338 70.41% 3.25% 3.55% 22.49% 0.30%
471.omnetpp 2036 27.31% 3.78% 56.53% 12.38% 0.00%
473.astar 98 74.49% 2.04% 8.16% 15.31% 0.00%
483.xalancbmk 13525 | 33.61% 5.02% 52.06% 9.29% 0.01%
444 namd 105 44.76% 1.90% 51.43% 1.90% 0.00%
447 .dealll 7242 26.88% 3.87% 30.49% 38.65% 0.11%
450.soplex 935 43.32% 4.28% 39.47% 12.94% 0.00%
453.povray 1639 58.82% 3.60% 28.74% 8.85% 0.00%
410.bwaves 17 52.94% 11.76% 35.29% 0.00% 0.00%
416.gamess 2898 94.76% 1.28% 0.62% 3.31% 0.03%
434.zeusmp 86 65.12% 2.33% 6.98% 23.26% 2.33%
435.gromacs 1100 70.27% 2.73% 3.91% 22.91% 0.18%
436.cactusADM 1311 44.39% 3.13% 14.72% 37.76% 0.00%
437 leslie3d 32 68.75% 9.38% 18.75% 3.13% 0.00%
454.calculix 1338 69.36% 4.26% 0.45% 24.96% 0.97%
459.GemsFDTD 78 76.92% 5.13% 7.69% 8.97% 1.28%
465.tonto 3851 68.84% 6.13% 0.70% 22.51% 1.58%
481.wrf 2888 55.37% 4.95% 0.66% 38.50% 0.52%
[ Average [ 1729 [ 47.99% [ 4.36% [ 29.99% | 17.42% | 0.23% |

Figure 8:

Functions identified in each step



Binary Instru- Candi- | Table jump | Cond jump | Data flow True False
ctions dates filtered filtered filtered positive | positive

400.perlbench 220844 2269 65.80% 0.40% 1.37% 28.82% 3.44%
401.bzip2 11982 56 85.71% 0.00% 0.00% 14.29% 0.00%
403.gcc 623913 6702 81.86% 0.30% 2.67% 13.91% 1.01%
429.mcf 2557 6 0.00% 0.00% 0.00% 100.00% 0.00%
445.gobmk 162579 2070 11.26% 0.43% 3.09% 81.69% 3.33%
456.hmmer 59038 252 87.30% 0.40% 0.79% 11.11% 0.40%
458.sjeng 22306 142 90.85% 0.00% 0.00% 9.15% 0.00%
462.libquantum 9590 7 0.00% 0.00% 0.00% 100.00% 0.00%
464.h264ref 103065 126 63.49% 1.59% 3.17% 30.95% 0.79%
433.milc 23644 50 76.00% 0.00% 6.00% 16.00% 2.00%
470.lbm 2368 6 0.00% 0.00% 0.00% 100.00% 0.00%
482.sphinx3 34906 19 26.32% 0.00% 5.26% 63.16% 5.26%
471.omnetpp 113430 1249 7.53% 0.00% 0.16% 92.15% 0.16%
473.astar 8802 8 0.00% 0.00% 0.00% 100.00% 0.00%
483.xalancbmk 677697 8232 10.71% 0.39% 1.59% 85.53% 1.43%
444 .namd 65546 56 0.00% 1.79% 1.79% 96.43% 0.00%
447 .dealll 621668 2712 12.35% 0.26% 2.77% 81.42% 2.80%
450.soplex 86167 569 33.92% 0.00% 0.88% 64.85% 0.35%
453.povray 204876 2019 72.56% 0.20% 1.49% 23.33% 2.23%
410.bwaves 6001 6 0.00% 0.00% 0.00% 100.00% 0.00%
416.gamess 1514821 3099 78.64% 0.84% 15.62% 0.58% 3.94%
434.zeusmp 49940 16 0.00% 0.00% 37.50% 37.50% 25.00%
435.gromacs 192715 394 77.16% 0.25% 9.90% 10.91% 1.27%
436.cactusADM 133661 562 63.88% 0.36% 1.25% 34.34% 0.18%
437 leslie3d 21715 8 0.00% 0.00% 25.00% 75.00% 0.00%
454.calculix 333508 270 74.81% 0.37% 17.78% 2.22% 4.44%
459.GemsFDTD 82660 76 76.32% 0.00% 15.79% 7.89% 0.00%
465.tonto 818471 1652 89.59% 0.54% 6.11% 1.63% 1.45%
481.wrf 785451 587 75.47% 1.36% 17.04% 3.24% 2.56%
[[Average [ 241170 | 1146 | 43.50% | 0.33% | 6.10% | 47.80% | 1.94%

Figure 9: Effects of spurious function filters

As discussed, function interface verification is critical in
pruning spurious functions from the identified candidate set.
In this section, we evaluate the effectiveness of each verifi-
cation mechanism. The results are presented in Figure 9.
(Again, only GCC -O2 compiled binaries are shown.)

The number of instructions and the number of candi-
dates (obtained after extracting function-pointer-like con-
stants from the binary) are first shown. Note that for “can-
didates”, the portion of constants that overlap with direct
call targets are excluded. It is clear that the candidate set
is much smaller than the total number of instructions, from
which we can derive potentially indirectly reachable func-
tions. The following three columns present the percentage
of candidates that has been ruled out using proposed mech-
anisms. The final two columns are the percentages of true
positives (indirectly reachable functions) and false positives
(spurious functions that are not removed).

As shown in Figure 9, compared with other checks, table
jump targets filter significantly reduce the number of spuri-
ous function starts. This is because, jump table entries are
basically code pointers, and will be inevitably included by
our start address enumeration. However, they are spurious
function starts and should be removed. Table jump target
analysis and check represents an effective technique for this
task, although it is not strictly required as those targets are
likely to be removed by data-flow property verification as
well, it is more light-weight than the latter.

Note that our data-flow property verification is able to de-
tect spurious functions that can skip the control-flow checks:
as shown in the figure, after control-flow checks, additional
spurious functions are pruned. This is because, not all spu-
rious function starts are code pointers such as table jump
targets. They could also be a coincidental byte sequence, as

discussed in Section 4.2. Moreover, table jumps and their
targets may not be fully identified by analysis. Therefore,
the numbers for data-flow checks in Figure 9 only represent
additional capability, not the full potential. When control-
flow checks are turned off, the vast majority (if not all) of
their captures can be pruned by the data-flow check alter-
natives.

7.5 Soundness

7.5.1 Soundness for Instrumentation

Since one goal for our function recovery is to enable sound
instrumentation, we need to evaluate the results with respect
to this goal. Depending on the specific purpose or design, an
instrumentation could be sensitive to recall or precision of
the recovered functions. We examine both situations next.

Recall-sensitive instrumentation. One prominent ex-
ample of recall-sensitive instrumentation is coarse-grained
CFI [2]. Specifically, consider a CFI policy that an indi-
rect call must target the entry point of one of the legiti-
mate functions in the program. With a recall rate less than
100%, some legitimate function entry points would not have
been identified, and hence CFI enforcement based on such
an analysis can lead to runtime failures of legitimate pro-
grams. Note, however, that an analysis can miss unreach-
able functions without causing problems: since a legitimate
program will never target an unreachable function, the en-
forced CFI property won’t break it. For this reason, we show
the precision and recall rates achieved for potentially reach-
able functions in Figure 7. We only focus on their starts
in this case, because precise function ends are not needed
for the instrumentation. We get the ground truth by pre-
serving relocation information during the compilation and
linking process, and consider all functions with a relocation



080ad0e0 <funcil>:

80ad0fc: eb 02 jmp 80ad100 <func2>
80adOfe: 66 90 xchg %ax,%ax

080ad100 <func2>:
80ad100: 55 push %ebp
80ad101: 57 push Yedi

Figure 10: An unrecognized, tail called function

entry as an indirectly reachable function. Other functions
that are directly called by these functions are also added to
the reachable set. Finally, our results are evaluated against
this set.

As the figure shows, for most programs, we have achieved
100% recall for reachable function starts. For one of the For-
tran programs (465.tonto), our analysis missed one reachable
function. This function is reached via a jump that our anal-
ysis did not correctly identify as a tail call. Indeed, it should
be clear from the design of our analysis that it would achieve
a perfect recall rate, except possibly for tail calls. The rea-
soning behind this is as follows: if function pointers don’t go
through arithmetic or logical operations, then all reachable
functions should either be directly called, or their address
must be stored somewhere within the binary. It should also
be noted that missed tail calls don’t cause problems for CFI
instrumentation of calls, since functions reachable only via
tail calls will never be the target of a call.

Although a high precision rate is not critical for soundness
of CFI instrumentation, it impacts security. Therefore, a
strategy that sacrifices precision drastically for perfect recall
(e.g., the static analyses used by BinCFI) is unattractive.
Instead, we achieve perfect recall, while maintaining a high
precision of about 97%.

In comparsion, machine learning based systems [6, 27]
identify functions with a “matching-known” flavor, and thus
represent a best effort strategy. Although their high over-
all recall and precision results are good for many analysis
applications, they are less applicable to instrumentation ap-
plications that have stringent soundness requirements.

Precision-sensitive instrumentation. Some instrumen-
tations operate on individual functions as a unit [9, 24, 8],
and their soundness typically requires that they be applied
only to legitimate functions.

Since directly called functions are free of errors and un-
reachable functions are not relavant, the imprecision could
possibly originate from two sources: indirectly reachable
functions and (direct) tail called functions.

An address could be incorrectly identified as an (indirectly
reachable) function start if our interface verification mech-
anism was insufficient. Although our comprehensive verifi-
cation schemes are generally effective and can remove vast
majority of the spurious function starts, such misses do hap-
pen. Figure 11 shows one example. In this case, since all
instructions access global memory and there are no stack
or register operations, our interface verification could not
identify [818c784, 818c8ed] as a spurious function.

Despite these imprecisions, one distinguishing feature of

0818ba30 <func>:

818ba30: flds 0x86ed1d0 // enumerated possible func start
818ba36: fstpl 0x8cabafl

...... // other similar instructions

818c784: fldl 0x87202c0 // enumerated possible func start
818c78a: fstpl 0x8ca5908

818c790: fldl 0x87202c8

818c796: fstpl 0x8cab910

...... // other similar instructions

818c8d0: movl $0xf2,0x8cabadc

818c8da: movl $0xf6,0x8cabaec

818c8e4: ret

Figure 11: A falsely identified (indirectly reachable)
function [818c784, 818c8e4]

our system is that the real function which encloses the spu-
rious one is always identified. In Figure 11 for example,
[818ba30, 818c8ed] is also recovered (recall in our model,
the recovered functions can overlap or share code). And
with this property, different measures could be taken for
different instrumentations to cope with the imprecisions.

For RAD [9], no work is required at all because the in-
strumentation is resistant to such imprecisions®. For other
more complicated instrumentations [24, 8], the overlapping
functions could have their own instrumented version (which
are disjoint), and an address translation scheme for indirect
branches (commonly adopted by binary transformation sys-
tems [21, 35, 29]) could be used. With this technique, an
indirect call target is translated at runtime to point to its in-
strumented version before control transfer. Since the falsely
identified function is never called at runtime, the incorrect
instrumentation will not be executed.

Our system may also falsely recognize intra-procedural
jumps as direct tail calls. For precision-sensitive instrumen-
tations, we can employ a simple heuristic to avoid false pos-
itives by tightening the tail called function recognition stan-
dard. Specifically, we perform a backward scan from the
direct jump target. If there are “non-nop” instructions that
lead to the target, it is considered as an intra-procedural
target and not a function start. Although this overly strict
standard may slightly increase false negatives (less than 10
for each SPEC program), the instrumentation soundness is
maintained. After incorporating this heuristic, the precision
and recall only slightly varied compared with the results in
Figure 7.

7.5.2  Soundness for Analysis

Although some analyses are quite permissible for function
boundary errors, there are other analyses that have stricter
requirements. One such example is stack variable detection
[5]. The analysis works by summarizing all stack accesses
of a function to determine stack variable location and size.
The recovered variables could be further used in applications

5This is because, at the spurious function start, an extra, un-
needed “return address” is pushed to the shadow stack. While this
slightly increases attacker’s options, it does not break program
functionality since at the function epilogue, return addresses is
popped repeatedly from the shadow stack until there is a match.
Note that the true return address does present in the shadow
stack, because the larger, real function is also recovered.



Calling convention

Stack cleanup by

Argument passing

System V ABI

callee

RDI, RSI, RDX, RCX,
R8&, R9, then stack

Microsoft x64

callee

RCX, RDX, RS, R9,
then stack

Tool ByteWeight NeuralNetwork Ours
Amazon EC2

Exper- desktop c4.2xlarge instances; | laptop

iment each of which:

Setup quad-core 3.5GHz | 8-core 2.9GHz quad-core 1.7GHz
i7-3770K CPU, Intel Xeon CPU, i5-4210U CPU,
16GB RAM 15GB RAM 8GB RAM

Training | 275 compute 20 compute 0

(10-fold) | hours (estimate) hours

Testing 457,997 1,062 180,240
seconds seconds seconds

Figure 13: Calling convention for x86-64 architec-
ture

Figure 12: Analysis setting and performance com-
parison

such as symbolic and vulnerability analysis [3].

These analyses obviously necessitate sound function bound-
aries. For instance, incorrect results can be produced if a
stack-modifying instruction (e.g., push %reg) is missed, or
an extra one is included — a situation likely to happen for
best effort approaches.

Several features of our system help ensure soundness. Since
these analyses are more sensitive to precision, a conservative
strategy is to simply only consider directly reachable func-
tions, which are already a significant portion (Figure 8).
Moreover, even if we take into account indirectly reachable
and unreachable functions for better coverage, our inter-
face verification mechanism would prune vast majority of
spurious functions, and more importantly, only leaves ones
with limited error possibility. For instance, the left spuri-
ous functions may have no or limited stack and/or register
usage (e.g., Figure 11). Therefore, none stack variable is dis-
coverd for this “function” in the analysis, and soundness is
not affected. Note that additional, analysis-specific function
property checking mechanisms could be easily incorporated
to our system for sound analysis.

7.6 Performance

Our focus so far has been on accuracy rather than run-
time, and hence we have not made any systematic efforts to
optimize performance. Nevertheless, it is useful to compare
its performance against previous techniques.

As compared to machine learning based approaches [6,
27], one of the advantages of our approach is that it does
not require training. The results of our analysis, together
with those from ByteWeight [6] and neural network based
system [27], are summarized in Figure 12. The numbers are
based on our first dataset.

The neural network based system uses much less time for
the testing because it only identifies the bytes where func-
tions start and end, without recovering the function body.
As a comparision, ByteWeight and our system follow the
CFG to identify function ends, therefore can recognize the
exact instructions belonging to the function, and identify
physically non-contiguous parts of the function.

Currently, it takes about 3 minutes on average to ana-
lyze a binary of our test suite. Although this is already
satisfiable for many cases, there are many opportunities for
improvement. For example, spurious functions can be imme-
diately spotted if the entry basic block has violating behav-
ior (e.g., modifying return address) and therefore analysis
of the whole function can be avoided. This is in contrast
with our current naive implementation that complete anal-
ysis and checks are performed. Moreover, the number of
analysis states could be significantly reduced, by maintain-

ing states for basic blocks instead of instructions.

8. Discussion

Shared libraries. Other than executables, shared libraries
represent another common type of binary file. Since prior
work [6, 27] focused on executables, we followed the same
practice for easier comparison. Nevertheless, our technique
works on shared libraries as well. One feature of shared li-
brary is actually to our advantage: symbol information for
exported functions are preserved, as it is needed for sym-
bol resolution by the dynamic linker. This information is
exploited by the first stage of our analysis.

There are only two other differences for shared libraries:
first, is the use of position-independent code (PIC), which
is a direct call to thunk code that retrieves current instruc-
tion pointer from stack (the simplest case being call next;
next : pop %reg) and makes direct call target not definite
function start. Since our data-flow property checking al-
ready deals with this (the use of return address), it can be
simply applied to direct call targets. The second difference
is that “function pointers” and jump table targets are a bit
harder to identify, as the constants represent offsets. How-
ever, this added complexity has already been addressed in
previous work [35], and only a small adaptation to our con-
stant finding method is needed.

x86-64 architecture. Although we focused on x86-32 ar-
chitecture in the presentation and evaluation, our techniques
are general and apply to x86-64 as well. Actually, while the
control flow property verification stays the same, x86-64 is
advantageous in two ways. First, since the addresses are
longer than x86-32 (8 bytes vs 4 bytes), the probability of
a constant being misidentified as a code address is reduced.
Second, for either Windows platform, or System V, there is
only one calling convention available for x86-64 architecture
(Figure 13), both of which are more easily violated by spu-
rious functions. This is because, both calling conventions
preserve the stack pointer, which simplifies our check. In
addition, since there are 16 general purpose registers avail-
able, it is very likely that some of the rest 10 (for System V)
or 12 (for Windows) registers are used and therefore live at
spurious function starts. If those uses are not callee saves,
then spurious functions are more readily identified.

Function identification and checking. Our function
property checking technique presented in Section 6 is ba-
sically a general mechanism for confirming functions. Al-
though in our approach it was applied to tentative functions
derived from binary constants, it can be used to test possible
functions obtained through other means. For example, pos-
sible function starts could be identified using pattern match-
ing or machine learning [6, 27] approaches. Our property
checking could then be applied for increased confidence. To
reduce false negatives, the procedure could be followed by



a second round of function identification and analysis, and
a similar technique that checks the “gap” area could also be
employed.

In this work, we used constant scan as one of the function
identification mechanism because it is very simple and light
weight, and provides a sufficiently precise set for further ver-
ification. Our straight-forward directly reachable function
identification is also beneficial because for these functions
that we already have high confidence, property checking
is not needed. However, we point out constant scan and
correct disassembly are not strictly needed. Any function
start identification (e.g., machine learning) and code discov-
ery/disassembly techniques could be potentially combined.
We leave the integration of our function property checking
mechanism with other function identification approaches as
future work.

9. Related Work

Function (boundary) identification. Many tools recog-
nize functions using call graph traversal and function pro-
logue matching. Examples include the CMU Binary Analy-
sis Platform [7] and the Dyninst instrumentation tool [17].
IDA [1] uses proprietary heuristics and a signature database
for function boundary recovery to assist disassembling. Its
problem include that it underperforms for different compil-
ers and platforms, and the overhead of maintaining an up-
to-date signature database.

Rosenblum et al. first proposed using machine learning
for function start identification [23]. The precision and per-
formance has been greatly improved by recent work from
Bao et al. [6] and Shin et al. [27], due to adoption of dif-
ferent machine learning techniques such as weighed prefix
trees and neural networks. However, as discussed, machine
learning based approaches may not be able to produce sound
results that can be directly used for instrumentation.

Similar to our work, SecondWrite [12] uses analysis for
function recovery and also considers constants identified in
binaries as potential function starts. However, they use
a different disassembly technique and employ static anal-
ysis of code snippets to mark likely spurious code. As a
comparison, our interface property verification mechanism
is more principled by considering the function interface ab-
straction/specification, and more comprehensive by taking
into account both control-flow and data-flow properties.

Disassembly. The disassembly problem also has some
overlap with function boundary identification. Kruegel et al.
leverage speculative disassembly to disassemble obfuscated
binaries [19]. To make their algorithm scalable, they use pat-
tern based approach to break a binary into functions. Jak-
stab [18] performs static value-set analysis to resolve indirect
control flow targets. However, many indirectly reachable
functions are still not identified due to over-approaximation.
Wang et al. [33] assume accurate function boundaries to as-
sist their goal of producing disassembled code that can be
reassembled.

BinCFI [35] uses linear disassembly with error correc-
tion as the first step of instrumenting binaries. However,
their work isn’t concerned with function boundary identifi-
cation. In this work, we extend their disassembly technique
and leverage static analysis for function boundary recovery,
therefore can enable more analysis and instrumentation ap-
plications.

Static binary analysis to recover high-level constructs.
Because much information has been lost during the compi-
lation process, binaries are difficult to understand or reengi-
neer. Other than function boundaries, previous works also
focus on recovering other high-level constructs, such as vari-
ables and types [5, 20, 4] or function signatures [13]. The
more ambitious goal is to recover source code through de-
compilation [16, 14, 25]. However, all these are downstream
analyses that depend on accurate function boundary infor-
mation to produce high quality results.

10. Conclusions

In this work, we present a static analysis based approach
for function boundary identification in stripped binary code.
Compared with previous efforts that rely on matching of
code patterns, our approach is more principled by leverag-
ing the function interface abstraction and implementation.
To that end, we developed comprehensive checking mecha-
nisms for control-flow and data-flow properties that are as-
sociated with the function interface. Evaluations on binaries
from three different languages, three compilers and four op-
timization levels have shown that we can achieve better re-
sults than state-of-the-art machine learning based systems.
More importantly, we argue that our approach is sound for
several common analysis and instrumentation applications.

11. References

[1] Hex rays. https://www.hex-rays.com/index.shtml.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti.
Control-flow integrity. In C'CS, 2005.

[3] K. Anand, K. Elwazeer, A. Kotha, M. Smithson,

R. Barua, and A. Keromytis. An accurate stack
memory abstraction and symbolic analysis framework
for executables. In IEEE International Conference on
Software Maintenance, 2013.

[4] K. Anand, M. Smithson, K. Elwazeer, A. Kotha,

J. Gruen, N. Giles, and R. Barua. A compiler-level
intermediate representation based binary analysis and
rewriting system. In ACM FEuropean Conference on
Computer Systems, 2013.

G. Balakrishnan and T. Reps. WYSINWYX: What
you see is not what you eXecute. ACM Transactions
on Programming Languages and Systems (TOPLAS),
2010.

T. Bao, J. Burket, M. Woo, R. Turner, and

D. Brumley. Byteweight: Learning to recognize
functions in binary code. In USENIX Security
Symposium, 2014.

[7] D. Brumley, I. Jager, T. Avgerinos, and E. J.
Schwartz. Bap: A binary analysis platform. In
Computer aided verification, 2011.

[8] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and
C. Giuffrida. Stackarmor: Comprehensive protection
from stack-based memory error vulnerabilities for
binaries. In NDSS, 2015.

[9] T. Chiueh and M. Prasad. A binary rewriting defense
against stack based overflows. In USENIX ATC, 2003.

[10] C. Cifuentes and M. Van Emmerik. Recovery of jump
table case statements from binary code. In Program
Comprehension, 1999. Proceedings. Seventh
International Workshop on. IEEE, 1999.

[5

6



[11] M. Egele, M. Woo, P. Chapman, and D. Brumley.
Blanket execution: Dynamic similarity testing for
program binaries and components. In USENIX
Security, 2014.

[12] K. ElWazeer. Deep Analysis of Binary Code to
Recover Program Structure. PhD thesis, University of
Maryland, 2014.

[13] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and
R. Barua. Scalable variable and data type detection in
a binary rewriter. In ACM PLDI, 2013.

[14] M. Emmerik and T. Waddington. Using a decompiler
for real-world source recovery. In Working Conference
on Reverse Engineering, 2004.

[15] H. Flake. Structural comparison of executable objects.
In International GI Workshop on Detection of
Intrusions and Malware & Vulnerability Assessment,
2004.

[16] I. Guilfanov. Decompilers and beyond. Black Hat
USA, 2008.

[17] L. C. Harris and B. P. Miller. Practical analysis of
stripped binary code. ACM SIGARCH Computer
Architecture News, 2005.

[18] J. Kinder and H. Veith. Jakstab: A static analysis
platform for binaries. In Computer Aided Verification,
2008.

[19] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna.
Static disassembly of obfuscated binaries. In USENIX
security Symposium, 2004.

[20] J. Lee, T. Avgerinos, and D. Brumley. TIE: Principled
reverse engineering of types in binary programs. In
NDSS, 2011.

[21] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. J. Reddi, and

K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In PLDI,
2005.

[22] X. Meng and B. P. Miller. Binary code is not easy. In
International Symposium on Software Testing and
Analysis, 2016.

[23] N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt.
Learning to analyze binary computer code. In AAAT
Conference on Artificial Intelligence, 2008.

[24] P. Saxena, R. Sekar, and V. Puranik. Efficient
fine-grained binary instrumentation with applications
to taint-tracking. In CGO, 2008.

[25] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley.
Native x86 decompilation using semantics-preserving
structural analysis and iterative control-flow
structuring. In Useniz Security, 2013.

[26] B. Schwarz, S. Debray, and G. Andrews. Disassembly
of executable code revisited. In Working Conference
on Reverse Engineering, 2002.

[27] E. C. R. Shin, D. Song, and R. Moazzezi. Recognizing
functions in binaries with neural networks. In USENIX
Security Symposium, 2015.

[28] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna. (state of) the art of war:
Offensive techniques in binary analysis. In IEEE S&P,
2016.

[29] M. Smithson, K. ElWazeer, K. Anand, A. Kotha, and

R. Barua. Static binary rewriting without
supplemental information: Overcoming the tradeoff
between coverage and correctness. In Working
Conference on Reverse Engineering, 2013.

[30] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena. BitBlaze: A new approach to computer
security via binary analysis. In International
Conference on Information Systems Security. Keynote
invited paper., 2008.

[31] V. van der Veen, D. Andriesse, E. Goktasg, B. Gras,

L. Sambuc, A. Slowinska, H. Bos, and C. Giuffrida.
Practical context-sensitive CFI. In CCS, 2015.

[32] V. van der Veen, E. Géktas, M. Contag, A. Pawlowski,
X. Chen, S. Rawat, H. Bos, T. Holz,

E. Athanasopoulos, and C. Giuffrida. A tough call:
Mitigating advanced code-reuse attacks at the binary
level. In IEEE S€P, 2016.

[33] S. Wang, P. Wang, and D. Wu. Reassembleable
disassembling. In USENIX Security Symposium, 2015.

[34] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,

S. McCamant, D. Song, and W. Zou. Practical control
flow integrity and randomization for binary
executables. In IEEE S&P, 2013.

[35] M. Zhang and R. Sekar. Control flow integrity for

COTS binaries. In USENIX Security, 2013.



	1 Introduction
	2 Problem
	2.1 Definitions
	2.2 Function Identification Challenges
	2.3 Metrics

	3 Background and Approach Overview
	3.1 Disassembly
	3.2 Overview of Approach

	4 Function Starts
	4.1 Definite Start Identification
	4.2 Possible Start Enumeration
	4.2.1 Unreachable functions


	5 Function Boundaries
	5.1 Non-return and Tail-Called Functions

	6 Interface Property Checking
	6.1 Control Flow Properties
	6.2 Data Flow Properties
	6.2.1 The stack interface
	6.2.2 Register arguments and eflags


	7 Evaluation
	7.1 Dataset
	7.2 Implementation
	7.3 Summary of Results
	7.3.1 Segmented Results

	7.4 Detailed Evaluation
	7.4.1 SPEC 2006 Results
	7.4.2 Contributions of Each Step
	7.4.3 Pruning Spurious Functions

	7.5 Soundness
	7.5.1 Soundness for Instrumentation
	7.5.2 Soundness for Analysis

	7.6 Performance

	8 Discussion
	9 Related Work
	10 Conclusions
	11 References

