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Abstract of the Thesis

V-NetLab: A Test-bed for Security Experiments
by

Varun Katta
Master of Science

in

Computer Science
Stony Brook University

2006

Network security experiments usually require root privileges to a set of net-

worked machines as they typically involve tasks like network surveillance, intrusion

detection, configuring firewalls, installing and running malware etc. Some of these

experiments require regular software and OS (re)installations, re-configuration of

networks (addition or removal of machines and networking components). Due to

obvious security concerns these test-bed networks should be totally isolated from

regular external networks. Building and managing such dedicated physical networks

for security experiments on a per-user basis is cumbersome and expensive.

We propose to address the aforementioned problems through V-NetLab which

overlays virtual machines (VM’s) over a set of physical nodes, emulates networking

of these machines and provides access to them as virtual networks. V-NetLab allows

users to easily configure, start and shutdown virtual networks by automating these

tasks. It allows administrators to monitor, configure networks for users, manage

user groups as teams through an easy-to-use management interface. Virtualization

is achieved at data-link layer, allowing identical networks to run simultaneously

on the same underlying hardware but isolated from each other. Users can run

multiple virtual networks, share access to networks through the notion of teams,

access networks remotely via SSH. The framework is realized on regular commodity

PCs with VMware Workstations as VM’s.
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Chapter 1

Introduction

Providing access to a group of machines networked together for security experiments
has its own challenges.

Security experiments usually require users to have administrative privileges to
the machines in their networks. When users have root access and make any fatal
errors while configuring the machines or running the experiments, then machines can
get into an unrecoverable state and re-installing the software completely including
OS might be the only option to use the machine again for experiments.

Some class of experiments need frequent re-configuration of network definitions.
During re-configuration some physical nodes or networking components like hubs,
switches might have to be added or deleted. If the network size is sufficiently large
then it becomes really cumbersome to modify the current topology into the desired
topology. Thus, the latency in switching network configurations for some experi-
ments might be high and is not desirable.

Since administrative privileges are provided to users to run potentially malicious
programs as part of security experiments, it is important to isolate test-bed networks
from regular networks and prevent users from having unauthorized and illegal access
to other users data.

The challenge of scaling up the network to support a large base of users is pro-
hibitively expensive in terms of human-effort needed to setup, maintain the networks
(wire machines and other networking components, configure machines with the right

OS and software), and hardware resources needed to support the networks.
Given the above challenges, virtualization of physical resources looks like a

promising solution to the problem of providing networked machines for security
experiments. V-NetLab is one such effort. We replace the physical machines by
virtual machines, there by replacing physical networks by virtual networks. We use
VMware Workstation as VM’s for V-NetLab currently. Using VMware, we avoid
the problem of reinstalling OS every time something goes wrong by simply reverting
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back to initial VM image, if we reach an unrecoverable state. The number of VM’s
which can run on a physical machine is bounded only by hardware constraints.

V-NetLab allows a user to specify a network definition file, and register her
network. Once a network is registered she can start and shutdown the network with
little effort. Thus, V-NetLab addresses the issues of scalability and reconfigurability
in the physical world as a new virtual network of required size can be realized by
providing a new network definition file, registering it and starting the network. The
size of virtual networks one can realize is limited only by resource constraints.

Virtualization is achieved at the data-link layer and virtual networks are isolated
from each other and from the external world (Internet). Thus, V-NetLab addresses
the security problems which arise with users gaining administrative privileges to
machines on the network. User’s root privileges on virtual machines are confined
to the virtual networks alone. Data-link layer virtualization provides the benefit to
run identical networks simultaneously, isolated from the each other. The framework
allows users to run multiple networks, and multiple users to share networks. Sharing
allows users to work together on experiments, which is essential when collaborating.
The framework also eases monitoring and managing virtual networks and users
through an administrator interface. Users can be grouped to teams and teams in
turn can be managed by the administrator of V-NetLab.

The work presented in this thesis describes V-NetLab and talks about the chal-
lenges in coming up with such a system.

1.1 Thesis Overview

In the next chapter we talk about virtual machines and the advantages of virtual-
ization of underlying hardware. Chapter 3 talks about the design of V-NetLab, its
architecture and gives a sufficiently good overview of the system. Chapter 4 talks
about some of the technical challenges, implementation issues and is followed by the
Summary chapter.
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Chapter 2

Background

2.1 Virtualization

Virtualization is a framework or methodology of dividing the resources of a computer
into multiple execution environments. Virtualization techniques create multiple
isolated partitions (Virtual Machines (VM) or Virtual Private Servers (VPS)) on
a single physical server. It is an abstraction that decouples the physical hardware
from the operating system to deliver greater IT resource utilization and flexibility.

Virtualization allows multiple virtual machines, with heterogeneous operating
systems to run in isolation, side-by-side on the same physical machine. Each virtual
machine has its own set of virtual hardware (e.g., RAM, CPU, NIC, etc.) upon
which an operating system and applications are loaded. The operating system sees
a consistent, normalized set of hardware regardless of the actual physical hardware
components.

2.1.1 Types of Virtualization

There are several kinds of virtualization techniques which provide similar features
but differ in the degree of abstraction and the methods used for virtualization.

• Virtual Machines (VMs): Virtual Machines emulate some real or fictional

hardware, which in turn requires real resources from the Host (the machine

running the VMs). This approach, used by most System Emulators, allows the
emulator to run an arbitrary Guest Operating System without modifications
because OS isn’t aware that its not running on real hardware. The main
issue with this approach is that some CPU instructions require additional
privileges and may not be executed in user space thus requiring a Virtual
Machines Monitor (VMM) to analyze executed code and make it safe on-the-
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fly. Hardware Emulation approach is used by VMware products and Microsoft
Virtual Server.

• Para-Virtualized Machines: This technique also requires a VMM, but most
of its work is performed in the Guest OS code, which in turn is modified to
support this VMM and avoid unnecessary use of privileged instructions. The
paravirtualization technique also enables running different OS’ on a single
server, but requires them to be ported. The paravirtualization approach is
used by Xen, UML.

• Virtualization on the OS Level: Most applications running on a server
can easily share a machine with others, if they could be isolated and secured.
Further, in most situations, different operating systems are not required on
the same server, merely multiple instances of a single Operating System. OS
Virtualization systems have been designed to provide the required isolation
and security to run multiple applications or copies of the same (or similar

i.e different Linuxes) OS on the same server. OpenVZ, Linux VServer are
examples of OS virtualization.

The three techniques differ in complexity of implementation, breadth of OS support,
performance in comparison with standalone server, and level of access to common
resources. For example, VMs have wide scope of usage, but poor performance.
Para-VMs have better performance, but can support fewer OSs because of the need
to port them.

2.1.2 Benefits of Virtualization

• Partitioning

– Multiple applications and operating systems can be supported within a
single physical system

– Servers can be consolidated into virtual machines on either a scale-up or
scale-out architecture

– Computing resources are treated as a uniform pool to be allocated to
virtual machines in a controlled manner

• Isolation

– Virtual machines are completely isolated from the host machine and other
virtual machines. If a virtual machine crashes, all others are unaffected

– Data does not leak across virtual machines and applications can only
communicate over configured network connections
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A virtual machine monitor provides a virtual machine abstraction in which standard
operating systems and applications may run.

Figure 2.1: Virtual Machine Monitor

• Encapsulation

– Complete virtual machine environment is saved as a single file; easy to
back up, move and copy

– Standardized virtualized hardware is presented to the application - guar-
anteeing compatibility

2.1.3 Virtualization at Hardware Abstraction Layer (HAL)

Virtualization at the HAL [14] exploits the similarity in architectures of the guest
and host platforms to cut down the interpretation latency. Most of the today’s
world’s commercial PC emulators use this virtualization technique on popular x86
platforms to make it efficient and its use, viable and practical. Virtualization tech-
nique helps map the virtual resources to physical resources and use the native hard-
ware for computations in the virtual machine. When the emulated machine needs
to talk to critical physical resources, the simulator takes over and multiplexes ap-
propriately. For such a virtualization technology to work correctly, the VM must
be able to trap every privileged instruction execution and pass it to the underly-
ing Virtual Machine Moniter (VMM) to be taken care of. This is because, in a
VMM environment, multiple VMs may each have an OS running that wants to is-
sue privileged instructions and get the CPU’s attention. When a trap occurs during
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privileged instruction execution, rather than generating an exception and crashing,
the instruction is sent to the VMM. This allows the VMM to take complete control
of the machine and keep each VM isolated. The VMM then either executes the
instruction on the processor, or emulates the results and returns them to the VM.
However, the most popular platform, x86, is not fully-virtualizable, i.e. certain su-
pervisor (privileged) instructions fail silently rather than causing a convenient trap
when executed with insufficient privileges. Thus, the virtualization technique must
have some workaround to pass control to the VMM when a faulting instruction ex-
ecutes. Most commercial emulators use techniques like code scanning and dynamic
instruction rewriting to overcome such issues.

2.1.4 VMware Workstation

VMware Workstation provides virtualization at hardware abstraction layer. It works
by creating fully isolated, secure virtual machines that encapsulate an operating
system and its applications. The VMware virtualization layer maps the physical
hardware resources to the virtual machine’s resources, so each virtual machine has
its own CPU, memory, disks, and I/O devices, and is the full equivalent of a standard
x86 machine. VMware Workstation installs onto the host operating system and
provides broad hardware support by inheriting device support from the host.

VMware’s VMMs can be standalone or hosted. A standalone VMM is basically
a software layer on the base hardware that lets users create one or more VMs (Fig-

ure 2.1). These are similar to operating systems, require device drivers for each
hardware device, and are typically limited in hardware support. Such VMMs are
typically used in servers, VMware ESX [3] server being a prime example of such
an architecture. A hosted VMM, however, runs as an application on an existing
host operating system. It can take advantage of the host operating system for mem-
ory management, processor scheduling, hardware drivers, and resource management.
VMware Workstation group of products use this hosted virtual machine architecture.
VMware products are targeted towards x86-based workstations and servers. Thus,
it has to deal with the complications that arise as x86 is not a fully-virtualizable
architecture. VMware deals with this problem by using a patent-pending technol-
ogy that dynamically rewrites portions of the hosted machine code to insert traps
wherever VMM intervention is required. Although it solves the problem, it adds
some overhead due to the translation and execution costs. VMware tries to reduce
the cost by caching the results and reusing them wherever possible. Nevertheless,
it again adds some caching cost that is hard to avoid.

To understand how VMware workstation is installed and run, it helps to look at
the way IA32 platform works. On the intel architecture, the protection mechanism
provides four privilege levels, 0 through 3. Levels are also called rings. These
protection rings exist only in Protected Mode. According to Intel, ring 0 is meant
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VMware’s hosted virtual machine model splits the virtualization software between
a virtual machine monitor that virtualizes the CPU, an application that uses a host
operating system for device support, and an operating system driver for transitioning
between them.

Figure 2.2: VMware Virtualization

for operating systems and kernel services, ring 1 and 2 for device drivers, and ring 3
for applications. However, in practice, most operating systems along with the device
drivers run completely in ring 0 and applications in ring 3. Privileged instructions
are allowed only in ring 0, and cause protection violation if executed anywhere else.

VMware Workstation has three components: the VMX driver and VMM in-
stalled in ring 0, and the VMware application (VMApp) in ring 3 (See Figure 2.2).
The VMX driver is installed within the operating system to gain the high privilege
levels required by the virtual machine monitor. When executed, the VMApp loads
the VMM into kernel memory with the help of VMX driver, giving it the highest
privilege (ring 0). The host OS, at this point, knows about the VMX driver and the
VMApp, but does not know about the VMM. The machine now has two worlds: the
host world and the VMM world. The VMM world can communicate directly with
the processor hardware or through the VMX driver to the host world. However,
every switch to the host world would require all the hardware states to be saved and
restored on return, which makes switching hit the performance.

When the guest OS or any of its applications run purely computational programs,
they are executed directly through the VMM in the CPU. I/O instructions, being
privileged ones, are trapped by the VMM and are executed in the host world by a
world switch. The I/O operations requested in the VM are translated to high-level
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I/O related calls and are invoked through the VMApp in the host world, and the
results are communicated back to the VMM world. An example is illustrated in
Figure 2.3. for the network send and recv operation [16].

The newer versions of VMware Workstation come with some of the striking
features. Pointer integration with the host desktop allows the use to move the
mouse pointer seamlessly in and out of the VMware Application’s display window
like it happens with any other window-based application. File sharing allows the
user to share files and folders between the host and the guest machines to help easy
transfer of data from and to the virtual machines for backing up and other purposes.
Dynamic display resizing lets the user dynamically resize the VMware Application’s
display window like any other window. This is not so trivial realizing the fact that
every resize operation changes the screen resolution for the virtual machine.

2.2 Introduction to VMware Networking

2.2.1 VMware Networking Components

There are three main VMware networking components:

• Virtual Switch:

Like a physical switch, a virtual switch lets one connect other networking
components together. Virtual switches are created as needed by the VMware
Workstation software, up to a total of nine switches. One can connect one or
more virtual machines to a switch. A few of the switches and the networks
associated with them are, by default, used for special named configurations.
The bridged network normally uses VMnet0. The host-only network uses
VMnet1 by default. And the NAT network uses VMnet8 by default. The
others available networks are simply named VMnet2, VMnet3, VMnet4, and
so on.

• Bridge:

The bridge lets one connect a virtual machine to the LAN of the host computer.
It connects the virtual network adapter in the virtual machine to the physical
Ethernet adapter in your host computer.

• Host Virtual Adapter:

It is a virtual ethernet adapter that appears to the host operating system as
a Host-Only Interface on a Linux host. It allows communication between the
host computer and the virtual machines on that host computer. The host
virtual adapter is used in host-only and NAT configurations.
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2.2.2 VMware Networking Basics

VMware Workstation supports a variety of networking setups to help user connect
to the network according to her convenience.

• Bridged: If you use bridged networking, the virtual machine is a full par-
ticipant in the network. It has access to other machines on the network and
can be contacted by other machines on the network as if it were a physical
computer on the network. In this mode the virtual machine’s network inter-
face is bridged to physical host’s interface and sets the physical host’s network
interface in promiscuous mode.

• NAT: In NAT mode, the virtual machine does not have its own IP address
on the external network. Instead, a separate private network is set up on the
host computer. The virtual machine gets an address on that network from the
VMware virtual DHCP server. The VMware NAT device passes network data
between one or more virtual machines and the external network. It identifies
incoming data packets intended for each virtual machine and sends them to
the correct destination.

• Host-Only: In this mode, VMware installs a virtual Ethernet adapter in the
host OS that communicates with the VMnet1 switch. The host OS believes
this is just another Ethernet adapter. Workstation also runs a virtual DHCP
server connected to the VMnet1 switch. In this mode, the DHCP service
will assign addresses to the VM’s virtual Ethernet adapters (and actually the

host OSs virtual Ethernet adapter as well) that are connected to the VMnet1
switch. This allows communication between a virtual machine and the host
operating system, but it is not routed to the outside world. Multiple virtual
machines can talk to each other as well. Host-Only networking also allows
connection of virtual machines to outside networks through the host OS.
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Components involved in a virtual machine network packet send and receive. Boxed
components delineate components that are due to the hosted nature of the network
device virtualization.

Figure 2.3: VMware Networking
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Chapter 3

System Design

3.1 Design Goals

Given the kind of scenarios we propose V-NetLab to support, we believe V-NetLab
should support the following design goals and features.

• Isolation

V-NetLab should ensure that the operation of one virtual network does not
affect the operation of any other networks, expect possibly due to resource
contention issues that arise as a result of sharing the same underlying hard-
ware.

• Faithful Network Emulation

– Virtualized Ethernet: Since network security projects often involve tasks
such as packet sniffing, it is necessary that networks be emulated accu-
rately after they are overlaid on physical workstations, so that all and
only those packets that are supposed to be visible at any network node
become visible.

– Virtualized network devices: To provide support for the user to define
his own network topology, network devices like switch and hub should be
supported.

• Cost-effective and Scalable

The software design should provide good performance and scale well.

• Automation

– Automatic network configuration: Network configuration for virtual net-
works such as setting up IP addresses, DNS servers, host names etc should

11



Figure 3.1: Logical View for V-NetLab Laboratory

highly automated. Users should be able to accomplish this by providing
this information through a configuration file.

– Location transparency: Since our approach is based on overlay of virtual
machines over a set of physical machines, to take full advantage of avail-
able computing resources, the generation of overlay scheme should be
automated and transparent to the user.

– Migration: Since, overlay scheme of a particular network can change
with every session based on the available computing resources, V-NetLab
should have an efficient scheme to migrate the dormant virtual machines
images of virtual networks.

• Sharing

– Groups: Sometimes, users would want to work in groups and share virtual
networks. One scenario where this is relevant is where students of security
course have to work together as teams on course assignments/projects.
V-NetLab should allow this notion of grouping users into teams. Users of
the same team should be allowed to share networks i.e each of the users
of a particular team should have access to the team’s virtual network
simultaneously. This is currently supported by allowing users to ssh to
any of the virtual machines from their workstations.

12



Figure 3.2: V-NetLab Hardware Platform

– Data Transfer: It is possible to move data from inside virtual networks
to outside and vice-versa. This is currently supported by allowing users
to sftp from user’s workstation to virtual machine that is part of their
network.

• Manageability

– Easy to use: The software should allow virtual networks to be configured
and operated easily. The input specification format for virtual network
topologies should allow users to define sufficiently complicated topologies
with relative ease. The effort to start, shutdown virtual networks should
be fairly minimal.

– Easy to Administer: V-NetLab should allow an administrator to man-
age and monitor virtual networks, users, user groups and the usage of
computing resources at any point. The framework should provide an
Administrator Interface to this effect. This interface currently allows to
manage tasks like adding/deleting authorized users, grouping of users

into teams, add/delete teams, querying the V-NetLab to view resource
allocation statistics.
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– Multiplicity: V-NetLab should allow a single user to run multiple net-
works with varied topologies simultaneously, each of them isolated from
each other. At the same time, it should allow different users to run
identical network topologies each isolated from others.

• Remote Access

For users who are on dial-up, X-startup of virtual networks and subsequent
usage might be slow. Thus, there is need to support, starting of networks
either in console (X enabled) mode or non-console mode. Irrespective of the
start mode, users should have the option of remotely logging into running
networks via SSH.

3.2 System Overview

V-NetLab consists of multiprocessor servers configured to run virtual machines.
These virtual machines become the basis to run virtual networks. A virtual net-
work is defined as a set of interconnected virtual machines. The interconnections
between these virtual machines is established through a set of emulated hubs and
switches. The emulated hubs and switches in our environment are referred as v-
hubs and v-switches. The v-hubs and v-switches implement the virtualization of the
network at the data-link layer. The benefits of implementing at data-link layer is
that an IP address can be reused in different virtual networks. The re-usability of
IP addresses helps to realize multiple instances of a single virtual network topology
and each instance is isolated from other instances. These network configurations
can be replicated across all the users in the network without any traffic interference
between their corresponding virtual networks. The virtual networks emulate the
exact behavior of the underlying physical network.

We currently support VMware Workstation [3] and VMPlayer [3] as virtual
machines. The operating environment in the V-NetLab, as viewed by users, is
illustrated in Figure 3.1.

3.2.1 Hardware Platform

The selection of a hardware platform is critical to the implementation of a V-NetLab
platform. In general, two classes of hardware platforms support in implementing
a virtual network. A single powerful multiprocessor appears an ideal choice for
supporting V-NetLab with its wide array of commercial software to support virtu-
alization at a management level. However, the cost of the hardware is usually very
high, in addition to limitations with regard to disk space, processor speed and per-
formance of virtual networks. These limitations do not make this class of hardware
platform an ideal choice. The second class of hardware, a collection of commercial
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PC’s are cost effective and not constrained by space and speed limitations. However
these systems have minimum or zero scalability. We have built a hardware plat-
form consisting of network workstation-class PC’s to overcome the drawbacks of the
above discussed classes of hardware platforms. The solution is cost-effective and yet
scalable.

V-NetLab hardware platform shown in Figure 3.2 consists of dual-processor
workstation class PCs connected together by a switched gigabit network. The host
OS on the system is Linux. However, the virtual machines can run a Linux, Win-
dows or any other OS image provided it is supported by the VM software. Linux has
been chosen as the host OS to enable relatively easy development of virtual network
control and software management. The three main components of our hardware
setup are:

• A Single NFS Server (PC-based). All the virtual machine disk images are
stored on this server. The storage capacity of the server is 600GB realized
through a 6-way RAID set up which ensures an excellent I/O performance.
The storage space can be utilized to store 200 to 500 distinct virtual machine
images.

• 9 Workstations (PC-based). The PC based workstations run Linux OS with a

virtual machine software from VMware Inc. [3]. Each of these workstations has
3 to 4 GB memory and 2.8 to 3.0 GHz Intel dual processor. The workstations
have been partitioned into 6 ”production” PC’s and 3 ”development” PC’s.
The production PC’s support course related projects while the development
PC’s are used for continued development and testing of the V-NetLab software.

• A gateway host. The gateway host acts as an access and login machine for
the users. Every user has to login to the gateway host inorder to access their
virtual networks. The gateway host provides a management interface that
enable V-NetLab access to users. The gateway host does not forward any
packets and hence ensures isolation between V-NetLab and the Internet.

The testbed also includes gigabit Ethernet switches and a management console.
Overall, this hardware platform can host between 130 to 300 virtual machines si-
multaneously. The entire setup shown in Figure 3.2.

3.2.2 User’s View

The hardware setup is not totally transparent to the users. The operating system
environment in the V-NetLab, as viewed by users, is illustrated in Figure 3.1. The
laboratory contains a single Gateway host and is hosted in an isolated network. The
gateway host acts as an access and login machine for the users. The gateway host
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does not forward any packets and hence ensures isolation between V-NetLab and
the Internet.

Every user has to login to the gateway host inorder to access her virtual net-
works. The gateway host provides a management interface that enables V-NetLab
access to users. No user can directly access any of the machines in the test-bed
or hardware setup. A user however, can login to the gateway (i.e V-NetLab) from

any computer that runs X-Windows Server and Secure Shell (SSH) software with
Internet connectivity.

The user has to login to the gateway using SSH and then start up the virtual
network. VM’s consoles are displayed on the user’s computer. Figure 3.3 shows
screen-shots of VM consoles for a network topology. Each VM console represents a
virtual machine (VM). The user may have administrative or non-privileged access
on these machines. The privileges are specified in the configuration file. If a user
has an administrative privilege, she can move data into the virtual network from
outside or vice-versa by performing a NFS mount of her home directory (on the

NFS server) onto any of the virtual machines.
The details of the interface provided to the users are described below. The inter-

face is implemented using scripts that run on the gateway machine and it provides
the following functions:

• Registration. A user can register her network by submitting a configuration
file that contains the virtual network definition. A virtual network definition
contains the virtual machines and the interconnecting network devices (v-

hubs and v-switches). The V-NetLab system validates the network definition
by performing lexical, syntactic and semantic checks and analysis.

– Network Definition

The course staff needs to define the configuration of each virtual machine
and the overall network topology apriori for any virtualization project
or experiment. An excerpt of the original configuration file (of 50 lines)
for the network shown in Figure 3.3 is listed below. The VM images
are referenced through the src field in the VM definition section. Some
definitions, such as hubs and switches have been abbreviated with “...”
to conserve space.

vm ExtFW {

os : LINUX

ver : "7.3"

src : "/mnt/qinopt/vmnetwork/vmSrc/assgn1"

eth0 : "200.200.100.162"

eth1 : "200.200.100.65"

eth2 : "200.200.100.130"
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}

vm Nfs {

os : LINUX

ver : "7.3"

src : "/mnt/qinopt/vmnetwork/vmSrc/assgn1"

eth0 : "200.200.100.195"

}

vm IntFW { ... }

vm DefaultGW { ... }

vm Dmz { ... }

vm Gemini { ... }

hub hub1 {

inf : DefaultGW.eth0, ExtFW.eth0

subnet : "200.200.100.160"

netmask : "255.255.255.224"

}

hub hub2 { ... }

hub hub3 { ... }

switch s1 {

IntFW.eth1, Gemini.eth0, NFS.eth0

}

Each virtual machine contains an IP address, hostname and the file con-
taining the disk image. A v-hub or a v-switch is specified in terms of the
host interface or other connected v-hubs or v-switches along with a range
of network addresses associated with it.

– VM Images

A virtual network configuration file can reference more than one VM disk
image. These images store the contents for the virtual machine’s hard
drive and need to be prepared before starting the network. Each image
must contain all the software required for a user’s experiment so as to
minimize the administrative efforts by a user.

Typically, VMs in a virtual network differ in many ways from each other.
For instance, they will have distinct IP addresses and host names, and
run different services. To overcome this problem, we typically use the ex-
act same image (master image) for all VMs, but modify the boot scripts

(which are part of this image) so that different sets of services can be
started up on different VMs. Note, however, that this approach is spe-
cific to a given guest OS. In our implementation, this feature has been
implemented for Linux and Windows. The modified boot scripts also
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take care of routine network configuration aspects such as the set up of
IP address, host name, DNS server, and default gateway, based on the
contents of the virtual network configuration file.

After validation, this network is associated with the user. The registration
step may not always be done by a user, administrator may preregister the
network that is supposed to be used by each user.

• Startup. A user is permitted to start his network only if it has been previously
registered. If the network is started for the first time then a mapping of virtual
machines onto physical network hosts is computed. This mapping attempts to
(a) minimize copying of large VM disk images (of the order of GBs), and (b)
balance the load across physical machines. Optimal allocation algorithms turn
out to be computationally expensive, so simple heuristics are employed in our
current implementation. After computing the mappings, any VM disk images
that may need copying are copied from the file server to the workstations,
the VMs are started up and their console displays are tunneled to the user’s
desktop.

• Shutdown. This command shuts down the user’s network. Depending upon
the configuration of the virtual machines, their states (disk images) may be
saved or simply discarded.

• Query. This command displays user’s virtual network status (running, regis-

tered or unregistered) and available capacity of hardware platform (estimated)
in terms of number of VMs.

3.3 System Architecture

The following are the important components of V-NetLab as seen in Figure 3.4.

• VNetMgr

VNetMgr is the user interface program for users to register, de-register, start,
query, remote-login and shutdown networks.

• GrpAdmin

GrpAdmin is the user interface program for administrators. This interface
allows administrators to add/delete users to his domain, register/de-register

networks for the users under his domain, create/delete teams, add/remove

users to/from teams, query usage statistics of hardware resources for running
networks etc.
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• GrpMgr

GrpMgr is a central daemon which listens to user interface programs, process
these requests and relay these requests to HostMgr. It talks back to user in-
terface programs after hearing back from all the HostMgr’s it contacted for a
particular user request. There is exactly one instance of a GrpMgr for every
domain. GrpMgr is the nucleus of V-NetLab and maintains information about
all the virtual networks which are currently running, the current resource us-
age, residual computing resources available etc. It overlays virtual network
topologies over physical machines which host VM’s and generate all the con-
figuration files needed by each of these hosts to setup, configure, start VM’s
of virtual networks and reliably relay the packets which belong to VM’s of a
particular virtual network.

• Compiler

Its utility is two fold.

– Verify the validity of network topology definitions given by users. This
is done during registration phase. VNetMgr and GrpAdmin invoke the
Compiler during network registration phase.

– Parse the network topology file and fill up the necessary data structures
which are later used by GrpMgr to generate all the necessary configu-
ration files for successfully running an overlay virtual network. GrpMgr
invokes the Compiler during the start-up phase of a virtual network.

• HostMgr

HostMgr is a deamon which runs on each of the physical nodes which host
VM’s for V-NetLab. HostMgr’s set up, configure and start virtual networks
on the request of GrpMgr which in turn are initiated by GrpMgr on behalf of
the user.

• Loadable Kernel Module (Kernel Mac Translator)

Its the core component of the run-time system and responsible for selectively
forwarding virtual network traffic that involves packet translation and restora-
tion and as well as providing a mechanism for connecting to a virtual network
from an external network through SSH.

3.4 Technical Challenges

V-NetLab enables overlay of virtual networks over a set of physical machines and
this poses a lot of interesting problems to be solved. Some of them have been
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addressed. The following sections talk about the challenges to be solved to realize
the design goals mentioned in the Section 3.1

3.5 Network Virtualization

The problem of simulating the networking phenomena and virtualization of net-
working devices like hubs and switches is not straight forward as the virtualization
scheme would need to address the challenges of

• Isolation of multiple networks running simultaneously on the same underlying
hardware oblivious to each other’s presence

• Support remote logging in of users into Virtual Machines via SSH

• Transparent and reliable transmission of packets across VM’s (belonging to a

network) running on different physical machines

The issues above have been addressed by our virtualization scheme, discussed in
brief detail in the implementation section of Chapter 4

3.6 Resource Management

As we overlay networks, we have to solve the classic network overlay problem of
efficient mapping of virtual machines on physical resources. In simpler terms, when
we overlay a virtual network onto physical machines we would like to minimize the
traffic induced by the overlay network on the physical network and at the same time
balance load of VM’s on the physical nodes. The objective is to use the current
resources efficiently. Resources encompass network bandwidth of physical links, vir-
tual network interfaces, CPU, RAM and hard drives of physical nodes. If the overlay
scheme is not fair then some of the physical nodes might be overloaded when com-
pared to other machines, This will affect the performance of virtual networks whose
VM’s are hosted on the affected physical machines. Since V-NetLab is a distributed
system, its only fair to assume, that the overlay scheme should judiciously try to
balance the load on the test-bed machines.

At the same time, if a particular network is spread across too many physical
nodes, the traffic induced by the overlay due to the communication between VM’s
might be high. This might lead to congestion on the physical link sooner than
expected. Thus the overlay scheme should ideally try to reduce the traffic induced
on the physical network as much as possible.

The objective of the overlay scheme is to maximize the efficiency of usage of
computing resources and hosting of virtual networks.
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3.6.1 Assignment Problem

Input: A description of virtual (logical) topology along with link costs. Though
link costs cannot be specified currently in the network definition file, we assume to
have this information separately. We don’t assume any specific traffic characteristics
among virtual machines and deal only with link costs.

• A list of virtual nodes

• A list of links with link costs associated with them

• A list of switches and hubs

• A list of physical nodes with their computing capacities.

Output: A mapping of virtual nodes to physical nodes.

Optimal Assignment

Consider n physical nodes, Mi, i = 1, n and let Li, i = 1, n be the load on these
machines. These loads are normalized. That is, 0 < Li < 1, i = 1, n. We define
LM to be mean load on the testbed. Also, we define CommOvHead as the commu-
nication overhead induced by the overlay. This is equal to the sum of link costs of
all the links, which induce a cost on the physical links due to the overlay scheme.
Thus, if VM’s of a network are hosted on the same machine, then the contribution
of the virtual link costs between them towards CommOvHead is zero. An optimal
assignment should minimize CommOvHead and variance defined as

variance = Σi=1,n(LM − Li)
2

Topology Partitioning

Graph partitioning is a difficult, long-standing computational problem. It has appli-
cations to VLSI design [12], sparse matrix-vector multiplication [6], and paralleliz-

ing scientific algorithms [5, 8]. The general way partitioning problem is described

a graph, G(V, E, WV , WE), where WV and WE represent vertex and edge weights
respectively. output of partitioning G consists of subsets of vertices, V1, V2, ..., VK ,

where Vi

⋂
Vj = φ for j 6= i and

⋃
i Vi = V . The goal is to balance the sum of

vertex weights for each vertex Vi , and minimize the sum of edge weights whose
incident vertices belong to different partitions. Though this problem is NP-hard [7],

heuristics yield good partitions in practice [10, 11, 13].
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Simplified Assignment Problem

Consider a graph G′(V ′, E′, V ′

W , E′

W ), where

• V ′ is the set of virtual machines.

• V ′

W is the set of loads induced by corresponding virtual machines in V ′ on the

physical nodes if they are hosted. This set represents the vertex weights.

• E′ is the set of edges among virtual machines. There wont be an edge between
two VM’s if they are connected to the same hub or a switch. The link cost
associated with the edge becomes its weight.

• E′

W is set of edge weights.

If we consider, a special case of our assignment problem where Li = l for i = 1, k,
then, the general graph partitioning problem on G′ is equivalent to finding out an
optimal solution for the simplified assignment case. This equivalence proves that our
Assignment problem is hard. So, we propose various heuristics to solve the problem
at hand.

Offline Assignment Problem

In the offline assignment problem, we know before hand all network topologies we
would like to overlay. We consider two cases here

• We never allow splitting of networks (overlay of a single network topology on

more than one physical machine) and try to assign them to physical hosts. If
at any point there is a network which cannot be accommodated onto a physical
node, then we deem it as failure and abort.

If W = {Wi|i = 1, k} are network capacities, P = {Pj |j = 1, n} are the

physical nodes with C = {Cj |j = 1, n} as their respective physical capacities,

we can obtain a reasonable assignment scheme by allocating elements in set
W to each of Pj ∈ P such that the Σi∈allocated setWi is maximized but is

less than Cj ∈ C. We are interested in allocations where the utilization of

physical node is maximum. We accecpt this allocation into our solution set
iterate recursively over the remaining networks and nodes till we allocate all
the networks. The best way of allocating elements of W to Pj such that the

utilization of Pj is maximum can be solved using the 0-1 knapsack problem.

• If we allow splitting of networks, then arbitrary splitting scheme becomes
sufficiently hard as we will be solving many instances of the NP hard allocation
problem. So, we look at some heuristics, mostly greedy to arrive at solutions.
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– Largest network with largest available capacity

We try to match the largest available network with largest available ca-
pacity any point and try to make an assignment. In case, there is no
such physical node then we split the network and consider the connected
components for allocation. We iterate over all the input networks set in
this manner. In case, one needs to split the network then we suggest a
scheme to split the networks (see below).

– Largest network with large enough available capacity

We try to match the largest available network with a machine whose
capacity is large enough (not necessarily largest) but is smallest among
all the available hosts which can host the network of interest without
splitting. In case there is no large enough network then we split the
network and allocate the connected components. We iterate over all the
input networks set in this fashion.

– Maximization of load of physical machines

In this scheme, we start with the machine with maximum capacity and
fill it up starting from the largest network and subsequently all the other
networks, driving up the utilization of the physical node close to 100%
before we move to the next largest physical node.

In all the above approaches, in case, we need to split the network then we split
into connected components whose number is proportional to the switches/hubs.
Each hub gets the machines to which it is connected to. Cases where a single
machine is connected to multiple hubs, the machine belongs to the hub with
maximum degree. If, we have an upper bound on the number of pieces into
which a network be split, then we can reduce the number of connected compo-
nents by grouping them together based on some preferred logic. For example,
grouping them into similar sized groups.

Online Assignment Problem

In the Online case we wont know the networks we might have to allocate in the
future. So, doing a best allocation every time need not necessary lead to a optimal
allocation after n allocations. The heuristics mentioned in the offline along with
other new heuristics might be good to test and simulate.

Ultimately, all the approaches mentioned above should be simulated to choose
how they perform for different types of inputs.
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3.7 Virtual Image Management

The size of VMware images are typically greater than 700 MB. Currently, as we
create virtual networks, a image is created for each VM from a source VM image.
Thus, if a virtual network has 25 machines, then 25 separate copies of such VM im-
ages have to copied from NFS and maintained. Also, if virtual machine images have
to be moved due to changes in the overlay scheme, then it gets quite cumbersome
and is detrimental to both efficiency and usage of V-NetLab. We propose a method
to tackle this problem. This is currently not integrated into V-NetLab but has been
developed and tested independently.

A vmdk file forms the primary disk image for a VMware Workstation. As we run
virtual networks, these vmdk images get modified. This vmdk image, say new.vmdk,
is first copied from a master vmdk image, say orig.vmdk. Depending on the amount
of modifications, the difference between the two files will vary.

Observation: For typical usage scenarios the amount of modifications are only a
small fraction of the size of the original file. So, it makes sense to create the difference
of them (part.vmdk), and send it instead of moving around large new.vmdk file.

Mechanism:

• A hashfile is created corresponding to org.vmdk file. Md5 hash is computed
against each block (e.g. 4K, can be customizable) of the file, and it is dumped

into a file (org.vmdk.hash) that accompanies the org.vmdk file, this step can
be done before hand.

• Similarly, a hash for each block of new.vmdk is computed and is looked up in
org.vmdk.hash.

– If the lookup fails then then the block is written into the part.vmdk in the
same location as that in the new.vmdk. It should be noted that part.vmdk
file created as a sparse file,

– If the lookup is successful that means the current block in new.vmdk and
the block corresponding to lookup entry in org.vmdk.hash are identical.
A map file, diff.map maintains a mapping of this information. part.vmdk
is untouched in this case.

From the above logic, it is obvious that new.vmdk can be created given old.vmdk,
diff.map and part.vmdk.
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Patching: org.vmdk is s present on each physical host involved in test-bed. If
part.vmdk, diff.map are available, then patching can be done in two ways:

• Static Patching

Each record in map file is read and the corresponding block from org.vmdk
is picked and written into part.vmdk at the block location specified mapfile.
After processing all the records, part.vmdk will be the identical to new.vmdk.
Static patching takes a fraction of the vmdk copying time, and it can be slow.

• Dynamic Patching

This is to minimize the startup time involved in static patching approach. A
PRE LOADED library is prepared for intercepting the vmware process, and
for each read, a lookup for the map file is incurred to check whether the portion
needs to be picked up from org.vmdk or part.vmdk, and the correct portion is
read from them accordingly and return to vmware process.

When a write is occurs, its more involved. It leads to a look up, first from the
map file, if the write portion only involves part.vmdk, then write it in part.vmdk
directly, if not, migrate the blocks of interest from org.vmdk to part.vmdk, then
perform the write to part.vmdk. The map file needs to be updated accordingly
to indicate the blocks in question can now be directly picked up in part.vmdk.

3.8 Usability

Centralized and efficient administrative management of V-NetLab can be daunting,
if there are no proper management tools. Currently,

• Specifying arbitrary topology specifications is relatively simple through the
rich network specification language.

• VNetMgr already provides functionality for users to register/start/shutdown/query
and remote access to virtual machines.

• GrpAdmin provides the following functionality for administrators

– register:

∗ Register a network for a user/all users in the group.

∗ Register a network for a team/all teams in the group.

∗ Register a network for a set of users (input from a file).

– query:

∗ query the GrpMgr for the virtual networks its running currently.

25



∗ query the usage statistics of a particular user.

∗ query for usage of specified resources (vmnets currently being used,

host(s) on which the virtual network is mapped to) by a particular
user network.

∗ query for usage of resources on a particular physical host/All physical
hosts.

– teams:

∗ Create/Delete a team.

∗ Add/Delete members to/from a team.

– deregister: Deregister networks for a team/user/all users for a group.
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Figure 3.3: Sample Virtual Network Topology and its Screen Shot
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Figure 3.4: V-NetLab Architecture
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Chapter 4

Implementation

This section talks about implementation details.
Most of the implementation has been done in C++. Compiler was written using

Lex/Yacc and it generates a C++ compiler. Kernel module is approximately 3000

lines of code (LOC) in C. No parts of the Kernel module were directly dealt with
during the work for this thesis. It was mostly used as a black-box and modified
only to fix bugs while building the V-NetLab framework. The entire V-NetLab
framework was designed and implemented from ground-up and forms a major part
of the effort towards thesis. This included building the following major components.

• Compiler

• VNetMgr

• GrpAdmin

• GrpMgr

• HostMgr

V-NetLab framework is currently around 18000 LOC in C++/C. There are also
various shell scripts which are used at various stages of execution of V-NetLab.

4.1 Implementation

4.2 Compiler

We have developed a simple language that allows one to define ethernet based net-
works by writing a topology file. A Network is specified in terms of virtual machines
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and interconnecting devices such as hub and switches. Compiler takes as input the
user-defined topology specified in the language. It checks whether the given topol-
ogy is valid (and populates a set of internal data structures). Following is a brief
description of the language and format of the topology file:

• Virtual Machine Definition

User must begin by deciding the number of virtual machines the in the virtual
network. She must then decide the number of network interfaces in each
machine and their IP addresses, operating system type etc. Each virtual
machine in the network topology has an entry in the topology file with the
following properties

– Hostname

– Operating system and its version

– Location of the virtual disk image for that virtual machine.

– Interface IP addresses

eg.

vm Machine1 {

os : LINUX

ver : "9.0"

src : "/mnt/qinopt/vmnetwork/vmSrc/linux9"

eth0 : "192.168.2.2"

eth1 : "192.168.3.2"

}

The above entry specifies that Machine1 has 2 interfaces having IP addresses
as mentioned and the default gateway is 192.168.2.2 on eth0. Thus when
the virtual machine comes up, it is already assigned these IP address and
router information. This virtual machine is to run Linux (Red Hat 9.0) as
the operating system and the location of the appropriate virtual disk image is
”/mnt/qinopt/vmnetwork/vmSrc/linux9”.

• Connecting components(Hubs/Switches) definition

After all the virtual machines have their definition in the topology file, we need
to define the connecting components - hubs and/or switches by specifying,

– Machine names and their respective interfaces connected by the hub/switch
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– Subnet address of the network to which these interfaces belong

– Netmask of the network to which these interfaces belong

– Domain name of the network

eg.

To connect virtual machines by a hub

Machine1
Machine3

Machine2

eth0

eth0

eth0

192.168.2.0/255.255.255.0

Hub

hub hub1 {

inf : Machine1.eth0, Machine2.eth0, Machine3.eth0

subnet : "192.168.2.0"

netmask : "255.255.255.0"

}

This entry specifies that Machine1’s, Machine2’s and Machine3’s eth0 inter-
faces are connected to a hub, and the network they belong to is ”192.168.2.0/255.255.255.0”,
with domain name of seclab.cs.sunysb.edu and dns server IP ”192.168.2.2” .

To connect virtual machines by a switch
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Machine1 Machine2Switch

eth0 eth0

192.168.2.0/255.255.255.0

Switch

hub hub1 {

inf : Machine1.eth0

subnet : "192.168.2.0"

netmask : "255.255.255.0"

}

hub hub2 {

inf : Machine2.eth0

subnet : "192.168.2.0"

netmask : "255.255.255.0"

}

switch s1 {

hub1, hub2

}

This entry specifies that Machine1’s and Machine2’s eth0 interfaces are con-
nected together by a switch and the network they belong to is ”192.168.2.0/255.255.255.0”.

4.3 GrpMgr

GrpMgr provides a centralized control over the virtual network. It is responsible for
responding to VNetMgr and, GrpAdmin requests by communicating with HostMgr’s
on users behalf, maintain current state of the system and serve requests. It handles
start, shutdown and query command for all virtual networks.

4.3.1 Network Virtualization Configuration Information

Based on the information generated by the compiler, GrpMgr first decides the phys-
ical distribution of the virtual machines over physical machines. In doing that it
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takes into consideration factors such as current load on the physical machine, loca-
tion of the virtual machines in the previous run, minimization of network traffic on
the physical LAN, etc. Physical distribution step is carried out each time the virtual
network is started, thus it is dynamic. After deciding the placement of the virtual
machines, various layout files are written that represent the network topology and
the physical distribution in order to simulate hubs, switches, etc. The engine also
creates migration scripts for copying of VM images from NFS to the local disks of
the involved physical machines.

4.4 HostMgr

Each involved physical host machine has a HostMgr daemon running on it. HostMgr
takes commands from GrpMgr and performs appropriate functions. eg. When it
receives start command, it copies the VM disk images, layout files and other con-
figuration files from NFS to local disk using the migration scripts generated by the
virtualization engine. It then loads the layout files by communicating with the LKM
using netlink sockets. It then brings up virtual machines. HostMgr also consists
of a local CacheManager. When the VMClient wishes to start VMs belonging to a
virtual network it first checks if the corresponding disk image is there in local cache.
If it is, then the image of the VM in the cache is used to start-up the VMs; if it is
not, then the master copy is restored for the latest VM image before bringing up
the virtual machines.

4.5 Loadable Kernel Module (LKM): A Host-Only so-
lution

The layout files created by the virtualization engine are populated as kernel data
structures (hash tables) by the LKM through netlink sockets. LKM performs packet
translation and restoration function to ensure that all the virtual machines that are
supposed to receive network packets belonging to some conversation, are able to do
so, even if they are distributed over different physical machines, thus transparently
transmitting and receiving packets. To decide which virtual machines or physical
machines should receive the packet, it looks up the populated hash tables. Using
this LKM feature we emulate the entire network topology. The details of LKM is
followed in the next section.
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4.6 Networking

4.6.1 Technical Background

The Ethernet card is hard-wired with a particular link layer (or MAC) address
and is always listening for packets on its interface. When it sees a packet whose
MAC address matches either its own address or the link layer broadcast address
(i.e., FF:FF:FF:FF:FF:FF for Ethernet) it starts reading it into memory. Upon
completion of packet reception, the network card generates an interrupt request.
The interrupt service routine that handles the request is the card driver itself, which
runs with interrupts disabled and typically performs the following operations:

• Allocates a new sk buff structure which represents the kernel’s view of a packet.

• Fetches packet data from the card buffer into the freshly allocated sk buff,
possibly using DMA.

• Invokes netif rx(), the generic network reception handler.

• When netif rx() returns, re-enables interrupts and terminates the service rou-
tine.

The netif rx() function prepares the kernel for the next reception step. It puts
the sk buff into the incoming packets queue for the current CPU and marks the
NET RX softirq (softirq is explained below) for execution via the cpu raise softirq()

call. This processing is resumed by a call to the net rx action() function. It de-

queues the first packet (sk buff) from the current CPU’s queue and runs through
the two lists of packet handlers, calling the relevant processing functions. The two
lists are called ptype all and ptype base and contain, respectively, protocol handlers
for generic packets and for specific packet types. Protocols which wish to receive all
incoming packets are linked into a list pointed to by ptype all. These protocols reg-
ister the have type ETH P ALL and are processed before considering the protocols
that consume only a specific packet type. Protocol handlers register themselves,
either at kernel startup time or when a particular socket type is created, declar-
ing which protocol type they can handle; the involved function is dev add pack()

in netcoredev.c, which adds a packet type structure (see includelinuxnetdevice.h)
containing a pointer to the function that will be called when a packet of that type is
received. Upon registration, each handler’s structure is either put in the ptype all
list (for the ETH P ALL type) or hashed into the ptype base list (for other ETH P *

types).So, what the NET RX softirq does is call in sequence each protocol handler

function registered to handle the packet’s protocol type. Generic handlers (that

is, ptype all protocols) are called first, regardless of the packet’s protocol; specific
handlers follow.
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4.6.2 Virtualization at Datalink Layer

Adoption of Host-Only VMware networking

Since host only mode provides communication between VMware and the host OS,
we can insert a module in the host OS which can process packets coming from vir-
tual machines (VM’s) through virtual interfaces to achieve virtualization of network
components. Also, this mode does not put physical host’s interface in promiscuous
mode unlike Bridged mode, which hinders performance. Thus Host-only mode is
the best choice for creating virtual networks using VMware Workstations. Also,
Bridged mode automatically extends the virtual machine network interface onto the
LAN of physical machine on which it is hosted. This might be in direct violation
with our Isolation principle. NAT mode is not feasible either because, we would like
to support arbitrary user network topologies with specific IP and network addresses.

A virtual network typically consists of a number of VM’s distributed over a set
of physical hosts. VM’s belonging to the same subnet (eg. connected to the same

Hub) in the logical topology might be distributed over multiple physical hosts. In
that case we need a mechanism for transparent and lossless transmission of packets
among virtual hosts via physical Hosts. This calls for the need of a packet processing
module within each physical host’s kernel. In other words, we need a bridge to
connect vmnet interfaces with the physical interface.

To achieve virtualisation of network components – Hub and Switch. we perform
two tasks:

1. Introduce a packet processing logic that decides where to forward or on which
interface to send the packet to, based upon the network topology (logical

topology) specified by the user.

2. Transparently transmit and receive packets on the physical wire and make
sure that each physical host receives virtual network packets, and are handed
over to the packet processing logic in the physical Host OS.

Concept of Sibling Closure

Virtual Hosts’ interfaces that are connected together by one or more hubs without
any switch or bridge involved, form a Sibling closure or SC. A virtual hosts’ interface
in an SC should be able to listen to conversation involving any of the virtual host
interface in the SC. The Logical topology provided by the user can be divided into
SC’s. Each SC can be given a unique Id. Each SC can have a number of virtual
hosts interface, each of which is numbered uniquely within that SC.
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MAC-based Identification

A MAC address is a six-byte number. Each network adapter manufacturer gets a
unique three-byte prefix called an OUI - Organizationally Unique Identifier - that
it can use to generate unique MAC addresses. VMWare has two OUIs - one for
automatically generated MAC addresses and one for manually set addresses.The
VMWare OUI for automatically generated MAC addresses is 00:0C:29. Thus the
first three bytes of the MAC address that is automatically generated for each virtual
network adapter have this value. The MAC addresses can be assigned manually
by system administrators. VMWare uses a different OUI for manually generated
addresses: 00:50:56.

Thus last 3 bytes of the MAC addresses of the interfaces on the virtual hosts
can be used to uniquely identify them in the logical topology. SCID is made part of
6 byte MAC address. Thus Mac address is of the form 00:50:56:01:02:03
where, first 3 bytes are vmware OUI prefix,

4th byte is network id, that is unique for all the networks,
5th byte is SCID,
6th byte is derived from a counter.

Participation Table

Another important data structure introduced is ParticipationTable or PT. This
is generated by GrpMgr during the start-up of the network after validating the user’s
network topology. By definition, each virtual host’s interface in a Sibling closure
is able to listen to conversations involving any other virtual host’s interface of that
SC. Virtual Host interfaces belonging to a SC can map to more than one Host Vir-
tual Adapter (vmnet device) that may reside on a single or multiple physical hosts.
Participation table describes the group of Host Virtual Adapters that are associated
with a SC. So a packet generated in a SC will need to be forwarded on all the Host
Virtual Adapters which are participating in that SC. This table is used in making
forwarding decision. The format of each entry in Participation Table is as follows:
〈Src SCID〉 〈Dst SCID〉 〈no. of local vmnetx interface〉 〈list of local vmnetx inteferface〉

〈no. of remote macs〉 〈list of remote macs〉

where, Src SCID is source SCID,
Dst SCID is destination SCID,
third field specifies the number of local interfaces,
fourth field lists the local interfaces,
fifth field specifies the number of remote hosts,
sixth field lists the list of remote mac addresses.
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SC 2

SC 3

Switch

SC 1

Figure 4.1: Three SCs connected by a Switch

1 0 3 1 2 3 0

1 1 1 1 0

2 0 3 1 2 3 0

2 2 1 2 0

3 0 3 1 2 3 0

3 3 1 3 0

Table 4.1: Partcipation Table for Figure 4.1

Each entry specifies the lists of local vmnet interfaces and list of remote hosts
where a virtual network packet needs to be forwarded so as to emulate the virtualized
ethernet environment. For instance, if a SC is mapped to vmnet device number 2
and 3 (vmnet2 and vmnet3) then any packet from this SC should be visible on both
vmnet2 and vmnet3 devices. We further take up a case where SCs are interconnected
by a switch.

Figure 4.1 shows three SCs conected by a switch, their ids are 1, 2 and 3.
Assuming that SC1 has been mapped to vmnet1, SC2 to vmnet2 and SC3 to vmnet3.
The participation table for it is shown in Table 4.1. The entry where destination SC
id is 0 refers to a broadcast entry. It means that if a broadcast packet is generated
in any of the SCs then according to switch semantics it should be visible in all
three SCs. First entry of the table says that a broadcast packet generated in SC1,
should be visible on three local vmnet interfaces – vmnet1, vmnet2 and vmnet3.
Second entry depicts that any non-broadcast packet generated in SC 1 needs to be
visible only on device vmnet1. In both the cases, its not required that packets be
forwarded on remote interfaces as the last field has an entry 0. The rest of the
entries are similar to first two entries.
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Transparent transmission and reception of packets

Figure 4.2: Network Virtualization in V-NetLab

Virtual network packets that need to be forwarded on a remote vmnet interface
has to be transmitted on physical wire through host physical interface (eth0). To
transparently transmit packets generated by a VMware on to the physical wire, we
need a mechanism to grab each and every packet arriving at vmnet (virtual interface)

and forwarding it on to physical host’s interface (eth0) as per Participation Table.
Thus the packet will then be visible to all the physical hosts on the network. Also,
the packet needs to be captured at eth0 interface of the receiving physical host and
transferred to the packet processing logic. To make sure that the packet is not
dropped at the data link layer of the receiving end, the packet’s destination MAC
address needs to be changed to receiving host MAC address (according to entry in

participation table). Also to make this modification transparent for the receiving
VMware, we will need to restore the original packet at the receiving end. Thus we
need to encode the lost information in the new packet i.e the orginal destination
MAC address. This will require to send some meta information with each packet
so that destination mac address can be reconstructed after it has been received
at the other end. Therefore, every ethernet packet contains meta information and
authentication information at its tail so as to allow the reconstruction of actual
destination mac address. Altogether, 6 bytes of data are appended at the tail, out
of which first 2 bytes are meta information and remaining 4 bytes serves the purpose
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of signature. In this way the receiving physical host retrieves the last 6 bytes from a
ethernet packet. First, it does the authentication by comparing the last 4 bytes with
the signature data. After authentication, destination mac address is reconstructed
with the help of first 2 bytes in the following way. This approach is devoid of source
mac address spoofing and works with smart ethernet switches that are able to figure
out source mac address spoofing.

Thus, original source and destination mac will be of the form

00:50:56:01:02:ZZ (SourceMAC)

00:50:56:01:02:CC (DestMac)

The first 3 bytes are unique to VMware (vmware OUI) and remaining three
bytes encode following information:

• virtual network id: 4th byte

• SC id: 5th byte

• unique counter value: 6th byte

Now when a virtual network packet is transferred on physical wire then desti-
nation mac address is changed to as per PT table. The source, destination MAC
address and 6 byte trailer at end are as follows:

00:50:56:01:02:ZZ (source mac address is not mangled)

00:0D:56:A8:A7:4A (destination host mac address, obtained from PT table)

02:CC:0A:0B:1A:1B (6 byte at tail of ethernet frame)

As shown above, the last 2 bytes of original destination mac address is appended
at the tail followed by 4 bytes of authentication data. The first 3 bytes of virtual
machine mac address is vmware OUI and last 4 bytes of authentication data at
the tail helps identify virtual network packets at receiving host. The destination
mac address is restored by taking 4 bytes prefix from source mac address and ap-
pending to first 2 bytes of the 6 byte trailer at the end of the packet. In case
if the packet is a broadcast packet then its destination mac address is restored to
”FF:FF:FF:FF:FF:FF”. For a broadcast packet the first 2 bytes of the 6 byte trailer
is ”00:00”. Please refer to Figure 4.2.
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Chapter 5

Summary

5.1 Related Work

There was work done earlier for providing administrative access to physical machines
in a safe and secure way. Jean et al. built an advanced systems laboratory which
allowed root access to machines. Though users had root access to lab machines they
couldn’t jeopardize the security of the network. Their approach was to store the
disk images on NFS, copy them on demand and boot for users to login.This was
no more novel when adoption of VM’s had become mainstream. Also, one couldn’t
have access to a network of machines.

Planetlab [2] is distributed networking laboratory which allows users to choose an
overlay scheme of this distributed set of nodes which run identical software. Emulab
[1] is a time and space-shared network emulator which achieves new levels of ease
of use. It allows users to specify a network topology with user defined packet loss
characteristics, latency and band-width characteristics. It supports virtualization
based on FreeBSD Jails. This mode of usage allows a single type of OS to be hosted
where as in our case we can run different OSes on the same physical machine.
Though dedicating nodes of specific OSes solves the problem, it still doesn’t allow
multiple’ OSes to share single machine like in V-NetLab.

In contrast to these approaches, our work provides an approach that combines
flexibility and versatility with low hardware and administration/management costs.

VNET [17] tries to solve the grid-computing problem, by extending the LAN to
include VM’s. They use VMware Workstation as VM’s and network virtualization
is achieved by using bridged mode networking of VMware. VNET tunnels ethernet
packets over TCP/IP to achieve VM visibility as a node on the local LAN. VI-

OLIN [9] uses an application-level virtual network architecture built on top of an
overlay infrastructure such as Planetlab. They use UDP tunneling in the Internet
domain to emulate the physical layer in the VIOLIN domain. Though they are more
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similar than others (as they use VM’s to realize virtual networking) they are clearly
less efficient than V-NetLab since we achieve network virtualization at data-link
layer.

Network assignment problem has been studied previously by many researchers.
Anderson et al. [4] discusses theoretical approaches and general techniques to solve

a class of node assignment problems. Robert et al. [15] define a general network
test-bed mapping problem and present a general purpose simulated annealing ap-
proach to solve the problem. Ken et al. [18] also discuss about methods to create
partitions based on expected communication across the network topology. They use
METIS [10] to perform fast and efficient topology partitioning. Ananth et al. [17]
have a formulation of the problem of mapping VM assignments to physical nodes
based on bandwidth, latency and computing rate as primary characteristics.

5.2 Conclusion and Future Work

V-NetLab provides a framework to conduct security experiments by taking full ad-
vantage of virtualization technologies. It effectively addresses the problems faced in
the physical world, in order to provide networks for security experiments. It allows
users to create arbitrary network topologies with minimal effort by providing a rich
specification language and solves practical problems like cost escalation when we
try to support bigger virtual networks. V-NetLab provides complete isolation of
networks from other virtual networks and also the physical network on which these
virtual networks run, thereby solving the security problem which arises due to ad-
ministrative access of users. There are still some challenges to be solved in the areas
of resource allocation and virtual image management in order to make V-NetLab
more reliable and efficient.

Currently, only VMware Workstation and Player are being supported as VM’s.
Looking at other virtualization technologies will be good direction for experimenta-
tion and hopefully improvement to the current framework.
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Appendix A

Grammar Definition

A.1 Host Definition in CFG

host list → host

| host list host

host → host : id { host def }
host def → cpu def mem def disk def root dir ip def

cpu def → cpu : floatnum

mem def → mem : intnum

disk def → disk : floatnum

root dir → root : string

ip def → ip : string

A.2 User Definition in CFG

user def → user def wo par sol

| user def wo par sol par sol

user def wo par sol → vm list hub list

| vm list hub list switch list

vm list → vm

| vm list vm

vm → vm id { vm def }
vm def → os def ver def src def eths

os def → os : LINUX
| os : WIN
| os : BSD

ver def → ver : string
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src def → src : string

eths → ethIP

| eths ethIP

ethIP → eth def :string

eth def → ETH

hub list → hub def

| hub list hub def

hub def → hub id { hub decl }
hub decl → if list subnet def netmask def

if list → inf : peer if

| if list , peer if

peer if → id.eth def

subnet def → subnet : string

netmask def → netmask : string

switch def → switch id { switch entry }
switch entry → id

| inflist el

| switch entry,id

| switch entry , inflist el

inflist el → id.eth def

par sol → partialSolution par sol defn

par sol defn → par sol pair

| par sol defn par sol pair

par sol pair → (id.eth def id.V INF )
floatnum → floatnumber

intnum → integer

id → [A − Za − z0 − 9.]+
string → ′′id′′

ETH → eth[0 − 9]
V INF → vinf [0 − 9]+
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