
Squeezing the Dynamic Loader For Fun And Profit

Mingwei Zhang R. Sekar
Stony Brook University

{mizhang,sekar}@cs.stonybrook.edu

Abstract
Dynamic loader is a powerful code module that has privi-
leges to support debugging, profiling and program loading.
Its privilege includes the power to map executable memory
region; unprotect code/data regions to patch relocations. Due
to these privileges and its wide deployment, the effect of
bugs and vulnerabilities in dynamic loader is devastating.

In this work, we demonstrate a code injection attack in
dynamic loader is feasible. We corrupt the loader data struc-
ture and transfer the control to an internal loader function.
Our experiment shows that we are able to change existing
write protected code to our shellcode. We show that the at-
tack is easy to achieve and requires a very simple ROP gad-
get chain.

Keywords Dynamic Loader, Code Injection, Return-Oriented
Programming

1. Introduction
Software nowadays is usually deployed in form of dynamic
linked binaries including executables as well as dependent
libraries. dynamic linked binaries enjoy the benefits of the
convenience to be updated, modularity, flexibility, easiness
for code sharing and etc. Thanks to these benefits, dynamic
linked link binaries becomes the de-facto choice for software
deployment.

Dynamic loader place a key role in the dynamic linking
process. It is responsible for resolving dependencies by load-
ing library files and managing all code modules in the run-
time. Therefore, Dynamic loader is a powerful code module
that has lots of privileges. In particular, its privilege includes
the power to map executable memory region for loading
modules; unprotect code/data regions to patch relocations.
Due to these privileges and its wide deployment, the effect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, .
Copyright c© ACM [to be supplied]. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

of bugs and vulnerabilities in dynamic loader is devastating.
On the other hand, privileges of dynamic linker gives attack-
ers a huge capability to bypass existing security defense and
increase the possibility of the code injection attack.

Our research discovers that attackers could easily reuse
these privileges. In particular, we demonstrate a code injec-
tion attack in dynamic loader. This is done by corrupting the
loader data structure and transferring control to an internal
loader function. Our experiment shows that we are able to
change existing write protected code to our shellcode. The
attack is easy to achieve and requires a very simple ROP
gadget chain.

2. Existing Loader Security Hardening
2.1 Relocation Read Only
Relocation read only (short for RELRO) is security hard-
ening mechanism that protects function pointers and im-
portant metadata in ELF binaries from corruption attacks.
These functions or metadata usually requires dynamic loader
to perform relocation (patch values) to cope with ASLR.
RELRO makes sure these important data is marked read-
only after relocation.

To fully protect all these metadata, dynamic loader need
to patch all of them, which is often time consuming. For
instance, resolving an external function address in Global
Offset Table (GOT) often requires numbers of string match
on different function names and hash checking in different
libraries.

To make a trade off between performance and security,
developers of glibc and gcc designed two types of RELRO:
partial-RELRO and full-RELRO. Among the metadata to
protected, there are internal function addresses, dynamic
segment, loader metadata (GOT[1] and GOT[2]), and im-
ported function addresses.

partial-RELRO protects all of them except the last one:
imported function addresses, which full-RELRO also pro-
tects. Clearly, full-RELRO requires eager symbol binding
which is more time consuming.

2.2 Caller Address Checking
To prevent unauthorized modules invoking internal func-
tions of dynamic loader, developers of glibc add some secu-
rity checking on their critical unexported functions. In par-

ticular, they checks the return address of the caller and see if
they fall into allowed modules. For instance, a inline check
check caller is put in some internal critical functions

such as dl open worker.

3. Code Injection Using Text Relocation
Note that code sections are normally write protected, thus
preventing attacks that overwrite them. Text relocation is a
convenient key to open the “door.” Although text relocation
is discouraged since it makes it difficult to share code mem-
ory across processes, it is still used in some libraries and its
code is available in all versions of glibc loader.

This section describes how to launch a code injection
attack by leveraging the loader code and data using text
relocation. The attack is launched simply in the following
steps:

• Bypass ASLR and figure out loader data structure
• Corrupt loader data structure
• Transfer control to loader function

3.1 Bypass ASLR
The first step is to by pass ASLR and figure out loader data
structure and text relocation function inside loader. Dynamic
loader contains a data structure called “link map” for each
code module. This data structure stores the metadata infor-
mation such as the address of symbol table, address of relo-
cation table and whether the module has been processed, as
shown in Figure 1.

There are several methods to figure out the memory loca-
tion of link map. The first one is to check the Global Offset
Table (GOT). In fact the 2nd element of GOT (GOT[1]) con-
tains the address of link map in most of binaries compiled
with partial RELRO. In case for binaries that are compiled
with full RELRO or binaries launched with eager binding
(with parameter LD BIND NOW, GOT[1] is not initialized.

However, none of these counter measures stop an at-
tacker. Our experiment shows that in program binary, there
is an special memory segment called .dynamic, which con-
tains information of the binary at runtime. In particular, there
is an entry called DT DEBUG. This entry points to a data struc-
ture that contains a pointer to the address of link map.

Although it is easy for dynamic loader to disable DT DEBUG

by simply eliminating 2 lines of its source code, we argue
that such code modification will be unlikely, since it poses
inconvenience for program debugging.

Once link map address is known, it is easy to figure out
text relocation function address. This is because link map is
stored as an array, while the 1st one is for the executable and
one after is for the dynamic loader. From the 2nd link map

data structure, we will know the base address of loader.
Then we could use binary scanning to find out the function
address.

struct link_map

{

ElfW(Addr) l_addr; /* Base address */

ElfW(Dyn) *l_ld; /* Dynamic section */

ElfW(Dyn) *l_info[DT_NUM];

/* l_info[DT_TEXTREL] = 1

* l_info[DT_REL] = attacker_rel;

* l_info[DT_SYMBL] = attacker_sym;

* l_info[DT_GOTPLT] = attacker_got;

*/

const ElfW(Phdr) *l_phdr; /* program header*/

unsigned int l_relocated:1;

};

Figure 1. Dynamic Loader Internal Data Structure

3.2 Corrupt Loader Data Structure
When memory address of “link map” is leaked, we leverage
a memory corruption attack to corrupt data pointers of relo-
cation table and symbol table to point to our own payload.
In addition, we modify a flag in link map for text relocation
patching. Specifically, this flags indicates loader to unprotect
write protected code pages. and this flag is corrupted into
value “DT TEXTREL” as shown in Figure 1. The memory
address specified by the crafted relocation will be updated
and by the value specified by the crafted symbol table. This
way attack could write to arbitrary code location with any
value.

The link map data structure shown in figure 1 contains
related metadata for this attack, such as , pointers for reloca-
tion table (l info[DT REL]), string table (l info[DT STR]),
symbol table (l info[DT SYMBL]) and etc. These pointers
do not directly point to their data but all point to the loca-
tions inside the read-only dynamic section (when RELRO
is applied). This does not prevent attacker, since they could
corrupt the data pointer to attackers’ payload. In addition, to
launch a successful attack, l relocated is a flag that should be
flipped, since it indicates whether the object has been relo-
cated. Finally, GOT needs to be taken over too, because, the
function we are using will initialize GOT table. However, af-
ter relocation patching, the .got section in ELF file become
read-only, this will trigger a segfault. Changing the GOT to
any arbitrary location that contains twelve bytes of writable
memory should work (3 GOT entries).

3.3 Invoke Text Relocation Function
When the link map data structure is corrupted, code injec-
tion attack can be launched by invoking an internal function
(dl relocate object).

(dl relocate object) takes 4 parameters, the first pa-
rameter is the address of link map. The 2nd one is not used.

The third one is the relocation mode, here, the value can be
simply 0x1 (representing RTLD LAZY). And the last one indi-
cates whether doing profiling or not. Again, pass an integer
0 is fine.

To simplify our prototype, we use a simple program that
contains a buffer overflow which allows attacker to change
the content of stack including return addresses. Using this
exploit, we could easily launch the text relocation function in
one shot. Further, we modify the stack frame pointer to make
sure when function returns, it goes to our injected payload.

This runtime relocation attack used in above case can
only corrupt the current module of the link map data struc-
ture. However, it can be generalized to corrupting all mem-
ory region in the runtime. This is true if attackers work
harder to corrupt one more pointer, l phdr. l phdr points to
the ELF program header table located in the write protected
ELF image. Corrupting this data pointer allows attacker to
fool dynamic loader to unprotect and corrupt arbitrary code
or data.

4. Related Work
Despite the spate of vulnerabilities and bugs [1–7] in dy-
namic loader, the loader security has not drawn much atten-
tion until recently. Kwon et. al. proposed their work on au-
tomatic detection of unsafe module loading [8]. Their work
is to solve the resolution hijacking issue by using dynamic
instrumentation and profiling. Our attack cannot be detected
by their approach, because it works in a lower level and mod-
ify the code of a legitimate module loaded from correct path.

The idea of securing the loader was first presented by M.
Payer in his work, TRuE [9], a dynamic binary translation
system (DBI). The paper solves two problems: 1) protecting
dynamic loader internal data structures. 2) make sure DBI
not subverted at program startup. Their approach is to im-
plement a secure loader to make sure their DBI system get
loaded first, and then DBI system write protect all loader
data structures.

After careful evaluation of the source code of the secure
loader, we find that there are still chances that our attack
could succeed. This is because, 1) some APIs does not have
sufficient parameter checking, which allows us bypass their
defense. 2) the code cache in their DBI system is writable
and executable. 3) TOCTOU attack still allows us to modify
loader data structures during loading period.

There exist other low level attacks using loader’s code.
The “weird machine” [10] proposed by Shapiro et. al. lever-
ages the code of loader processing relocation to craft a Tur-
ing complete machine. They achieve this by craft their own
relocation table. Similar to our attack by using relocation,
their attack is more of proof-of-concept, since huge amount
of relocation is required, which is infeasible in exploit envi-
ronment.

5. Conclusions
References

[1] CVE-2000-0854: Earliest side-loading attack.
[2] CVE-2010-3847: privilege escalation in loader with $origin

for the ld audit environment variable. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-3847.

[3] CVE-2010-3856: privilege escalation in loader with
the ld audit environment. http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2010-3856.

[4] CVE-2011-0562: Untrusted search path vulnerability in adobe
reader.

[5] CVE-2011-0570: Untrusted search path vulnerabil-
ity in adobe reader. http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2011-0570.

[6] CVE-2012-0158: Side loading attack via microsoft office.
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2012-0158.

[7] CVE-2013-0977: overlapping segments.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-
0977.

[8] T. Kwon and Z. Su. Automatic detection of unsafe component
loadings. In the 19th International Symposium on Software
Testing and Analysis, ISSTA ’10, pages 107–118, New York,
NY, USA, 2010. ACM.

[9] M. Payer, T. Hartmann, and T. R. Gross. Safe loading - a
foundation for secure execution of untrusted programs. In
S&P, 2012.

[10] R. Shapiro, S. Bratus, and S. W. Smith. ”weird machines” in
elf: A spotlight on the underappreciated metadata. In the 7th
USENIX Conference on Offensive Technologies, WOOT’13,
pages 11–11, Berkeley, CA, USA, 2013. USENIX Associa-
tion.

	1 Introduction
	2 Existing Loader Security Hardening
	2.1 Relocation Read Only
	2.2 Caller Address Checking

	3 Code Injection Using Text Relocation
	3.1 Bypass ASLR
	3.2 Corrupt Loader Data Structure
	3.3 Invoke Text Relocation Function

	4 Related Work
	5 Conclusions

