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Abstract. This paper develops a new approach for detecting self-propagating
email viruses based on statistical anomaly detection. Our approach assumes that
a key objective of an email virus attack is to eventually overwhelm mail servers
and clients with a large volume of email traffic. Based on this assumption, the ap-
proach is designed to detect increases in traffic volume over what was observed
during the training period. This paper describes our approach and the results of
our simulation-based experiments in assessing the effectiveness of the approach
in an intranet setting. Within the simulation setting, our results establish that the
approach is effective in detecting attacks all of the time, with very few false
alarms. In addition, attacks could be detected sufficiently early so that clean up
efforts need to target only a fraction of the email clients in an intranet.

1 Introduction

Email viruses have become one of the major Internet security threats today. An email
virus is a malicious program which hides in an email attachment, and becomes active
when the attachment is opened. A principal goal of email virus attacks such as Melissa
[1] is that of generating a large volume of email traffic over time, so that email servers
and clients are eventually overwhelmed with this traffic, thus effectively disrupting the
use of the email service. Future viruses may be more damaging, taking actions such as
creating hidden back-doors on the infected machines that can be used to commandeer
these machines in a subsequent coordinated attack.

Current approaches for dealing with email viruses rely on the use of anti-virus soft-
ware at the desktops, network servers, mail exchange servers and at the gateways. De-
tection of email viruses is usually based on a signature-based approach, where the sig-
nature captures distinguishing features of a virus, such as a unique subject line or a
unique sequence of bytes in its code. This approach is effective against known email
viruses, but is ineffective against unknown (i.e., newly released) viruses. To overcome
this drawback, techniques have been recently developed that focus on virus behavior
rather than its representation. Such “behavior-blocking” approaches detect viruses by
using signatures of behavior, such as fast generation of emails or self-replication.

Although behavior-blocking is more effective against unknown viruses, it can still
be fooled by carefully designed viruses that propagate slowly, or replicate after a period.
For instance, if system is set to block the behavior that an email attachment should
not cause generation of more than � other email messages, a virus that generates only
����� copies will go undetected. Similarly, an email attachment that causes time-delayed
�
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propagation may also go undetected. More generally, a virus can employ a combination
of low propagation factor, high incubation period, and randomization to evade behavior-
blocking approaches.

An alternative approach for detection is one that focuses on the ultimate effect of
self-propagating email viruses: increase in email traffic. Simple adaptations on the part
of the virus, such as reducing the propagation factor below a certain threshold, introduc-
ing time delays or other randomizations do not alter this ultimate effect. For this reason,
our approach is based on detecting email viruses based on increases in the volume of
email traffic generated.

Given the variations in email traffic from one site to another, and from one time to
another, it is difficult for manual development of characterizations of excessive email
traffic. An alternative approach is to use machine learning — the system is trained to
learn characteristics of normal email traffic, and then detect significant increases. In the
context of intrusion detection, such anomaly detection approaches have been associated
with relatively high false-alarm rates, as well as a moderate rate of false negatives (i.e.,
missed attacks). In this paper, we develop and study an approach that appears to be
capable of detecting attacks with very low false alarm rate, while still being able to
detect attacks reasonably early.

This paper first presents our approach for anomaly-based detection of the self-
propagating email viruses. It begins with an overview of our approach in Section 2.
We have studied the performance of this approach using two complementary experi-
ments, both based on simulation. The first experiment focuses on creating stealthy virus
behaviors, but uses a simplistic user model. The second experiment strives for more re-
alistic user models, as well as more accurate reproduction of the behaviors of different
software components of the email system, but the virus models are not as stealthy or
variable as the first experiment.

Section 3 describes our first experiment. Our experimental results show that viruses
similar to the ones that are prevalent currently, can be detected early. This is because
such viruses are very “noisy.” For stealthier viruses that use a small replication factor,
detection is still achieved fairly early in our simulation, when a minority of email clients
are infected. For the most stealthy viruses that use a combination of low replication
factor and delayed propagation, a majority of the network is infected by the time of
detection. In all cases, detection is achieved before the time the email server experiences
a high overload. Since our technique promises to provide low false alarm rates, there is
a potential to launch automated responses at detection time so as to quarantine emails
with attachments on the mail server1. At this point, a more careful investigation of
the virus can be performed, followed by a cleanup phase (on the email clients) if a
virus is indeed present. Note that early detection of the virus reduces the cleanup costs
significantly, as only a fraction of the computers in an organization need to be cleaned
up.

The second experiment, described in Section 4, used a more elaborate user model.
Moreover, an actual email system was used so as to make the simulation results more
realistic. The goal of the experiment, conducted as part of a DARPA-sponsored research

1 Such a quarantine will be effective in arresting further spread of the virus, assuming that
viruses can spread only through attachments.
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program, was to study the effectiveness of automated response to check the spread of
such viruses. A number of signature and behavior based detectors were used in com-
bination with our anomaly detector. The signature and behavior based detectors were
tuned for early detection, but this meant that the more stealthy viruses would not be
caught by them. The anomaly detector was therefore tuned for delayed but certain de-
tection. The detection delay was artificially increased so that the anomaly detector will
not raise an alarm until it is certain that any responses based on other detectors have
failed. For this reason, our primary effectiveness criteria in this experiment was detec-
tion, rather than early detection. Of the hundreds of experiments conducted in this set
up, there were 7 cases where the virus was not checked by other detectors, and in each
of these cases, our anomaly detector was able to detect the attack. These experimental
results show that our approach is effective, subject to the accuracy of the simulation
models used in the experiment. They also indicate that our approach can complement
other “behavior-blocking” approaches, which are typically tuned for early detection but
may be fooled by stealthy viruses.

Some of the key benefits of our approach are:

– Accurate detection. In our simulation-based experiments, our approach demonstrated
near-zero false alarm rates with zero false negatives (i.e, 100% detection). The latter
is possible because of the nature of self-propagating email, wherein the email traffic
keeps increasing until it is detected.

– Robust against polymorphic and stealthy viruses. Our technique is unaffected by
polymorphic viruses. It promises to reliably detect stealthy viruses that pose chal-
lenges to previously developed detection techniques, although the detection may be
delayed.

A practical benefit of our approach is that it has a low runtime overhead. Moreover, its
learning phase is robust enough to operate without expert supervision.

While the above results are promising, they are tempered by the fact that they are
based exclusively on simulated behaviors of email users. The first experiment used
a particularly simple model for user behaviors: each user was modeled as a Poisson
process. The second experiment used a non-uniform model taking into account such
factors as address books. User behavior was simulated using a 3-state (“reading email,”
“composing email,” and “idle”) Markov process that makes random transitions between
states that is governed by a set of transition probabilities. Thus the user model was
much more realistic in this experiment. Nevertheless, it is well known in the context of
anomaly detection that real system behavior tends to exhibit more variability than what
can be observed in a simulation. Thus, the results obtained using simulation experiments
cannot be directly extrapolated to real operating environments. Our ongoing work aims
to address this weakness by using simulation only for the purpose of modeling viruses;
normal email traffic will be taken from actual mail server logs.

2 Overview of Approach

Our approach is based on specification-based anomaly detection [36], a technique that
combines state-machine specifications of network protocols with statistical machine-
learning. In this case, the protocol models the interaction between email clients in an or-
ganization with the email server of the same organization. These interactions are called
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INIT

(msgID == id)&&(sender==from)|deliver(from, msgID, to)

DONERCVD
send(from, msgID, to1,...,toN) timeout()
sender = from, id = msgID>

Fig. 1. A State Machine Modeling Email Server Operation

events. The state machine (implicitly) classifies events into different categories based
on the transition taken by them in the state machine. Machine learning techniques are
then used to learn statistics associated with each of these classes. Several choices ex-
ist for such statistics, including: average number of attachments to an email, size of a
message, etc. Our focus, however, was on characteristics that are necessarily associated
with increased email traffic, and hence we chose statistics relating to frequency of tak-
ing different transitions. The fact that this simple measure was effective supports the
claim of [36] that the use of protocol state machines simplifies feature selection, i.e.,
even a naive choice of features produces good results.

The first step in our approach is to develop a state machine modeling the behavior
of an email service, as observed at a mail server. For the rest of this paper, we concern
ourselves mainly with email service within an intranet. We assume that all email clients
transfer each of their outgoing messages to the intranet mail server, which in turn for-
wards the messages to each of the recipients2. Since we are only concerned with emails
within the intranet, the email server simply queues each message received from any
client on the mail queues associated with the respective recipients.

Figure 1 shows the simplified model of email server behavior described in the
preceding paragraph. The state machine has three states that are identified as ������� ,���
	��

and
��
 ��� . The reception of an email from a client ������� at the server is

modeled using the event ������� that takes several parameters: the first parameter iden-
tifies the sender, the second is a unique identifier for the message, and the rest of the
parameters denote the recipients of the message. The contents of the message are not
modeled in this state machine. When the server receives this message, it forwards the
message to each of the email recipients. This forwarding operation is modeled using
the �������! ���� event, which takes the sender name, the message identifier and the recipi-
ent names as parameters. This event may occur zero or more times, depending on the
number and email ids of the recipients. Note that there is no easy way to relate the
number of recipients in the ���"��� message with the number of recipients to which the
message is forwarded by the server. The number of actual recipients of a message may
be more (e.g., when a recipient name corresponds to a mailing list), or less (e.g., when
a recipient name is in error, or due to duplicates or mail aliases within the recipient list).
For this reason, the state machine indicates that there may be zero or more instances
of the �������! #��� event corresponding to each �"����� event. The correspondence between
the ������� and �������! #�"� events is identified in the state machine by storing the message

2 This assumption holds for most popular email clients such as Microsoft Outlook and Netscape
Messenger.
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identifier and sender in two state variables � � and ���������"� , and then comparing these
state variables with the arguments of the ����� �  #��� event.

The
��
 � � state in the state machine signifies the completion of the processing of

a particular email from a client. Due to the difficulty outlined above in recognizing when
such processing is completed, we use a time-out to model completion. The assumption
being made here is that once an email is received by the server, it will be processed and
the message sent to all recipients within a short period of time. The time-out value is
set well above the expected time for such processing of email.

Formally, we use extended finite state automata (EFSA) to capture the state machine
model shown in Figure 1. An EFSA is similar to a finite-state automaton in that it is
characterized by a set of states, some times called control states of the automata, and a
set of transitions between these states. EFSA differ from FSA in that (a) EFSA make
transitions on events that may have arguments, and (b) EFSA can use a finite set of state
variables in which values can be stored. The EFSA in Figure 1 consists of three control
states ������� (the start state),

�
�
	 �
, and

��
 ��� (the final state); three events ������� ,
�������! #��� and

� �!� ����� � ; and two state variables ���"������� and �!� .
To understand how such EFSA specifications can be used for monitoring email

traffic, consider the state machine diagram again. When an email is accepted by the
mail server for delivery, a new instance of the state machine is created, and this instance
makes a transition from ����� � to

���
	��
state. The sender and message identifier are

stored in the state variables associated with this instance. As copies of this message are
delivered to the recipients, the �������! ���� transition is taken. Finally, after a timeout period,
a transition to the

��
 � � state is taken. This being a final state, the state machine
instance is no longer needed, and is cleaned up, i.e., all resources allocated for this state
machine instance are released. Note that in general, there will be multiple instances of
the state machine active at any time. The number of such active instances is determined
by how many email messages are sent by clients over the duration of the timeout period.

Now, we superimpose statistical machine learning over this state-machine specifica-
tion of email server behavior. An obvious statistical property of interest is the frequency
with which various transitions in the state machine are taken. A self-propagating email
virus will cause an increase in many of these frequencies. We may also be interested in
statistical properties across a subset of instances, rather than all instances. The instances
of interest can be specified on the basis of state variable values. For instance, we may
be interested in the number of emails sent to any recipient by a particular user

�
on the

network. We will do this by selecting instances that have sender equal to
�

in their
RCVD state, and identifying the number of times the transition on the �������! #�"� event was
taken in these instances.

2.1 Statistics of Interest and their Representation

In the state machine in Figure 1, there are two significant transitions, taking place on
the ������� and �������! ���� events respectively. We therefore choose frequencies of these two
transitions as statistical information of interest, and maintain the following statistics:

– frequency with which the ���"��� transition is taken, across all clients
– frequency with which the ����� �  #��� transition is taken, across all clients
– for each client

�
, the frequency with which emails from

�
take the ������� transition
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– for each client
�

, the frequency with which emails from
�

take the �������! ���� transi-
tion

Each of these statistics were maintained at multiple (of the order of ten) time scales,
ranging from about a second to about an hour.

We could maintain average frequency information, but since most phenomena re-
lated to email can be bursty, we choose to maintain frequency distributions rather than
averages. In particular, we define a time window � over which we count the number of
times a transition is taken. Let ���������	�
�	� ����� denote the counts associated with a transi-
tion over � successive time periods ��
����
�	�	� ��� that are � units long. Then a histogram
of the values ���������	�
�	� ����� is used to represent the frequency distribution over a time
window � , as observed during a training period of duration ��� � units.

Since we do not know in advance the range of the values ������
 , it is more con-
venient to use a histogram with geometric bin ranges, i.e., the range of values corre-
sponding to

�
th bin in the histogram is � times the range of the � � � ��� th bin, for

some factor � . In our experiments, � was set to � � . Thus, the histogram bins were� � � ��� � � �!�"�!�#� � �$�&%'�#� � %(�#)�� � � )'� � ��� � � � �!� ��)�� � � ��)*�+��,-� and so on.

As with other anomaly detection techniques, our approach consists of a training
period, followed by a detection period. During the training period, a histogram .0/ rep-
resenting the frequency distribution observed during the training period is computed
and stored. For detection, the histogram .21 computed during detection is compared
with the histogram . / . An anomaly is flagged if .31 is “more” than . / . The notion of
“more” can be defined in multiple ways, but we need some thing that can be computed
efficiently, and moreover, represents a clear and significant change from .41 . For this
reason, we compare the highest non-zero bin .��257681 in .91 with the highest non-
zero bin .��2576 / computed during training. The severity of the anomaly is defined to
be .��2576:1 �;.��<5=6 / , provided . �25=6>1@?A. �25=6 / . Otherwise, no anomaly is
flagged. The condition .��<5=6 1 ?B.��25767/ reflects our bias for detecting increased
email traffic, as opposed to detecting a reduction in email traffic. Note that with this
simple threshold criteria, there is no need to maintain entire histograms, but only the
highest nonzero bins. More complex threshold criteria may take into account the entire
histogram .9/ to derive a threshold, so it is useful to compute and maintain histograms
during training. During detection, however, the potential benefits of having the extra
information will likely be more than offset by the additional storage needed to maintain
histograms.

By choosing different values for the time window � , we can capture statistical infor-
mation at different time scales. A small value of � will enable fast detection of intense
attacks, as such attacks can be detected with a delay of the order of � . However, a slow
but sustained attack may not be detected using a small time window. This is because
there can be much more burstiness in email traffic at shorter time scales than larger
time scales. Such burstiness means that the peak frequencies observed at shorter time
scales will be much higher than average values, thus making it difficult to detect small
increases in traffic. Since burstiness at higher time scales tends to be smaller, the differ-
ence between peak and average is smaller in those time scales, thus making it easier to
detect modest increases in traffic. For this reason, we use several different time scales
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in our experiment, starting from 0.8 seconds and increasing to about 83 minutes, with
each time scale being three to five times the previous one.

The above discussion separates the training phase from the detection phase. In a
live system, user behaviors evolve over time, and this must be accommodated. The
usual technique used in anomaly detection systems is to continuously train the system,
while ensuring that (a) very old behaviors are “aged” out of the training profile, and
(b) very recent behaviors do not significantly alter this profile. This technique can be
incorporated into our approach as well, but we did not pursue this avenue as the change
would have no direct effect on the results reported in this paper.

3 Experiment I

The primary goal of the first set of experiments was to study the effectiveness of our
approach for detecting self-propagating email viruses. In particular, we wanted to study
the false alarm rate and detection latency as the stealthiness of the virus is changed. This
experiment us based on simple models of user behavior. (More complex and realistic
user models are considered in Experiment II.)

One obvious way to study the effectiveness of the approach is to install it on a real
mail server, such as the mail server in a university or a large company. Apart from is-
sues of privacy that need to be addressed in such experiments, there is another serious
impediment to such an approach: it is not practical to introduce viruses into such sys-
tems for the purpose of experimentation: it would seriously impact email service in the
organization. Given the critical role that email has begun to assume in practically every
large organization, such an approach is impractical.

Even if we were able to introduce such viruses in a real email system, existing
email viruses are rather noisy: as soon as they are read, they send copies of themselves
to all (or most) users in the address book. This causes a sharp spurt in email generation
rate in the system, and would be immediately detected by our approach. To pose any
challenge to our approach or to assess its capabilities, we would have to create new
email viruses, which would be a significant task by itself. Therefore our experiment is
based on simulation. Below, we describe the simulation environment, and proceed to
present the results of the experiments.

An important aspect of these experiments is that the training, as well as detec-
tion took place in an unsupervised setting. No attempt was made to tune or refine the
anomaly detector based on observed results. Such tuning or refinement could further
improve the results.

3.1 Experimental Setup

For this experiment, we simulated an intranet with several hundred users. Three sizes
of the intranet were considered: 400 users, 800 users and 1600 users. Our simulation
could have been based on actual mail servers and mail clients that were driven by sim-
ulated users. However, the realism in the simulation is almost totally determined by the
model used for user behavior, and is largely unaffected whether real email clients or
mail servers were used3. On the other hand, leaving out real mail servers and clients in

3 The only condition when the presence of real mail clients and servers can become important
is when the system gets overloaded, due to propagation of email virus. In our experiments, the
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a simulation has several important benefits. First, we do not need a large testbed con-
sisting of hundreds of computers, real or virtual. Second, a light-weight simulation that
avoids real mail servers and clients can complete in seconds instead of taking hours.

Our simulation used discrete time, where each cycle of simulation was chosen to
correspond to roughly 0.2 seconds. This is a rather arbitrary number — our main con-
cern in this context was to choose a small enough granularity that the results would be
essentially the same as with a simulation based on continuous time.

Email users are modeled as Poisson processes, reading or sending emails at random
during each simulation cycle. Specifically, in a single simulation cycle, the probability
of a user sending email was set at 0.0006 and the probability of checking email was
set at 0.0003. This means that users send out emails with a mean interval of about 5
minutes, and that they check emails with a mean interval of about 10 minutes. The
recipients for each mail was determined at random, and the number of recipients was
chosen using a positive normal distribution with a mean of 1 and standard deviation of
2. Whereas sending of mails was assumed to take place one at a time, email reading
was modeled as a batch process — each attempt to read email reads most of the emails
queued for the user. Moreover, for each message, the user randomly chooses to reply
to the sender, reply to all recipients, or not reply at all. We have used identical models
for all users in this experiment, while the experiment described in Section 4 uses a
non-uniform model where different user behaviors are different.

In this experiment, we wanted to model not only the viruses prevalent today, all of
which propagate very rapidly, but also stealthy viruses. For stealth, viruses may employ
a combination of the following techniques:

– low propagation factor, i.e., when the virus is read, it does not cause generation of
emails to a large number of users, such as the set of names in the address book of
the reader. A high propagation factor makes the virus much more noticeable.

– long incubation period, the delay between when the virus is read and the time it
causes propagation of email is large. The long delay makes it difficult to associate
the propagation with the virus.

– polymorphism, the virus modifies itself, so that the emails generated do not look
like the virus that was read. For additional stealth, the virus can propagate non-virus
carrying emails as well as those carrying the virus.

– matching user behavior, i.e., the virus avoids sending out emails with a large recipi-
ent list, instead partitioning such messages into multiple ones with recipient lists of
the size observed on normal messages.

– randomization, i.e., all of the above techniques are randomized — for instance, the
incubation period is a random number over a range. Similarly, the propagation factor
is a random number.

Of these techniques, polymorphism does not affect our approach, as it is not based
on email content. Among the rest, propagation factor and incubation period were found
to have the maximum impact on detection effectiveness, while randomization had mod-

virus was always detected well before there was any significant increase in email traffic, and
hence the absence of actual email servers and clients is unlikely to have affected the results we
obtained.
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Fig. 2. Detection time as a function of incubation period and propagation factor.
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est effect. Matching of user behavior seemed to have no effect. Thus, our results discus-
sion considers only two of the above factors: propagation factor and incubation period.

3.2 Metrics used for detection

The first and most obvious metric is the detection time: the time between the intro-
duction of the virus and the time of detection. Figure 2 shows how the detection time
changes as the propagation factor (also known as fanout) and incubation period are
changed. Note that longer incubation periods and lower propagation factors delay de-
tection. The detection delay is somewhat mitigated by the fact that the virus itself prop-
agates more slowly in these cases. We therefore look at other metrics that factor out the
speed at which a virus spreads. Some of these metrics are:

– percentage of clients that are infected at the time of detection
– percentage of email traffic due to viruses at the time of detection

The first of these metrics is related to the costs for cleaning up after the virus infection.
The other metric relates to the load on the email server, and the degree to which its
function is degraded by the virus.
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Figure 3 shows the percentage of infected hosts at the time of detection of the attack.
The results are for an intranet consisting of 400 clients. This figure shows that for noisy
viruses, detection occurs early, but very stealthy viruses, especially those that use a
combination of large incubation periods and low propagation factors, can potentially
infect most of the network before being detected. Figure 4 shows that for a given value
of propagation factor (fixed at 8 for this graph), and incubation period, the fraction of
infected hosts is lower when the number of clients in the intranet is higher.

Figure 5 shows the fraction of email traffic that is due to the viruses as of the time
of detection. Specifically, we calculated the fraction of email traffic due to viruses in
the few seconds (2 seconds) preceding the detection. Note that the virus traffic is in the
40% to 70% range, which means that the email server is only slightly overloaded. Due
to burstiness of emails, servers are typically designed to handle a few to several times
the average rate at which emails are generated in the system. For this reason, a 40% to
70% increase in email traffic is not very significant.

3.3 False alarms

False alarm rates were computed using two different criteria:

– Criteria 1: Count even a single alarm as a false alarm: Using this criteria, there were
a total of 3 false alarms across 8 runs, or a rate of about 0.38 false alarms per hour.

– Criteria 2: Apply a threshold criteria, and count a false alarm when the threshold
is exceeded. This threshold is established through experimentation. We found that
by registering an alarm when more than 3 alarms are reported over a period of two
seconds, zero false alarm rate could be achieved in our simulation.

We note that in the detection results reported earlier, Criteria 2 was used. Thus,
those detection results were obtained with zero false alarm rate.
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Runtime Performance and Memory Usage

The whole implementation was done in Java. With 400 clients, about 800 frequency
distributions were maintained, each over 8 time scales. Due to these structures the total
memory use of the Java program was 30MB. When run on a Intel Pentium III system
operating at 1GHz, it was able to simulate about 500 cycles per second, i.e., simulate
100 seconds in one second of operation. In addition to the simulation, the anomaly de-
tector was processing about 100 messages per second. This performance was adequate
to provide fast simulation. If used in a live environment, these performance results show
that the anomaly detector will consume 1% of CPU on a similar system.

4 Experiment II

This experiment was conducted as part of the DARPA SWWIM program. The SWWIM
Autonomic Response Architecture (SARA) experiment was conducted by a collabora-
tive team of organizations, each responsible for a key function. This experiment differed
from the previous experiment in several aspects. First, the user models were asymmet-
ric, i.e., the behavior models for different users were different. Second, the experiment
was conducted with real email servers (sendmail) and clients. Third, the simulation as
well as the viruses were designed by a third party that had no vested interest in how the
detectors from different organizations performed.

The overall goal of the SARA experiment was to evaluate the value of orchestrated
response to attacks. The system consisted of several virus detection components, re-
sponse components in the form of mail server and client enhancements to purge sus-
pected messages, and an orchestrator. The orchestrator took its input from the detection
components, evaluated the system state based on these inputs, selected a response ac-
tion, and communicated these actions to the response components. Several detection
components were built, including (a) simple behavior based detectors that looked for
more than a certain number emails within a certain time period or within a certain time
period after an attachment was opened, (b) more complex behavior based detectors that
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were tuned to detect the tree-like flow of emails produced by email viruses, and (c) our
anomaly detector.

Early on in the experimental design, it was decided that the above detectors would
be used in different stages of virus spread: the behavior based techniques will be used
for early detection, at which point the system would attempt a carefully orchestrated
sequence of responses. But these detectors can be fooled by stealthy viruses, at which
point, the results from the anomaly detector would be used to identify the spread of the
virus. Note that the anomaly detector cannot provide precise identification of offend-
ing email messages — the only thing that can be said is that a predominant number of
email messages causing an alarm are bound to be viruses. Due to the absence of precise
identification of virus-carrying emails, and given the time constraints associated with
the conduct of this experiment, it was decided that the orchestrator would simply shut-
down the system if the only information it had was from the anomaly detector. Clearly,
this is a response of last resort, and not to be attempted unless every thing else failed.
In particular, the orchestrator should be allowed to try intelligent responses based on
inputs from other detectors; and only when all of this failed, it should consider shutting
down the system. In order to make sure that these responses were given adequate time
to work, it was decided that the anomaly detector would artificially delay detection un-
til such time it became clear that the virus was established in spite of an orchestrated
response.

4.1 Experimental Setup

The experiment was carried out using a “full scale” simulation of an email system
for a single subnet of 400 clients. This included an email server (modified version of
sendmail) and 400 email clients. The detection, response, and orchestration components
communicated and worked in conjunction with the email server and clients.

Similar to Experiment I, the actions of users were emulated by 400 “bots.” However,
these bots were significantly more complex than user models used in Experiment I. In
particular, user behavior was simulated by 400 bots that were implemented as processes
that run concurrently. User behavior was modeled using a three-state Markov model,
with the states corresponding to the user reading email, composing email and being
idle. The bots will make transitions at random among these states, with a specified
probability for each of the six possible transitions. In this manner this model avoids the
pitfalls associated with a Poisson model used in Experiment I.

A second important improvement in the user model is that it is asymmetric, and
it captures the concept of address books. When a user composes email, the set of re-
cipients is assumed to come from his or her address book. The address book size is
unlimited, i.e., it can be as large as the user population. These factors mean that it is
much more common for emails with a large number of recipients to be generated in this
experiment.

Several different types of viruses were used in the experiment. These virus types are
shown in Figure 6. Higher numbered viruses were intended to be progressively more
stealthy.
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Virus type Description
1 Static
2a Randomized Addresses - (taken from sent items)
2b Randomized Addresses - (taken from received items)
3a Randomized - (random number of recipients)
3b Delayed Randomized (random no. of recipients and time delay)
4a Polymorphic - (virus attachments all end in .vbs)

4a.v1 Polymorphic - (virus attachments have variable extensions)
4b Persistent Polymorphic - (virus attachments all end in .vbs, lives forever)

4b.v1 Persistent Polymorphic - (fast propagating version)
4b.v2 Persistent Polymorphic - (slow propagating version)
4b.v3 Persistent Polymorphic - (medium propagating version)
4b.v4 Persistent Polymorphic - (viruses have variable extensions, lives forever)

Fig. 6. Properties of Viruses Used

4.2 Detection Effectiveness

Hundreds of simulation runs were carried out with the above types of viruses. Due to
the fact that the anomaly detector was tuned explicitly for delayed detection of viruses,
no alarms were generated in those runs where the orchestrator was able to contain the
virus. There were seven runs in which the orchestrator was unable to contain the virus.
It is significant that in every one of these cases, the anomaly detector was able to detect
the virus, as shown in Figure 7. In most cases, the detection took place 2 or 3 minutes
after the detection of virus.

Time of
Virus type (post-virus release) Percentage of

detection traffic consumed by virus
2b 3.7 min � 5 percent
4a 36.4 min � 5 percent
4b 3.0 min � 5 percent
4b 2.2 min � 5 percent
4b 3.3 min � 5 percent
4b 3.1 min � 5 percent

4b.v2 22.7 min � 5 percent

Fig. 7. Virus Detection

In some cases, the detection was rather slow. For virus 4b.v2, the delay was due to
the fact that it had a very long incubation period, so it was not propagating fast until
around 20 minutes after its introduction. Thus, detection took only two minutes after
the virus became active. In the case of virus 4a, the orchestrator was initially able to
contain the virus, and hence no alarms were reported by the anomaly detector. However,
after about 30 minutes of containment, the orchestrator lost control of the virus, which
subsequently took over the system. The detection occurred a few minutes after the point
when the virus got away.
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4.3 False alarm analysis:

As for Experiment I, false alarm rates were measured in two ways:

– Criteria 1: Count even a single alarm as a false alarm: Using this criteria, there were
a total of 18 false alarms across 6 runs, or a rate of about 0.3 false alarms per hour.
(Compare this to the 0.38 false alarms per hour obtained using this same criteria in
Experiment I.)

– Criteria 2: Set a threshold via experimentation. In this case, the threshold was set
so that not only do we mask false alerts, but also true alarms that are not sufficiently
severe to warrant a system shutdown. (Recall that the only response used in the ex-
periment was to shutdown the mail server when the anomaly detector produced an
alarm.) For this reason, the threshold was much higher than in Experiment I. Specif-
ically, we identified a threshold of 50 or more alarms in a period of 256 seconds.
Using this criteria, no false alarms were observed. (In fact, the maximum number
of alarms produced within a period of 256 seconds in any of these six runs was 14,
which is well below the 50 threshold.)

We note that in the detection results reported in Figure 7, Criteria 2 was used. Thus,
those detection results were obtained with zero false alarm rate.

4.4 Runtime Performance and Memory Usage

The anomaly detector performance and memory usage in this experiment was similar
to that reported for 400 clients in experiment I.

5 Related Work

Self-propagating malicious programs have been analyzed ever since they came into ex-
istence starting with the Morris worm [2]. Along with the growth of the Internet, the
threat of worms spreading into computer networks has also increased. To understand
and predict the propagation of such worms has become an increasingly important re-
search topic. Propagation analysis and detection has also been carried out for more
recent Code Red [12] and Melissa [1] viruses, where the email is used as the vehicle of
propagation for these malicious executables.

Incidents of virus propagation through the cyber realm have been viewed and mod-
eled using epidemiological modeling, mapping the Internet to mathematical models of
ecological systems [15]. Models have been developed to accurately predict the prop-
agation of worms and viruses through the networks. One such example is a variation
of Kermack-Mckendrick model, used to predict the propagation of the Code Red virus
through the Internet [39]. At IBM, Kephart and White have developed systems for de-
tection using these models [7],[8] [9]. In addition to borrowing ideas from mathemat-
ical epidemiology, the model has been extended by incorporating network topological
effects, using power-law relationships [20] which try to give some structure to the ap-
parent randomness of the Internet. [10] studies the propagation of viruses when a subset
of the hosts are immune to the virus. [18] studies the problem of network availability
in the face of viral attacks. The focus of all these efforts were to study the propagation
of viruses, whereas the focus of this paper is the development of an effective detection
technique.
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Anomaly detection techniques have long been used for intrusion detection [13, 27,
25, 32–34, 16, 36]. The approach developed in this paper is closely related to [36]. In
both approaches, a protocol state machine specification forms the basis for detection.
This state machine is used to transform events (such as network packets, or sending
or delivery of emails) into frequency distributions that characterize normal behavior.
The training and detection phases are robust, and can operate without any supervision.
These factors contrast with most other anomaly detection approaches, especially at the
network level, where considerable knowledge and ingenuity was needed to identify the
set of “features” to be included in normal behavior characterization. Moreover, many
of these techniques required expert supervision to make sure that the normal behavior
characterization learned by the technique was indeed appropriate.

The Malicious Email Tracking (MET) system [17] was developed to track the flow
of malicious emails such as self-replicating viruses through a network. It was designed
as a system to track flow of malicious email traffic on wide area network without hav-
ing to sample most of the emails exchanged in the network. However, its techniques
for detecting malicious emails, such as the use of MD5 sums for identification of the
propagation of the same virus, can be defeated by polymorphic viruses such as those
considered in this paper.

While MET is focused specifically on emails, the earlier Graph-based intrusion de-
tection system (GrIDS) [31] work was focused on the more general problem of large-
scale automated attacks that propagate over the network. GrIDS is based on assembling
the activities on different network nodes into activity graphs that show the spread of
attacks through a network. It can also support policy-based detection of attacks by de-
tecting policy violations in the activity graph.

[6] uses a data mining approach to detect malicious executables embedded within
emails. Short sequences of machine instructions are the features used in this approach.
A Naive Bayes classifier, trained on a set of malicious and a set of benign executables,
was used to detect whether an attachment contained malicious code. This approach
assumes that there are similarities among the binary code of malicious executables.
While this is shown to be true for viruses known today, it is easy enough to write stealthy
viruses that can escape detection by this technique.

The Email Mining Toolkit (EMT) [35] work complements MET in that it uses data
mining to synthesize the behavior profiles of users that is used by MET to detect ma-
licious email. EMT models “normal behavior” of each email user in terms of several
characteristics such as the identities of the other users they communicate with, and
the frequencies with which they communicate with these users. It can detect not only
viruses, but also changes in communication patterns that may result due to misuse or
other malicious user behavior. However, for the purpose of virus detection, this tech-
nique is likely to have higher latency than the technique proposed in this paper. This is
because the sending of a single message, or even a few virus messages, cannot be con-
sidered a significant departure from normal communication pattern without increasing
the false alarm rate.
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6 Conclusions and Future Work

In this paper, we presented a new technique for detecting self-propagating email viruses
using statistical anomaly detection. Our results suggest that the kinds of viruses preva-
lent today can be detected before a significant fraction of the network is infected. Our
approach degrades gracefully when facing more stealthy viruses that use a combination
of low propagation factor, high incubation period and randomization. We note that an
email virus writer has to be careful in designing a stealthy virus: if it uses too low a
propagation factor, then it may “die” in the presence of hosts that are immune to the
virus (e.g., Microsoft Outlook viruses sent to Netscape or Lotus Notes users). A high
incubation period also delays the spread of the virus, which provides more opportuni-
ties for a vigilant user or system administrator to notice the virus. Thus it is likely that
very stealthy viruses are not very stable.

When we began this work, we assumed that an anomaly detection technique such
as ours will have a significant latency in detection, by which time most of the network
may be infected. While this assumption turned out to be true for the most stealthy of the
viruses used in our experiments, our results suggest that for a majority of the viruses, it
is potentially feasible to detect attacks when only a minority of the network is infected.
Note that with early detection, the costs associated with cleaning up such viruses can
be reduced.

While the results presented in this paper are promising, their main weakness is that
they are all based on simulation. Real systems often display behaviors that are more
complex and variable than those exhibited in simulations. This factor can artificially
inflate the effectiveness of anomaly detection systems during simulations. In order to
really assess the effectiveness of the approach, it is necessary to evaluate it using realis-
tic email traffic. Our ongoing work develops techniques where email traffic is no longer
simulated, but is taken from mail server logs. The virus models will continue to be sim-
ulated. The traffic presented to the anomaly detector is obtained by superimposing the
background traffic from the logs with simulated virus email traffic.

A second difficulty in extrapolating the simulation results is that on real systems,
email traffic crosses organization boundaries frequently. In particular, a virus may prop-
agate from one user to any other user on the Internet, and not just on the intranet of the
user’s organization. At the same time, it is not realistic to assume that our anomaly de-
tector can be deployed Internet-wide. Thus, a question arises as to how well an Internet-
wide virus propagation can be detected by an anomaly detector observing the behavior
of email on an intranet. This is another question that needs to be addressed in future
research.
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