
A New Tag-Based Approach for Real-Time Detection
of Advanced Cyber Attacks

A Dissertation presented

by

Md Nahid Hossain

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

January 2022

Stony Brook University

The Graduate School

Md Nahid Hossain

We, the dissertation committee for the above candidate for the

Doctor of Philosophy degree, hereby recommend

acceptance of this dissertation

Dr. R. Sekar - Dissertation Advisor
Professor, Department of Computer Science

Dr. Scott D. Stoller - Chairperson of Defense
Professor, Department of Computer Science

Dr. Michalis Polychronakis - Committee Member
Associate Professor, Department of Computer Science

Dr. Venkat Venkatakrishnan - External Committee Member
Professor, Department of Computer Science

University of Illinois at Chicago

This dissertation is accepted by the Graduate School

Eric Wertheimer
Dean of the Graduate School

ii

Abstract of the Dissertation

A New Tag-Based Approach for Real-Time Detection
of Advanced Cyber Attacks

by

Md Nahid Hossain

Doctor of Philosophy

in

Computer Science

Stony Brook University

2022

Abstract

We are witnessing a rapid escalation in targeted cyber-attacks, often called “Ad-
vanced and Persistent Threats” (APTs), carried out by skilled adversaries. By com-
bining social engineering (e.g.,spear-phishing) with advanced exploit techniques, these
adversaries routinely bypass widely-deployed software protections such as address
space randomization. Consequently, enterprises have come to rely on second-line
defenses such as security information and event management (SIEM) tools. While
generally useful, these tools generate vast quantities of information, making it diffi-
cult for a security analyst to distinguish attacks from background noise. Moreover,
analysts lack the tools to “connect the dots” to piece together fragments of an attack
campaign that spans multiple applications, hosts, and time periods. It is no wonder
that many APT campaigns go undetected for weeks to months.

Researchers have proposed the use of causal dependencies, also called provenance,
to bring more automation to cyber attack detection. Provenance provides additional
context to prune away false positives, and can link together disparate attack steps.
However, a straight-forward application of provenance leads to campaign summaries
that are many orders of magnitude larger than what can be visualized or understood
by a cyber analyst. Moreover, provenance data consists of billions of events, posing
major challenges for real-time analysis.

In this thesis, we first propose novel techniques that achieve two orders of magni-

iii

tude reduction in the size of dependence graphs, while provably preserving analysis
results. This makes it feasible to analyze scenarios consisting of tens of billions of
events in main memory, where graph traversals can be implemented efficiently. To
speed up detection and scenario reconstruction, we observed that these techniques
typically compute and use global context at each graph node. We introduced the
notion of tags to compactly summarize global context, and propagate these tags
efficiently from ancestor nodes to descendant nodes using local computations. We
have introduced several novel tags and propagation semantics, each offering different
trade-offs in terms of efficiency and accuracy. Our experimental evaluation, carried
out through several DARPA-sponsored red team exercises, demonstrates that our
techniques are (a) effective in identifying stealthy attack campaigns, (b) reduce false
alarm rates by more than an order of magnitude, and (c) yield compact attack sce-
narios consisting of tens to hundreds of events while sifting through event logs with
tens to hundreds of millions of events.

iv

Dedication

To my mother, Khursheed E Nasim
and

my father, Md Moazzem Hossain

v

Contents

1 Introduction 1
1.1 Thesis Statement . 4
1.2 Summary of Contribution . 4
1.3 Organization of the Thesis . 8

2 Background and Related Work 9
2.1 Log Collection . 9

2.1.1 System Calls . 10
2.1.2 Provenance Graph . 11
2.1.3 Log Reduction . 12
2.1.4 File Versioning . 13
2.1.5 Graph Compression and Summarization 13

2.2 Attack Detection . 13
2.2.1 Alarm Clustering . 15

2.3 Forensic Analysis and Dependence Explosion 15
2.3.1 Coarse-grained Tracking . 16
2.3.2 Fine-grained Tracking . 17

2.4 Information Flow Control (IFC) . 17
2.5 Threat Hunting . 18

3 Techniques for Space-Efficient Representation of Provenance Graphs
19

3.1 Versioned Graph . 19
3.1.1 Dependence Preserving Reductions 20
3.1.2 Reachability in time-stamped dependence graphs 21
3.1.3 Naive Versioned Dependence Graphs 22
3.1.4 Optimized Versioning . 24
3.1.5 Dependency-Preserving Reductions 27

3.2 Compact Representation of Reduced Logs 31
3.3 Compact Main Memory Representation 31
3.4 Evaluation . 33

3.4.1 Data Sets . 33

vi

3.4.2 Log Size Reduction . 34
3.4.3 Dependence Graph Size . 35

4 Real-Time Attack Scenario Reconstruction From COTS Audit Data 37
4.1 Approach Overview and Contributions 37
4.2 Tags and Attack Detection . 39

4.2.1 Tag Design . 40
4.2.2 Tag-based Attack Detection 41

4.3 Policy Framework . 43
4.4 Tag-Based Bi-Directional Analysis . 44

4.4.1 Backward Analysis . 44
4.4.2 Forward Analysis . 45
4.4.3 Reconstruction and Presentation 46

4.5 Experimental Evaluation . 46
4.5.1 Implementation . 46
4.5.2 Data Sets . 47
4.5.3 Engagement Setup . 47
4.5.4 Selected Reconstruction Results 49
4.5.5 Overall Effectiveness . 50
4.5.6 False Alarms in a Benign Environment 52
4.5.7 Runtime and Memory Use . 53
4.5.8 Benefit of split tags for code and data 54
4.5.9 Analysis Selectivity . 54
4.5.10 Discussion of Additional Attacks 55

5 Combating Dependence Explosion in Forensic Analysis Using Al-
ternative Tag Propagation Semantics 61
5.1 Approach Overview and Summary of Contributions 62
5.2 Motivating Attack Scenario . 63
5.3 Tags and Propagation . 65
5.4 Provenance-Based Attack Detection 70
5.5 Attack Scenario Reconstruction . 71

5.5.1 Entry Point Identification . 72
5.5.2 Forward Analysis . 72

5.6 Putting it All Together: Analysis of CCleaner 73
5.7 Experimental Evaluation . 74

5.7.1 Dataset . 76
5.7.2 Effectiveness of Tag Attenuation and Decay 77
5.7.3 Runtime Performance . 81
5.7.4 Analysis of Evasion Attacks 82
5.7.5 Detection Details and Scenario Graphs 84

6 Probabilistic Confidentiality Tag 90

vii

6.1 Motivating Attack Scenario . 91
6.2 Approach Description . 93

6.2.1 Probabilistic Confidentiality Tags 94
6.2.2 Confidentiality Tag Assignment 95
6.2.3 Update and Propagation of Tags 96
6.2.4 Attack Detection . 97
6.2.5 Entry Point Identification and Attack Scenario Reconstruction 98

6.3 Evaluation . 99
6.3.1 Dataset . 99
6.3.2 Analysis of the Confidentiality Tag Inferred during Training . 102
6.3.3 Threshold Selection . 102
6.3.4 Evaluation of Inferred Confidentiality Tag and Confidentiality

Accumulation . 103
6.3.5 False Positive Analysis . 105

7 Conclusion and Future Work 106

viii

List of Figures

1.1 System Architecture . 7

2.1 An example (time-stamped) provenance graph. 11

3.1 A timestamped graph and equivalent naive versioned graph. 22
3.2 The naive versioned graph from Fig. 3.1 (top), and the result of ap-

plying redundant edge optimization (REO) (middle) and then redun-
dant node optimization (RNO) (bottom) to it. When adding the edge
(S,G, 5), we find that there is already an edge from the latest ver-
sion S2 of S to G, so we skip this edge. For the same reason, the
edge (G, T, 6) can be skipped, and this results in the graph shown in
the middle. For the bottom graph, note that when adding the edge
(F, S, 2), S has no descendants, so we simply update S0 by S0,2, and
avoid the generation of a new version. For the same reason, we can
update G0 and T 0 as well, resulting in the graph at the bottom. . . . 25

3.3 Reduction that preserves continuous dependence. 28
3.4 Reduction that violates continuous dependence. 28
3.5 Source dependence preserving reduction. 30

4.1 Scenario graph reconstructed from campaign F-3. 48
4.2 Scenario graph reconstructed from campaign W-2. 57
4.3 Scenario graph reconstructed from campaign L-1. 58
4.4 Scenario graph reconstructed from campaign F-1. 58
4.5 Scenario graph reconstructed from campaign F-2. 59
4.6 Scenario graph reconstructed from campaign W-1. 59
4.7 Scenario graph reconstructed from campaign L-3. 60

5.1 Motivating example: CCleaner ransomware. Rectangles denote sub-
jects (processes), while oval-shaped nodes denote files and diamonds
denote network objects. Edges denote events, and are oriented in the
direction of information flow. Edges without a specific event label de-
note reads and writes. 63

5.2 Scenario Graph constructed by Morse for CCleaner Ransomware . 73

ix

5.3 Reduction in scenario graph size achieved using tag attenuation and
decay. The average size reduction is 35 times, and no relevant nodes
were dropped. 76

5.4 Total number of alarms and false negatives on TC Engagement 3 and
Engagement 4 datasets using different attenuation and decay rates.
The scale for total number of alarms is on the left, while the false
negative scale is on the right. The total number of true positives are
126 and 425. The total number of alarms without attenuation and
decay are 1.69 million and 0.59 million respectively, and they reduce
by 10x with tag attenuation and decay. 78

5.5 Size of the scenario graph without decay or attenuation, without using
env tag (i.e., no decay or attenuation for suspect environment subjects)
and using env tag. 83

5.6 Firefox Backdoor. Firefox was first compromised by a malicious
ad server, resulting in an in-memory payload. This generated multiple
MemExec alarms. Next, an Escalate alarm was triggered, as the at-
tacker escalated privilege using a kernel implant. Installed prior to the
engagement, this implant was accessed using the device /dev/glxalsa675.
Subsequently, DataLeak alarms were raised when Firefox read and ex-
filtrated /etc/passwd. In the second part of the attack, a cache pro-
cess displayed many of the same behaviors (and raised the associated
alarms) as the compromised Firefox, but the provenance of this process
was missing in the data. As a result, two distinct entry points were
identified, namely, the Firefox and cache processes. A forward analysis
from these entry points resulted in the above graph. Note that cache
removes a file (/home/admin/cache) downloaded by Firefox, indicating
that the two attacks are related. 83

5.7 Malicious HTTP Request. This figure shows one of the more
successful attempts of this attack, which began with an exploit of ng-
inx. A malicious file /tmp/vUgefal was then downloaded and executed,
raising a FileExec alarm. The attacker went on to write another file
/var/log/devc, which was intended to be injected into the sshd process,
but this attempt failed. Our entry point identification identified vUge-
fal process. A forward analysis from this process yielded the above
graph. We also performed a backward analysis to identify the network
entry point and the nginx process that downloaded /tmp/vUgefal, but
these nodes are not shown above. 85

x

5.8 Recon with Metasploit. This attack began with a malicious file
hc that was scp’d onto the victim host using previously stolen cre-
dentials. When this file was executed, a FileExec alarm was trig-
gered. This process, together with another piece of downloaded mal-
ware /tmp/ext96481, probed and exfiltrated sensitive data to a remote
IP address. These actions raised DataLeak alarms. Morse traced
these alarms back to hc. A forward analysis from this node results in
the above scenario graph. A backward analysis from hc revealed the
scp process involved and the network entrypoint, but these are not
shown above. 86

5.9 Kernel Malware. Firefox, compromised by a malicious website, exe-
cuted an in-memory payload that triggered several MemExec alarms.
Next, an Escalate alarm was triggered, as the attacker escalated priv-
ilege using a kernel implant installed prior to the engagement. Firefox
then downloaded a malicious file /tmp/libnet.so, which was meant to
be injected into an existing sshd process. However, in the data, there
is no injection, but sshd did raise several MemExec alarms, as well
as a FileExec alarm due to loading /tmp/libnet.so. Next, sshd down-
loaded /home/admin/file/docs/audiobackup and made it executable,
raising a ChPerm alarm. It also performed some recon and exfiltrated
the information, causing several DataLeak alarms. In total, more than
500 secondary alarms were raised, all tracing back to Firefox. A for-
ward analysis, performed about 10 minutes after the attack, yielded
the above scenario graph. 87

5.10 Recon with Rootkit attack. This attack began with uploads of mt,
a rootkit, to two FreeBSD hosts. When mt was executed, a FileExec
alarm was triggered. As mt gathered and exfiltrated sensitive informa-
tion to an external IP address, DataLeak alarms were raised. These
alarms were clustered independently on the two machines, tracing back
to the mt process. A forward analysis from this process yielded the
above graph. Note that the two graphs are disconnected, except for
the dotted line showing the shared attacker site. A backward analy-
sis from mt showed that the attacker logged in using scp, presumably
using stolen credentials. 87

xi

5.11 Browser extension. The attack started when a vulnerable browser-
plugin pass mgr got compromised while visiting a malicious website.
This raised MemExec alarms. Next, the compromised plug-in down-
loaded a program gtcache and executed it, resulting in a FileExec
alarm. In turn, gtcache downloaded and executed ztmp. Both pro-
grams performed recon to collect and exfiltrate sensitive information
to the network, resulting in several DataLeak alarms. Tracing back
from these alarms, Morse identified pass mgr as the entry point. A
forward analysis from this node yielded the above scenario graph. . . 88

5.12 User-level rootkit. This attack takes advantage of a user-level rootkit,
in the form of a shared library libselinux.so, which had been in-
stalled on the victim host prior to the start of the engagement. Dur-
ing the engagement, the attacker accessed this rootkit to exfiltrate
/etc/shadow to a remote IP address, raising a DataLeak alarm. This
was the sole indication of unusual behavior in the audit data, thus
making this the most stealthy attack in our dataset. The attacker,
possibly after using password cracking on this shadow file, obtains ac-
cess to a second machine via ssh. Since the sole alarm was generated
by a bash process, we marked it suspicious, and performed a forward
analysis from there. Since the resulting graph was large, we refined the
forward analysis to follow only process creation and execution edges to
yield the above graph. Note that the attacker ran several commands
to collect sensitive data, such as tcpdump, ifconfig, and ps. Other
notable commands include clear console and chsh. On the second
machine, since a suspect process from the first machine connected to it,
the target process (sshd) was marked as a suspect subject by Morse.
The scenario graph originating from this sshd process has been shown
together with the scenario graph generated on the first host, with the
network connection indicated with a dashed line. 89

6.1 Motivating example: Kernel Rootkit. 91
6.2 Precision and Recall for detecting Threshold value t. 103
6.3 Comparison of F1-score (Harmonic mean of precision and recall value)

on using the Inferenced confidentiality tags and accumulation, just the
Inferenced confidentiality tags and using Base confidentiality tags. . 104

xii

Acknowledgments

First of all, I would like to express my deepest gratitude to my advisor Professor
R. Sekar for his immense support during my entire PhD. His enthusiasm and attitude
for research deeply influenced me and helped me grow as a researcher and made this
thesis a reality. Without his guidance and motivation, this journey would not have
been possible for me to undertake. He always pushed me to strive for excellence no
matter what the task was. I am thankful for his patience and his constant belief in
me.

I would also like to thank my committee members, Dr. Scott Stoller, Dr. Michalis
Polychronakis, and Dr. Venkat Venkatakrishnan for their time serving on the com-
mittee of my thesis and for the great feedback and insightful comments they gave.
Some of the works in this dissertation were done in collaboration with Professor Scott
and Professor Venkat. I am truly grateful for their guidance and support not only
during the collaboration but also throughout my PhD. On that note, I would also
like to thank each and every one of the faculty and staff members from the Com-
puter Science department at Stony Brook University with whom I came in contact
throughout the years for their amazing support.

During my PhD, I was fortunate enough to collaborate and work with numerous
outstanding researchers as part of the DARPA Transparent Computing program.
I am truly fortunate to be a part of this program which helped shape my thesis by
exposing me to tackle real-world cyber security challenges. I would like to acknowledge
and thank my amazing collaborators, Sanaz Sheikhi, Sadegh Momeni Milajerdi, Rigel
Gjomemo, and Birhanu Eshete. I would also like to thank Jayesh Ranjan and Vineeth
Polamreddy for helping me design an amazing user interface for our system.

I owe my sincerest gratitude to all my labmates and colleagues at Stony Brook
University. I am extremely fortunate that I was able to make some amazing friends
during this journey whom I will be cherishing throughout my entire life. I would
also like to thank all my friends and family from Bangladesh who supported me from
thousands of miles away through all the ups and downs.

Most importantly, I would like to thank my mother. I was able to pass through
every single hurdle of this journey because of her motivation and unwavering faith
in me. Without her constant support and sacrifice, this thesis would not have been
possible.

xiii

Chapter 1

Introduction

We are witnessing a rapid escalation in targeted cyber-attacks, often called “Ad-
vanced and Persistent Threats” (APTs) [2]. These attacks are carried out by skilled
attackers, often backed by the resources of criminal organizations or nation states.
Unlike traditional malware attacks that are indiscriminate, APTs choose their tar-
gets deliberately: often, the goal is to steal intellectual property, databases, credit
card or user account information, or to gain access to physical equipment, infrastruc-
ture, or industrial control systems. By combining social engineering techniques (e.g.,
spear-phishing) with zero-day vulnerabilities and advanced exploit techniques, APT
actors routinely bypass widely-deployed software protections such as ASLR, DEP
and sandboxes. To defend against these threats, enterprises have come to rely on
state-of-the-art intrusion detection systems (IDS), often called Security Information
and Event Management (SIEM) systems, e.g., Splunk [11], LogRhythm [7], ArcSight
[9] and IBM QRadar [5]. The heuristics and rules used by these SIEMs are typically
based on a single event. Unfortunately, many of these heuristics can also be triggered
by some benign activities, thereby leading to numerous false alarms.

Another key issue with existing SIEMs is the lack of tools for “connecting the
dots,” i.e., piecing together fragments of an attack campaign. APTs are long-running
in nature and are carried out in multiple stages. The perpetrators of these attacks
remain below the radar for long periods, while exploring the organization’s IT in-
frastructure and exfiltrating or compromising sensitive data. For instance, attackers
remained undetected for 2.5 months in the Equifax attack [1], while the attack in the
OPM data breach [10] was carried out over 8+ months.

Ultimately when the attack is discovered, a forensic analysis is initiated to identify
the entry points of the attack and its system-wide impact. Existing tools do support
time-based event correlation. However, temporal correlation is not effective on APT
campaigns due to their slow moving nature. This weakness in connecting the dots,
when combined with the high volume of false alarms, overwhelms cyber analysts with
a flood of low quality information. It is no wonder that most APT campaigns remain
undetected for months.

1

To perform accurate forensic analysis, system wide activity logging is required
across the entire enterprise. Logs should be detailed enough to track dependencies
between events occurring on different hosts and at different times. Most contempo-
rary operating systems provide tools for such logging, including the auditd auditing
daemon for Linux and the ETW (Event Tracing for Windows) system for Microsoft
Windows. Unfortunately, these logs can be very large, e.g., a single host can generate
gigabytes of audit data in a single day [63, 162]. As a result, storage requirements
can go up to the petabyte range per year for an enterprise with thousands of hosts.
In addition to storage costs, this large volume also slows down forensic analysis enor-
mously.

In summary, stealthy APT campaigns pose the following challenges to existing
IDS tools and techniques:

� Needle-in-a-haystack : Due to the stealthy nature of APTs, today’s systems
employ a wide range of detectors that capture isolated bad behaviors. Unfor-
tunately, many of these behaviors resemble benign activities as well. Given the
rarity of attack events compared to the volume of benign events, existing sys-
tems generate numerous false positives. The resulting volume of false alarms
can cause analysts to miss real attacks.

� Connecting the dots : APT attacks are conducted in multiple stages and run
for months. Even if existing systems can identify individual malicious events,
they don’t provide much help in understanding the overall “big picture.” To
respond to sophisticated APTs in real-time, techniques are needed to connect
these disparate events to uncover the overall campaign.

� Scaling and performance: Even a relatively small enterprise with hundreds of
hosts can generate terabytes of audit and security event logs every day [63, 162].
Many detection techniques and analysis tasks require sifting through billions of
log records. These analyses can be very expensive to perform, making it difficult
to meet real-time goals.

The above factors motivate the need for new attack detection and analysis tech-
niques that will enable an analyst to identify an ongoing attack campaign quickly.
These new techniques need to have a low false alarm rate along with the ability to
store and analyze vast quantities of logs produced in an enterprise. Finally, the entire
attack campaign should be presented in real-time to cyber analysts using a compact
graphical representation.

Provenance-based Systems and Forensic Analysis

Researchers have proposed the use of causal dependencies or provenance to connect
together attacker activities. Backtracker [72] used coarse-grained provenance from

2

system-call logs to construct a provenance graph of system events. Subsequent re-
search [86, 98] focused on improving the precision of these provenance graphs using
fine grained provenance information. To reconstruct the entire attack scenario from
a system event that corresponds to an attack, the following steps are taken:

� Backward Analysis: A backward graph search from the attack event is initiated
to identify the potential entry point (e.g., IP address) of this attack.

� Forward Analysis: Once the entry point is identified, a forward search from the
entry point can be used to understand the totality of the attacker’s activities.

These backward and forward analyses serve to connect all of the attacker’s steps, thus
presenting the overall attack scenario to a cyber analyst. We refer to this process as
attack scenario reconstruction.

Challenges of Provenance-based Techniques

A major drawback of provenance based systems such as Backtracker is that the attack
scenario reconstruction is performed in a purely forensic setting due to the massive
size provenance graphs [38, 87, 96, 147, 162]. Forward and backward reachability
analyses on such massive graphs is extremely slow. Moreover, optimizations such as
precomputing/caching don’t work on provenance graphs. This is because reachability
changes over time, e.g., a process that had no communication with an attacker site
at one point in time may end up communicating with that site later on.

Another major challenge faced by provenance-based techniques is the dependence
explosion problem. Most forensic analysis techniques [55, 61, 72, 92, 105] operate
on the basis of coarse-grained provenance. In particular, if a subject (i.e., a pro-
cess) reads from a network source, then all subsequent writes by the subject are
treated as (potentially) dependent on the network source. This leads to a dependence
explosion, as every output of a process becomes dependent on every earlier input
operation. The impact of this explosion is severe for long-running processes such as
web browsers, email readers, and network servers. Unfortunately, such long-running
processes generate the bulk of the activities on today’s systems. Consequently, a
straight-forward application of forward analysis can result in a graph with millions
of nodes, a size far too large to be understood by an analyst. Although fine-grained
information flow tracking [18, 65, 66, 70, 97, 98, 113, 160] can mitigate dependence
explosion, these techniques suffer from large performance overheads that discourage
deployment. Moreover, fine-grained provenance requires all applications to be instru-
mented for information flow tracking. Unfortunately, software vendors do not ship
their applications with such tracking, and are unlikely to do so in the foreseeable
future. Consequently, coarse-grained provenance remains the only practical option
for enterprises.

3

1.1 Thesis Statement

This thesis develops two new ideas to overcome the challenges faced by provenance-
based techniques: versioned provenance graphs and provenance tags. Although new
nodes and edges get added to versioned graphs over time, reachability between nodes
does not change, and hence, global dependences can be cached and reused. This
enables the use of small tags at each node to compactly summarize important global
dependencies. As a result, global dependence can (efficiently) be used in attack de-
tection rules, obviating the false positives of previous detection techniques that relied
just on local information. Moreover, tags enable graph reduction techniques that cut
down storage requirements by orders of magnitude, thereby permitting provenance
graphs to be stored and analyzed in real-time on main memory. Finally, by varying
the rules for the assignment and propagation of tags, dependence explosion can be
effectively mitigated and compact scenario graphs generated.

1.2 Summary of Contribution

We make the following contributions in this thesis:

Versioned Graphs and Dependence Compaction

Dependency information of processes and files change over time. Due to the use
of timestamped edges in provenance graphs, this dependency information cannot be
computed and cached for subsequent use. As a result, real-time forensic analyses
become infeasible. To overcome the computational challenges posed by timestamped
graphs, we transform them into standard graphs using versions which we discuss in
Chapter 3.

Another challenge for performing real-time forensic analysis is the requirement for
the entire provenance graph to be kept in the main memory. But this is very chal-
lenging due to the massive size of the logs involved. To mitigate this issue we develop
a compact in-memory graph representation in Chapter 3. Three important optimiza-
tions underpin our compact representation: redundant edge optimization (REO),
redundant node optimization (RNO) and cycle-collapsing optimization (CCO). We
show that these techniques provably preserve forensic analysis results, and hence don’t
sacrifice accuracy for performance. Using our representation techniques, we are able
to compactly store an entire provenance graph in memory, requiring about 2 bytes
per event on average. As a result, a data set with 72M events utilized only 111MB
of memory in one of our experiments. We also generate compact event logs using a
space-efficient log format that is about 8× smaller than a Linux audit log containing
roughly the same information.

4

Attack Detection

Another contribution of this thesis is the development of tag-based attack detection
policies introduced in Chapter 4 and refined further in subsequent chapters. Our
detection techniques focus on the high-level objectives of most attackers. Specifically,
we combine reasoning about an attacker’s motives and means. If an activity can
help the attacker achieve his/her key high-level objectives, that would provide the
motivation and justification for including that activity in an attack. Examples of
such activities include deploying and running malware on a victim system, replac-
ing/modifying important password files or cryptographic keys, exfiltrating sensitive
data, etc. But many of these activities may be also occur during normal use of the
system by legitimate users. To discriminate attacks from such benign background
activity, we examine if the attacker has the means to control these activities. We
associate integrity tags with files and processes to indicate whether they are under
the influence or control of potential attackers. These tags are derived from global
dependency information in the provenance graph. By combining both the motive
and the means, our policies tend to produce far fewer false positives than previous
techniques that rely just on the activities (i.e., motives). Moreover, our techniques
don’t require any application-specific customization or training in order to be effec-
tive. Obtaining good training data is a major challenge in this domain. Some of the
widely available data sets, such as the DARPA Transparent Computing dataset used
in our evaluation, do not include much representative training data. We are able to
circumvented this challenge using our training-free detection approach.

Tag Propagation Semantics and Dependence Explosion

We explore three different tag semantics representing different trade-offs between
simplicity, speed, and effectiveness of these techniques on attack detection and attack
scenario reconstruction. Each of these semantics also incorporates techniques on
dealing with dependence explosion problem.

� Sleuth: In Chapter 4 we developed a fully automated attack detection and
scenario reconstruction system using tags with multiple level of integrity and
confidentiality. The integrity tag is further split to lower the number of false
positives. Specifically, a subject (i.e., a process) is given two integrity tags:
one that captures its code integrity and another for its data integrity. This
separation significantly improves attack detection. More importantly, it can
significantly speed up forensic analysis by focusing on fewer suspicious events,
while substantially reducing the size of the reconstructed scenario. We also as-
sociate a cost measure with each edge in the provenance graph. In combination
with the split integrity tag, this cost-based search deals with dependence explo-
sion problem by pruning away higher-cost paths to arrive at compact scenario
graphs summarizing attacker activity.

5

Sleuth uses dependence information to track the flow of untrusted and/or
sensitive content in the system. This is done by assigning integrity and confi-
dentiality tags to data and processes, and propagating these tags in the direction
of information flow. Attack detection triggers a forensic backward analysis of
the dependence graph to identify the source of an attack, typically an inter-
net connection. It also triggers a forward analysis in the graph to identify the
entities that may have been compromised.

� Morse: While the tag semantics for Sleuth is effective for fast moving attacks,
for long-running attacks, it can produce graphs with numerous benign nodes.
For example, if a subject (i.e., a process) reads from a network source, then
all subsequent writes by the subject are treated as (potentially) dependent on
the network source. This leads to a dependence explosion, as every output of a
process becomes dependent on every earlier input operation. In Chapter 5 we
introduce Morse where the core idea behind the approach is to modulate tag
propagation using subject tags which is related to Sleuth’s code integrity tag.
In particular, the tag propagation rules are lenient on benign subjects, and take
advantage of their typical behaviors in order to reduce dependence explosion.
At the same time, the tag propagation rules for suspicious subjects that may
be under the direct control of attackers are treated conservatively.

We introduce two key concepts, tag attenuation and tag decay that mitigate
dependence explosion through benign processes. Tag decay captures the intu-
ition that a benign subject, if it is subverted and becomes malicious, will do so
soon after consuming suspicious input that contains an exploit. For this reason,
we allow the data tags of benign subjects to decay gradually and become be-
nign over time, unless they exhibit suspicious behavior. This feature breaks the
dependency between suspicious inputs and outputs of a benign subject after a
certain threshold of time.

Tag attenuation captures the intuition that objects serve as imperfect inter-
mediaries for propagating malicious behavior through benign subjects. In par-
ticular, each such propagation requires the intermediary object to contain an
exploit that compromises the subject that consumes it. To capture the difficulty
of creating a series of such exploits, we attenuate data tags of a benign subject
before propagating it to the object that it writes into.

� Probabilistic Tags: Another way of improving attack detection and gen-
erating concise attack graph is instead of working with a discrete set of tags,
we can give them a probabilistic interpretation. For instance, we can let the
confidentiality tag of a file denote the probability of a file containing informa-
tion sought by an attacker. In Chapter 6 we show how probabilistic view of
confidentiality tags can be used to identify stealthy APTs.

Our probabilistic view of tags provides many benefits. First, it allows us to

6

Tag-Based

Detection

Dependence Graph

Construction
Tag-Based

Impact Analysis

Analyst UI for Graph Query and Search

Figure 1.1: System Architecture

capture a continuous range in confidentiality tags, instead of being limited to
a few discrete values. Second, it becomes possible to define meaningful prop-
agation rules to handle a variety of situations. For instance, we developed a
confidentiality accumulation technique, which, along with entry point detec-
tion, is able to accurately identify two key steps included in almost every APT
campaign: reconnaissance and data exfiltration. This system is able to detect
recent stealthy attacks that have moved away from file-based malware and are
carried out mostly with benign system tools.

System Implementation and Evaluation

As shown in Fig 1.1, our system consists of five components that implement its core
functionality, together with an UI for an analyst. The first component consists of data
consumers and graph construction. The data consumers process input from COTS
auditing systems such as the Linux Auditd, Windows ETW and FreeBSD DTrace
systems and generates the provenance graph on the fly. The dependency graph uses
different compaction techniques that provably preserve forensic analysis results.

The second component incorporates different tag-based semantics using differ-
ent tag initialization and propagation techniques. The third and fourth component
are tag-based attack detection and forensic analysis respectively. All three of these
components are discussed in detail in Chapters 4, 5 and 6.

The fifth layer mainly consists of a user interface for analysts to monitor alarms,
run queries on the graph, construct scenario graphs, etc. This web-based UI is capable
of performing these functionalities in real-time by communicating with the second,
third and fourth component of the system without hampering the graph construction.

The final contribution of this thesis is our experimental evaluation, based mainly
on a red team evaluation organized by DARPA as part of its Transparent Computing
program. In this evaluation, attack campaigns resembling modern APTs were carried
out on Windows, FreeBSD and Linux hosts ranging from days to several weeks period.

7

Our system is extremely fast and is able to consume these data sets at the rate of
about a million events per second. It is also able to achieve on average 7x reduction on
the number of events. Our compact in-memory versioned graph generates just about
1.3 versions per node and requires 2 bytes on average per event. Sleuth’s split of
integrity tags into code vs data tags achieved 7x to 500x reduction of alarms and over
a 1000x reduction on attack graph scenario. Using Morse we achieve a further 12x
reduction in alarms and 35x reduction in attack graph size using tag attenuation and
tag decay. All of these reductions were achieved without introducing false negatives.

1.3 Organization of the Thesis

In Chapter 2 we discuss background and related research. In Chapter 3 we look at our
compaction techniques for storing the massive amount of data in-memory and also on
disk. We demonstrate how forensic analyses are speeded up using these techniques,
while preserving the fidelity of results.

Chapter 4 discusses the first iteration of our system implementation, called Sleuth.
It develops the concepts of tags and tag propagation and attack detection policies,
and formulates the forensic analysis in terms of cost-based graph reachability. A novel
contribution in this work is the splitting of integrity tags into code and data integrity.
The results were evaluated on the first DARPA Transparent Computing dataset.

Chapter 5 describes the second iteration of our system called Morse. We intro-
duce two key techniques called tag attenuation and tag decay in this chapter to mit-
igate the dependence explosion problem for stealthy attacks. These new techniques
were evaluated on DARPA Transparent Computing datasets 3 and 4. Included in
these datasets were attacks that relied on preexisting malicious software and kernel
modules on the victim systems.

We look at a probabilistic approach on confidentiality tags and how to automati-
cally infer them from training in Chapter 6. In combination with tag accumulation,
we demonstrate the effectiveness of these new techniaues in detecting reconnaissance
and data exfiltration steps. These techniques were evaluated on DARPA Transparent
Computing datasets 3, 4 and 5, as well as other datasets that were created in our
research lab.

Lastly, concluding remarks appear in Chapter 7, together with directions for future
work.

8

Chapter 2

Background and Related Work

In this chapter we discuss some of the technical background for this thesis, and survey
previous research in related areas.

2.1 Log Collection

Accurate forensic analysis or attack scenario reconstruction requires logging of system
activity across the enterprise. Logs should be detailed enough to track dependencies
between events occurring on different hosts and at different times, and hence needs
to capture all information-flow causing operations such as network/file accesses and
program executions. There are three main options for collecting such logs: (1) instru-
menting individual applications, (2) instrumenting the operating system (OS), or (3)
using network capture techniques.

In the 90s, researchers started investigating sensors that observed network packets.
Network intrusion detection systems (NIDS) operated on the basis of such sensors
deployed on the network. This contrasted with earlier Host-based IDS (HIDS) that
operated on the basis of log files produced by software running on host computers.
Commercially, network-based sensors proved far more viable than host-based sensors.
Network sensors can be deployed in just a few locations, e.g., network gateways,
yet monitor an entire enterprise network. In contrast, host-based sensors need to
be deployed on every host. More importantly, their implementation will differ with
the specific OS and software deployed on a host. The drawback of network sensors
is that they provide very limited insight into software systems that are both the
targets as well as agents of intrusions. Trying to diagnose intrusions from just the
network sensors is akin to troubleshooting a car from a record of its GPS tracking
data, instead of deploying a rich array of sensors within the car. In other words,
host-based mechanisms are essential for intrusion detection, and must be realized
despite roadblocks to deployment. While early NIDS used only the network packet
headers, subsequent (so-called DPI or deep packet inspection) systems have tried to
compensate for the lack of host-level information by examining more and more of the

9

payload data. This offers better visibility into the operation of servers and clients,
but still falls far short of what is achievable with host-based sensors. Moreover, the
increasing use of end-to-end encryption is rapidly shrinking the share of network
traffic that can be monitored this way, once again highlighting the need for host-level
sensors.

Moreover, host-level sensors or OS-layer logging can track the activities of all
processes on a host, including any malware that may be installed by the attackers.
In contrast, application-layer logs are limited to a handful of benign applications
(e.g.,network servers) that contain the instrumentation for detailed logging.

2.1.1 System Calls

The earliest IDS works relied on OS auditing mechanisms to serve as sensors. Unfor-
tunately, some OSes — in particular, Linux — did not include auditing mechanisms
that were available on Sun Solaris. Moreover, even among the OSes that provide
auditing, there is no consistency in terms of the security events that are audited, or
the format of the audit log.

Against this backdrop, in the mid-90s, researchers began to investigate the use
of system-call monitoring for intrusion detection [47, 88, 134] and other security-
related applications such as sandboxing. Note that (a) all attacks (with very rare
exceptions) target user-level processes, and (b) all security-relevant operations made
by processes need to be mediated by the OS and hence must involve system calls.
For these reasons, system calls contain all of the information necessary for detecting
intrusions. Moreover, since system calls involve a transition into the OS kernel, they
can be securely logged without application cooperation. Finally, Linux, which was
gradually becoming the the dominant UNIX version, provided several easy ways for
logging system calls. For all these reasons, system call logging became the de facto
host-based intrusion sensing mechanism in the 00s.

Subsequent research [132] showed that the accuracy of intrusion detection models
can be significantly improved by having the sensors record the call stack data1 in
addition to the system calls. While the call stack only records return addresses,
further improvements in the models can be achieved by recording calls as well [53].
Instead of incurring performance penalties for runtime recording of calls, a simple
static analysis can be used to infer calls from the return addresses. In the extreme
case, a static control-flow graph could be used to infer potential calls and returns
without any need for additional runtime information [152], but the algorithms for
detection become far too expensive. Thus, recording of return addresses is necessary
to support efficient and accurate system-call based intrusion detection.

Mimicry attacks [153] and subsequent work in automating them (e.g., [78]) were
another factor that favored the development of so-called gray-box techniques that

1Typically, just the top few return addresses on the stack needed to be recorded, not the entire
stack.

10

a.com b.com

P Q

C L

E
1
2

3

4

5

6
7

8

9
10

11

12

Figure 2.1: An example (time-stamped) provenance graph.

relied on additional runtime information such as the call stacks [46, 48, 49, 53, 132],
and properties of sytem call arguments [26, 80, 149]. Under the right conditions, an
advanced form of mimicry attack called persistent interposition attack [118] could
defeat all previous system-call IDS, as well as those that could realistically put into
practice in the future. This demonstrated the need for monitoring more than just
system calls. Control-flow integrity research [12] suggested that right primitive would
be indirect control-flows. Interestingly, earlier research [85] had suggested monitoring
indirect branches2 in order to reduce false negatives and to improve performance of
IDS models.

2.1.2 Provenance Graph

Abstractly, host-based intrusion sensors observe and report system-level events, to-
gether with event attributes that capture a snapshot of the relevant subset of a sys-
tem’s internal state. One such event attributes is provenance information. Using
this attribute it is helpful and common to regard the log as defining a graph, called
provenance graph. System logs refer to two kinds of entities: subjects and objects.
Subjects are processes, while objects correspond to passive entities such as files, net-
work connections and so on. Entries in the log correspond to events, which represent
actions (typically, system calls) performed by subjects, e.g., read, write, and execute.
In most work on forensic analysis [72, 73, 162], the log contents are interpreted as a
provenance graph: nodes in the graph correspond to entities, while edges correspond
to events. Edges are oriented in the direction of information flow and have times-
tamps. When multiple instances of an event are aggregated into a single instance, its
timestamp becomes the interval between the first and last instances. Fig. 2.1 shows a
sample provenance graph, with circles denoting subjects, and the other shapes denot-
ing objects. Among objects, network connections are indicated by a diamond, files
by ovals, and pipes by rectangles. Edges are timestamped, but their names omitted.
Implicitly, in-edges of subjects denote reads, and out-edges of subjects denote writes.

2By “indirect branch,” we mean all indirect control-flow transfers, including indirect calls and
returns.

11

Given the huge volume of logs that are collected, provenance based forensic anal-
ysis techniques becomes computationally expensive. The following research focused
on reducing the log size.

2.1.3 Log Reduction

LogGC [87] proposed an interesting approach for log reduction based on the concept
of garbage collection, i.e., removing operations involving removed files (“garbage”).
Additional restrictions were imposed to ensure that files of interest in forensic anal-
ysis, such as malware downloads, aren’t treated as garbage. They report remarkable
log reduction with this approach, provided it is used in conjunction with their unit
instrumentation. Without such fine-grained instrumentation, the savings they obtain
are modest.

ProTracer [98] proposed another new reduction mechanism that was based on
logging only the write operations. Read operations, as well as some memory-related
operations tracked by their unit instrumentation, were not logged. In the presence
of their unit instrumentation, they once again show a dramatic reduction in log sizes
using their strategy. However, this strategy of selective logging of writes can actually
increase log sizes in the absence of unit instrumentation. Also, as we mentioned
earlier, reducing the volume of logs does not necessarily decrease the forensic analysis
time significantly.

Xu et al [162] explore a complementary strategy that can remove some (repeated)
events on any object. They developed the concept of trackability equivalence of events
in the audit log, and proved that, among a set of equivalent events, all but one can
be removed without affecting forensic analysis results. Across a collection of several
tens of Linux and Windows hosts, their technique achieved about a 2× reduction in
log size. On the other hand our compact graph and log representation techniques
allow significantly more reduction.

Provenance capture systems, starting from PASS [108], incorporate simple reduc-
tion techniques such as the removal of duplicate records. PASS also describes the
problem of cyclic dependencies and their potential to generate a very large number
of versions. They avoid cycles involving multiple processes by merging the nodes for
those processes. Our cycle-collapsing optimization is based on a very similar idea.

ProvWalls [22] is targeted at systems that enforce Mandatory Access Control
(MAC) policies. It leverages the confinement properties provided by the MAC policy
to identify the subset of provenance data that can be safely omitted, leading to
significant savings on such systems.

Winnower [147] learns compact automata-based behavioral models for hosts run-
ning similar workloads in a cluster. Only the subset of provenance records that
deviate from the model need to be reported to a central monitoring node, thereby
dramatically reducing the network bandwidth and storage space needed for intru-
sion detection across the cluster. These models contain sufficient detail for intrusion

12

detection but not forensics. Therefore, Winnower also stores each host’s full prove-
nance graph locally at the host. In contrast, our systems generate compact logs that
preserve all the information needed for forensics.

2.1.4 File Versioning

The main challenge for file versioning systems is to control the number of versions,
while the challenge for forensic analysis is to avoid false dependencies. Unfortunately,
these goals conflict. Existing strategies that avoid false dependencies, e.g., creating
a new version of a file on each write [137], generate too many versions. Strategies
that significantly reduce the number of versions, e.g., open-close versioning [129],can
introduce false dependencies.

Many provenance capture systems use versioning as well. Like versioning file
systems, they typically use either simple versioning that creates many versions (e.g.,
[21, 119]) or coarse-grained versioning that does not accurately preserve dependencies
(e.g., [108]).

Provenance capture systems try to avoid cycles in the provenance graph, since
cyclic provenance is meaningless. Causality-based versioning [107] discusses two tech-
niques for cycle avoidance. The first of these performs global cycle detection across
all objects and subjects on a system. The second operates with a view that is local
to an object. It uses a technique similar to our redundant edge optimization, but
is aimed at cycle avoidance rather than dependency preservation. They also do not
consider redundant node optimization in their approach.

2.1.5 Graph Compression and Summarization

Several techniques have been proposed to compress data provenance graphs by sharing
identical substructures and storing only the differences between similar substructures,
e.g., [37, 38, 157]. Bao et al. [19] compress provenance trees for relational query
results by optimizing the selection of query tree nodes where provenance information
is stored. These compression techniques, which preserve every detail of the graph,
are orthogonal to our techniques, which can drop or merge edges.

Graph summarization [111, 145] is intended mainly to facilitate understanding of
large graphs but can also be regarded as lossy graph compression. However, these
techniques are not applicable in our context because they do not preserve dependen-
cies.

2.2 Attack Detection

A number of recent research efforts on attack detection/prevention focus on “inline”
techniques that are incorporated into the protected system, e.g., various guarding
techniques [34, 39, 40, 45, 125, 127], randomization [15, 20, 25, 27, 28, 29, 69, 71, 89,

13

101, 126, 158], bounds-checking [13, 14, 43, 58, 67, 82, 110, 112, 120, 161, 163], control-
flow integrity [12, 116, 146, 166, 167, 168, 169], taint-based defenses [31, 35, 113, 122,
130, 131, 138, 151, 160] and so on. While most of these defenses are aimed at memory
corruption exploits [144], the goals of offline intrusion detection has been broader.
This line of research has also been studied for a much longer period [42, 47, 95],
particularly on host-based IDS using system-call monitoring [46, 79, 88, 132, 152,
155]. The detection techniques mainly fall into three categories: (i) misuse detection
[76, 81, 124, 150], which relies on patterns of bad behaviors (“signatures”) associated
with known attacks; (ii) anomaly detection [26, 46, 47, 48, 80, 88, 132, 136], which
relies on learning a model of benign behavior and detecting deviations from this
behavior; and (iii) specification-based detection [32, 74, 75, 133, 148], which relies on
specifications of expected behaviors.

Misuse detection is based on specifications of bad behaviors known to be asso-
ciated with specific attacks. Typically, rules encoding “attack signatures” are used
for specification, and pattern-matching algorithms are used in their implementation.
Alerts produced by these systems are relatively easy to interpret, as these rules can
encode attack-specific information such as an attack name or id. Moreover, the rate
of false alerts can be controlled by tuning the signatures. One of their downsides is
that they require expert knowledge and effort to write down misuse signatures. A
more fundamental drawback is that they can only detect previously known attacks; no
signatures will exist for novel attacks that have never been witnessed before. Instead
of using expert knowledge Atlas [16] proposes a sequence-based learning approach
for generating this signatures.

Anomaly-based intrusion detection is based on the assumption that intrusions re-
sult in observable changes in behavior. Anomaly detection techniques construct a
model of normal behavior by observing the operation of a system during a training
phase. This model can subsequently be used to detect anomalies during the detection
phase, i.e., the operational phase of the IDS. During this phase, observed behaviors
that deviate from the trained model are anomalies. The strength of anomaly detection
is its potential to detect novel attacks. Its drawbacks include: (a) it can be difficult to
control false alert rates, since anomalies can occur in the absence of attacks, especially
because the training phase is rarely sufficient to capture all legitimate behaviors; and,
(b) the alerts from an anomaly detector don’t provide specific information that can
identify an attack. StreamSpot [99] and Unicorn [57] train on benign data to
identify deviations and detect such anomalous behaviors. Specification-based tech-
niques have the potential to detect novel attacks while holding down false positives,
but they require application-specific behavior specifications that are time-consuming
to develop.

14

2.2.1 Alarm Clustering

Alarm clustering is just that: define some notion of distance between alarms, and
combine the alarms that are very close to each other into a cluster. One obvious
dimension for the distance metric is time: we only cluster alarms that are temporally
close to each other. More generally, if two alerts X and Y are characterized by a
name and a set of attributes, then alerts to be clustered will share many of the same
attributes, say, a1, ..., an, and for each of these attributes, the values of X[ai] and
Y [ai] will be “close.”

We still need to define what it means for two attribute values to be close. Numeric
difference may be a good measure for some attributes. For others, such as an IP
address, a hamming distance may be a good measure of distance: two hosts on
the same class C network will have a hamming distance less than 8. But in other
instances, the notion of distance may be less structured. For instance, a certain small
set of IP addresses may be associated with the DMZ of an organization’s network,
and hence these attribute values would be considered “close” for clustering purposes,
even though the IP addresses themselves may be far apart. One way to capture this
is to define a generalization hierarchy, and define distance in terms of shortest path
in the tree between two nodes [68].

Some times, attributes (or collections of attributes) with different names may be
considered close to each other. For instance, different sensors may observe different
attributes [79], e.g., a network sensor may observe IP addresses and ports, while at
the system-call layer, events are described in terms of userids, process ids, and so
on. Some external help/information is needed so as to correlate the two views, or
equivalently, to define a notion of distance between attributes with different names.

The main approaches, often used together, are clustering of similar alerts, prior-
itization, and statistical correlation [41, 68, 79, 115, 117, 121, 128, 154]. Industry
tools also use similar techniques in building SIEMs [5, 7, 11] for alarm clustering
and enforcement based on disparate logs. RapSheet [59] performs alarm clustering
based on the TTPs generated by the EDR systems.

These techniques exploit structural similarities between alerts (e.g., common IP
addresses, ports, etc.) and temporal proximity for correlation. In addition, some
techniques rely on manually specified prerequisites and consequences of attack steps
[114], or models that capture typical progression of attacks [56]. For multi-stage
attacks, provenance provides a more principled (and often, far more accurate) basis
to correlate and cluster attack steps [72, 165]. For this reason, recent works have
come to rely on provenance to correlate attack steps.

2.3 Forensic Analysis and Dependence Explosion

Forensic analysis is concerned with the questions of what, when and how. The what
question concerns the origin of a suspected attack, and the entities that have been

15

impacted during an attack. The origin can be identified using backward analysis,
starting from an entity flagged as suspicious, and tracing backward in the graph.
This analysis, first proposed in BackTracker [72], uses event timestamps to focus on
paths in provenance graphs that represent causal chains of events. In Figure 2.1 A
backward analysis from file C at time 5 will identify P and a.com. Of these, a.com is
a source node, i.e., an object with no parent nodes, and hence identified as the likely
entry point of any attack on C.

Although b.com is backward reachable from C in the standard graph-theoretic
sense, it is excluded because the path from b.com to C does not always go forward
in time.

The set of entities impacted by the attack can be found using forward analysis
[17, 73, 170] (a.k.a. impact analysis), typically starting from an entry point identified
by backward analysis. In the sample provenance graph, forward analysis from network
connection a.com will reach all nodes in the graph, while a forward analysis from
b.com will leave out C.

The when question asks when each step in the attack occurred. Its answer is
based on the timestamps of edges in the subgraph computed by forward and backward
analyses. The how question is concerned with understanding the steps in an attack
in sufficient detail. To enable this, audit logs need to capture all key operations (e.g.,
important system calls), together with key arguments such as file names, IP addresses
and ports, command-line options to processes, etc.

2.3.1 Coarse-grained Tracking

Several logging and provenance tracking systems have been built to monitor the
activities of a system [21, 33, 52, 54, 55, 108, 123] and build provenance graphs.
Among these, Backtracker [72, 73] was one of the first works that used dependence
graphs to trace back to the root causes of intrusions. These graphs are built by
correlating coarse grained events collected by a logging system and by determining
the causality among system entities, to help in forensic analysis after an attack is
detected. Hercule [121] uses community discovery techniques to correlate attack
steps that may be dispersed across multiple logs. Another key issue with these works
on attack investigation [55, 72, 73, 165] and provenance [52, 54, 108, 123] is that they
suffer from dependence explosion problem.

Holmes [105] aims for a much higher level summary of an APT campaign. In-
dividual steps are recognized using a hybrid approach that combines motive and
mean-style detection policies with signatures based on MITRE’s Adversarial Tactics,
Techniques and Common Knowledge Base (ATT&CK) [106]. It relies on information
flow to link these steps and construct a high-level scenario graph (HSG) that maps
the attacker’s actions to the APT kill-chain [8]. To mitigate dependence explosion,
Holmes discards paths with a path factor greater than 3. Path factor is more so-
phisticated than MORSE’s attenuation, but shares the same rationale, i.e., objects

16

serve as imperfect intermediaries for propagating malicious behavior. At the same
time, there is no equivalent of MORSE’s decay in Holmes.

PrioTracker [92] speeds up forward analysis by using a prioritized graph explo-
ration that assigns higher priority to edges representing unusual events. NoDoze [60]
improves on it by prioritizing entire paths based on rareness, rather than individual
events. Only such rare paths are presented to the analyst, together with the alerts
raised on those paths. The main drawback of both approaches is their assumption
that processes involved in attacks, including those that may be running attacker’s
own malware, will exhibit unusual behavior. However, attackers have a great deal
of control over their malware, and can alter their behavior to blend in with benign
background activity.

2.3.2 Fine-grained Tracking

Fine-grained taint tracking [18, 65, 66, 70, 83, 113, 159, 160] avoids dependence explo-
sion by accurately tracking the source of each output byte to a single input operation
(or a few). Although these techniques can be evaded by malware [36], they are very
effective in mitigating dependence explosion that typically involves benign applica-
tions such as browsers. However, they have a high performance cost, slowing down
programs by 2x to 10x or more. Beep [86], ProTracer [98] and MPI [97] developed
a novel and efficient mechanism called execution-partitioning, targeting applications
such as servers and web browsers that are prone to dependence explosion. MCI [84]
and ProPatrol [103] perform fine-grained taint tracking using model-based infer-
ence. Unfortunately, these techniques can require some manual assistance, and more-
over, make optimistic assumptions about program behavior that may not hold under
attacks. The main drawback of all fine-grained tracking approaches is the need for
extensive instrumentation of applications. Since vendors don’t ship their application
with such instrumentation, fine-grained taint tracking is not an option for enterprises.

2.4 Information Flow Control (IFC)

IFC techniques assign security labels and propagate them in a manner similar to
our tags. Early works, such as Bell-LaPadula [24] and Biba [30], relied on strict
policies. These strict policies impact usability and hence have not found favor among
contemporary OSes. Although IFC is available in SELinux [94], it is not often used,
as users prefer its access control framework based on domain-and-type enforcement.
While most above works centralize IFC, decentralized IFC (DIFC) techniques [44,
77, 164] emphasize the ability of principals to define and create new labels. This
flexibility comes with the cost of nontrivial changes to application and/or OS code.

Although our tags are conceptually similar to those in IFC systems, the central
research challenges faced in these systems are very different from SLEUTH. In par-
ticular, the focus of IFC systems is enforcement and prevention. A challenge for

17

IFC enforcement is that their policies tend to break applications. Thus, most re-
cent efforts [90, 91, 100, 139, 140, 141, 142, 143] in this regard focus on refinement
and relaxation of policies so that compatibility can be preserved without weakening
security. In contrast, neither enforcement nor compatibility pose challenges in our
setting. On the other hand, IFC systems do not need to address the question of what
happens when policies are violated. Yet, this is the central challenge we face: how
to distinguish attacks from the vast number of normal activities on the system; and
more importantly, once attacks do take place, how to tease apart attack actions from
the vast amounts of audit data.

2.5 Threat Hunting

The techniques described above are geared at automating forensic analysis of APT
campaigns without requiring prior knowledge about them. It is to be expected that
fully automated approaches may fail at times, so organizations have to rely on human
experts as their second line of defense. These experts need to “hunt down” attacks,
based on their past experience, reports on recent vulnerabilities and exploits, the
configuration of the victim’s network, and most importantly, the alerts emitted by
detectors deployed in the organization. Researchers have begun to build tools and
frameworks to assist such threat hunting efforts. Gao et al. [50, 51] present query
languages for threat hunters, and a system for processing their queries. Shu et al.
[135] model threat hunting as a graph computation problem, and present a domain-
specific language that simplifies the development of custom graph searches.

Instead of a manual approach, Poirot [104] aims to automate searches for attacks
that have been seen before, e.g., in threat intelligence reports. These known attacks
are described using query graphs. They develop efficient approximate graph matching
algorithms to match query graphs against the data from audit logs.

18

Chapter 3

Techniques for Space-Efficient
Representation of Provenance
Graphs

In this chapter we discuss some of the techniques we developed in [63] on how to solve
the issue of dependency changing over time in provenance graphs. We also present
space efficient in-memory representation techniques so that our systems can store the
entire provenance graph in memory for the entire duration of an APT attack. This
allows for faster forensic analysis.

3.1 Versioned Graph

Provenance of processes or files rely on global properties of graph reachability. Such
global properties are expensive to compute, taking time that can be linear in the size
of the (very large) provenance graph. Moreover, due to the use of timestamped edges,
provenance changes over time and hence must be computed many times. This mu-
tability also means that results cannot be computed once and cached for subsequent
use, unlike standard graphs, where we can determine once that v is a descendant of
u and reuse this result in the future.

To overcome these computational challenges posed by timestamped graph, we
show how to transform them into standard graphs. The basic idea is to construct
a graph in which objects as well as subjects are versioned. Versioning is widely
used in many domains, including software configuration management, concurrency
control, file systems [109, 129] and provenance [21, 107, 108, 119]. In these domains,
versioning systems typically intervene to create file versions, with the goal of increased
recoverability or reproducibility. In contrast, we operate in a forensic setting, where
we can only observe the order in which objects (as well as subjects) were accessed.
Provenance capture systems may additionally intervene to break cyclic dependencies
[107, 108], since cyclic provenance is generally considered meaningless.

19

Our goal is to (a) make sound inferences about dependencies through these obser-
vations, and (b) encode these dependencies in a standard (rather than time-stamped)
graph. This encoding serves as the basis for developing efficient algorithms for log
reduction. Specifically, we make the following contributions:

� Efficient reduction algorithms. By working with versioned graphs, we achieve
algorithms that typically take constant time per event. In our experiments, we
were able to process close to a million events per second on a single-core on a
typical laptop computer. In contrast, on timestamped graphs that would be
unacceptably slow1.

� Minimizing the number of versions. We present several optimization techniques
in Section 3.1.4 to reduce the number of versions. Whereas naive version gener-
ation leads to an explosion in the number of versions, our optimizations are very
effective, bringing down the average number of versions per object and subject
to about 1.3.

� Avoiding spurious dependencies. While it is important to reduce the space over-
head of versions, this should not come at the cost of inaccurate forensic analysis.
We therefore establish formally that results of forensic analysis (specifically, for-
ward and backward analyses) are fully preserved by our reduction.

� Optimality. We show that edges and versions retained by our reduction algo-
rithm cannot be removed without introducing spurious dependencies.

An interesting aspect of our work is that we use versioning to reduce storage and
runtime, whereas versioning is normally viewed as a performance cost to be paid for
better recoverability or reproducibility. Using versioning, we realize algorithms that
are both faster and use less storage than their unversioned counterparts. Specifically,
we realize substantial reduction in the size of the provenance graph by relying on
versioning.

3.1.1 Dependence Preserving Reductions

We define a reduction of a time-stamped dependence graph G to be another graph
G′ that contains the same nodes but a subset of the events. Such a reduction may
remove “redundant” events, and/or combine similar events. As a result, some events
in G may be dropped in G′, while others may be aggregated into a single event. When
events are combined, their timestamps are coalesced into a range that (minimally)
covers all of them.
A log reduction needs to satisfy the following conditions:

1In order to determine if an edge e is redundant, we would potentially have to consider every
path in the graph containing e; the number of such paths can be exponential in the size of the graph.

20

� it won’t change forensic analysis results, and

� it won’t affect our understanding of the results.

To satisfy the second requirement, we apply reductions only to read, write2, and load
events. All other events, e.g., fork, execve, remove, rename and chmod, are preserved.
Despite being limited to reads, writes and loads, our reduction techniques are very
effective in practice, as these events typically constitute over 95% of total events.

For the first requirement, our aim is to preserve the results of forward and back-
ward forensic analysis. We ensure this by preserving forward and backward reacha-
bility across the original graph G and the reduced graph G′. We begin by formally
defining reachability in these graphs.

3.1.2 Reachability in time-stamped dependence graphs

Dependence graph G is a pair (V,E) where V denotes the nodes in the graph and E
denotes a set of directed edges. Each edge e is associated with a start time start(e)
and an end time end(e). Reachability in this graph is defined as follows:

Definition 1 (Causal Path and Reachability). A node v is reachable from another
node u if and only if there is (directed) path e1, e2, . . . , en from u to v such that:

∀1 ≤ i < n start(ei) ≤ end(ei+1) (3.1)

We refer to a path satisfying this condition as a causal path. It captures the
intuition that information arriving at a node through event ei can possibly flow out
through the event ei+1, i.e., successive events on this path e1, e2, . . . , en can be causally
related. In Fig. 2.1, the path consisting of edges with timestamps 1, 6, 8 and 11 is
causal, so L is reachable from a.com. In contrast, the path corresponding to the
timestamp sequence 4, 3 is not causal because the first edge occurs later than the
second. Hence C is unreachable from b.com.

In forensics, we are interested in reachability of a node at a given time, so we
extend the above definition as follows:

Definition 2 (Forward/Backward Reachability at t).

� A node v is forward reachable from a node u at time t, denoted u@t −→ v, iff
there is a causal path e1, e2, . . . , en from u to v such that t ≤ end(ei) for all i.

� A node u is said to be backward reachable from v at time t, denoted u −→ v@t,
iff there is a causal path e1, e2, . . . , en from u to v such that t ≥ start(ei) for all
i.

2There can be many types of read or write events, some used on files, others used on network
sockets, and so on. For example, Linux audit system can log over a dozen distinct system calls used
for input or output of data. For the purposes of this description, we map them all into reads and
writes.

21

Intuitively, u@t −→ v means u’s state at time t can impact v. Similarly, u −→ v@t
means v’s state at t can be caused/explained by u. In Fig. 2.1, P@6 −→ Q, but
P@11 6−→ Q. Similarly, a.com −→ C@3 but b.com 6−→ C@3.

3.1.3 Naive Versioned Dependence Graphs

The simplest approach for versioning is to create a new version of a node whenever
it gets a new incoming edge, similar to creating a new file version each time the file
is written. Fig. 3.1 shows an example of an unversioned graph and its corresponding
naive versioned graph. Versions of a node are stacked vertically in the example so as
to make it easier to see the correspondence between nodes in the timestamped and
versioned graphs.

Note that timestamps in versioned graphs are associated with nodes (versions),
not with edges. A version’s start time is the start time of the event that caused its
creation. We show this time using a superscript on the node label.

F S G T2

3

5

4

6

5

S0F 0

S2

G0

G3

G5

T 0

T 4

T 6

Figure 3.1: A timestamped graph and equivalent naive versioned graph.

Algorithm for naive versioned graph construction

We treat the contents of the audit log as a timestamped graph G = (V,ET). The
subscript T on E is a reminder that the edges are timestamped. The corresponding
(naive) versioned graph G = (V,E) is constructed using the algorithm shown below.
Without loss of generality, we assume that every edge in the audit log has a unique
timestamp and/or sequence number. We denote a directed edge from u to v with
timestamp t as a triple (u, v, t). Let u<t denote the latest version of u in the versioned
graph before t.

We intend BuildV er and its optimized versions to be online algorithms, i.e., they
need to examine edges one-at-a-time, and decide immediately whether to create a
new version, or to add a new edge.

22

1.BuildV er(V,ET)
2. V = {v0|v ∈ V }; E = {};
3. for each (u, v, t) ∈ ET

4. add vt to V
5. add (u<t, vt) to E
6. add (v<t, vt) to E
7. return (V,E)

For each entity v, an initial version v0 is added to the graph at line 2.3 The for-
loop processes log entries (edges) in the order of increasing timestamps. For an edge
(u, v) with timestamp t, a new version vt of the target node v is added to the graph
at line 4. Then an edge is created from the latest version of u to this new node (line
5), and another edge created to link the last version of v to this new version (line 6).

Forensic analysis on versioned graphs

In a naive versioned graph, each object and subject gets split into many versions, with
each version corresponding to the time period between two consecutive incoming edges
to that entity in the unversioned graph. To flag an entity v as suspicious at time t, the
analyst marks the latest version v≤t of v at or before t as suspicious. Then the analyst
can use standard graph reachability in the versioned graph to perform backward and
forward analysis. For the theorem and proof, we use the notation v<∞ to refer to the
latest version of v so far. In addition, we make the following observation that readily
follows from the description of BuildV er.

Observation 3. For any two node versions ut and us, there is a path from ut to us

if and only if s ≥ t.

Theorem 4. Let G = (V,E) be the versioned graph constructed from G = (V,ET).
For all nodes u, v and times t:

� v is forward reachable from u@t iff there is a simple path in G from u≤t to v<∞;
and

� u is backward reachable from v@t iff there is a path in G from u0 to v≤t.

Proof: For uniformity of notation in the proof, let t = t0, u = w0 and v = wn. The
definition of reachability in timestamped graphs (specifically, Definitions 1 and 2),
when limited to instantaneous events, states that w0@t −→ wn holds in G if and only
if there is a path

(w0, w1, t1), (w1, w2, t2), . . . , (wn−1, wn, tn)

3This is a logical simplification — in reality, initial version of v will be added to the graph at the
first occurrence of v in the audit stream.

23

in G such that ti−1 ≤ ti for 1 ≤ i ≤ n. For each timestamped edge (wi−1, wi, ti),
BuildV er adds a (standard) edge (w<ti

i−1, w
ti
i) to G. In addition, by Observation 3,

there is a path from wti
i to w

<ti+1

i . Putting these edges and paths together, we can
construct a path in G from w<t0

0 to wtn
n . Also, by Observation 3, there is a path from

wtn
n to w<∞

n . Putting all these pieces together, we have a path from w<t0
0 = u<t0 to

w<∞
n = v<∞. A path from u<t0 to v<∞ clearly implies a path from u≤t0 to v<∞, thus

satisfying the “only if” part of the forward reachability condition.
Note that the “only if” proof constructed a one-to-one correspondence between

the paths in G and G. This correspondence can be used to establish the “if” part of
the forward reachability condition as well.

The proof of the backward reachability condition follows the same steps as the
proof of forward reachability, so we omit the details.

3.1.4 Optimized Versioning

Naive versioning is simple but offers no benefits in terms of data reduction. In fact,
it increases storage requirements. In this section, we introduce several optimizations
that reduce the number of versions and edges. These optimizations cause node times-
tamps to expand to an interval. A node v with timestamp interval [t, s] will be
denoted vt,s.

Redundant edge optimization (REO)

Before adding a new edge between u and v, we check if there is already an edge from
the latest version of u to some version of v. In this case, the new edge is redundant:
in particular, reachability is unaffected by the addition of the edge, so we discard the
edge. This also means that no new version of v is generated. Specifically, consider
the addition of an event (u, v, t) to the graph. Let ur,s be the latest version of u.
We check if there is already an edge from ur,s to an existing version of v. If so, we
simply discard this event. We leave the node timestamp unchanged. Thus, for a node
ur,s ∈ G, r represents the timestamp of the first edge coming into this node, while s
represents the timestamp of the last. Alternatively, r denotes the start time of this
version, while s denotes the last time it acquired a new incoming edge (i.e., an edge
that wasn’t eliminated by a reduction operation). Fig. 3.2 illustrates redundant edge
(REO) optimization.

Global redundant edge optimization (REO*)

With REO, we check whether there is already a direct edge from u to v before deciding
to add a new edge. With REO*, we generalize to check whether u is an ancestor of
v. Specifically, before adding an event (u, v, t) to the graph, we check whether the

24

S0F 0

S2

G0

G3

G5

T 0

T 4

T 6

S0F 0

S2

G0

G3

T 0

T 4

F 0 S0,2 G0,3 T 0,4

Figure 3.2: The naive versioned graph from Fig. 3.1 (top), and the result of applying
redundant edge optimization (REO) (middle) and then redundant node optimization
(RNO) (bottom) to it. When adding the edge (S,G, 5), we find that there is already
an edge from the latest version S2 of S to G, so we skip this edge. For the same
reason, the edge (G, T, 6) can be skipped, and this results in the graph shown in
the middle. For the bottom graph, note that when adding the edge (F, S, 2), S has
no descendants, so we simply update S0 by S0,2, and avoid the generation of a new
version. For the same reason, we can update G0 and T 0 as well, resulting in the graph
at the bottom.

25

latest version of u is already an ancestor of the latest version of v. If so, we simply
discard the event.

The condition in REO* optimization is more expensive to check: it may take time
linear in the size of the graph. Also, it did not lead to any significant improvement
over REO in our experiments, so we did not evaluate it in detail. However, it is of
conceptual significance because the resulting graph is optimal with respect to FD,
i.e., any further reduction would violate FD-preservation.

Redundant node optimization (RNO)

The goal of this optimization is to avoid generating additional versions if they aren’t
necessary for preserving dependence. We create a new version vs of a vertex because,
in general, the descendants of vs could be different from those of vl, the latest version
of v so far. If we overzealously combine vl and vs, then a false dependency will be
introduced, e.g., a descendant of vl may backtrack to a node that is an ancestor of
vs but not vl. This possibility exists as long as (a) the ancestors of vl and vs aren’t
identical, and (b) vl has non-zero number of descendants. We already considered (a)
in designing REO optimizations described above, so we consider (b) here. Note that
RNO needs to be checked only on edges that aren’t eliminated by REO(or REO*).

Specifically, let vr,s be the latest version of v so far. Before creating a new version
of v due to an event at time t, we check whether vr,s has any outgoing edge (i.e., any
descendants). If not, we replace vr,s with vr,t, instead of creating a new version of ve
Fig. 3.2 illustrates the result of applying this optimization.

RNO preserves dependence for descendants of v, but it can change backward
reachability of the node v itself. For instance, consider the addition of an edge at
time t from up,q to vr,s. This edge is being added because it is not redundant, i.e., a
backward search from v@s does not reach up,q. However, when we add the new edge
and update the timestamp to vr,t, there is now a backward path from v@s to up,q.
The simplest solution is to retain the edge timestamp on edges added with RNO, and
use them to prune out false dependencies.4

Cycle-Collapsing Optimization (CCO)

Occasionally, cyclic dependencies are observed, e.g., a process that writes to and
reads from the same file, or two processes that have bidirectional communication.
As observed by previous researchers [107, 108], such dependencies can lead to an
explosion in the number of versions. The typical approach is to detect cycles, and
treat the nodes involved as an equivalence class. A simple way to implement this
approach is as follows. Before adding an edge from a version ur to vs, we check if

4Note that these timestamps need to be used only when an edge added with RNO is the first
hop in a backward traversal. If a node v subject to RNO gets a child x, this child would have been
added after the end timestamp of v. So, when we do a backward traversal from x, all parents of v
should in fact be backward reachable.

26

there is a cycle involving u and v. If so, we simply discard the edge. Our experimental
results show that cycle detection has a dramatic effect on some data sets.

Cycle detection can take time linear in the size of the graph. Since the dependence
graph is very large, it is expensive to run full cycle detection before the addition of
each edge. Instead, our implementation only checks for cycles involving two entities.
We found that this was enough to address most sources of version explosion. An
alternative would be to search for larger cycles when a spurt in version creation is
observed.

Effectiveness of the optimizations

REO and RNO optimizations avoid new versions in most common scenarios that lead
to an explosion of versions with naive versioning:

� Output files: Typically, these files are written by a single subject, and not read
until the writes are completed. Since all the write operations are performed by
one subject, REO avoids creating multiple versions. In addition, all the write
operations are combined.

� Log files: Typically, log files are written by multiple subjects, but are rarely
read, and hence by RNO, no new versions need to be created.

� Pipes: Pipes are typically written by one subject and read by another. Since
the set of writers does not change, a single version is sufficient, as a result of
REO. Moreover, all the writes on the pipe can be combined into one operation,
and so can all the reads.

We found that most savings were obtained by REO, RNO, and CCO. As mentioned
above, REO* is more significantly more expensive than REO and provided little addi-
tional benefit. Another undesirable aspect of REO* (as well as the SD optimization)
is that it may change the paths generated during a backward or forward analysis.
Such changes have the potential to make attack interpretation more difficult. In
contrast, REO, RNO and CCO preserve all cycle-free paths.

3.1.5 Dependency-Preserving Reductions

We have introduced some optimization in the previous section but what do these
optimizations actually achieve? Also, how optimal are these techniques? To answer
these questions we first present three dependency preserving reduction techniques
based on reachability according to Definitions 1 and 2.

Continuous dependence (CD) preservation

This reduction aims to preserve forward and backward reachability at every instant
of time.

27

Definition 5 (Continuous Dependence Preservation). Let G be a dependence graph
and G′ be a reduction of G. G′ is said to preserve continuous dependence iff forward
and backward reachability is identical in both graphs for every pair of nodes at all
times.

In Fig. 3.3, S reads from a file F at t = 2 and t = 4, and writes to another file F ′

at t = 3 and t = 6. Based on the above definition, continuous dependence is preserved
when the reads by S are combined, as are the writes, as shown in the lower graph.

F S F ′
2

4

3

6

F S F ′[2, 4] [3, 6]

Figure 3.3: Reduction that preserves continuous dependence.

Fig. 3.4 shows a reduction that does not preserve continuous dependence. In the
original graph, F@3 6−→ H: the earliest time F@3 can affect S is at t = 4, and this
effect can propagate to F ′@6, but by this time, the event from F ′ to H has already
terminated. In contrast, in the reduced graph, F@3 affects H@5.

F S F ′ H
2

4

3

6

5

F S F ′ H[2, 4] [3, 6] 5

Figure 3.4: Reduction that violates continuous dependence.

Full Dependence (FD) Preservation

CD does not permit the reduction in Fig. 3.4, because it changes whether the state of
F at t = 3 propagates to H. But does this difference really matter in the context of
forensic analysis? To answer this question, note that there is no way for F to become
compromised at t = 3 if it was not already compromised before. Indeed, there is no
basis for the state of F to change between t = 0 and t = 6 because nothing happens
to F during this period.

More generally, subjects and objects don’t spontaneously become compromised.
Instead, compromises happen due to input consumption from a compromised entity,

28

such as a network connection, compromised file, or user5. This observation implies
that keeping track of dependencies between entities at times strictly in between events
is unnecessary, because nothing relevant changes at those times. Therefore, we focus
on preserving dependencies at times when a node could become compromised, namely,
when it acquires a new dependency.

Formally, let Anc(v, t) denote the set of ancestor nodes of v at time t, i.e., they
are backward reachable from v at t.

Anc(v, t) = {u | u −→ v@t}.

Let NewAnc(v) be the set of times when this set changes, i.e.:

NewAnc(v) = {t | ∀t′ < t, Anc(v, t) ⊃ Anc(v, t′)}.

We define NewAnc(v) to always include t = 0.

Definition 6 (Full Dependence (FD) Preservation). A reduction G′ of G is said to
preserve full dependence iff for every pair of nodes u and v:

� forward reachability from u@t to v is preserved for all t ∈ NewAnc(u), and

� backward reachability of u from v@t is preserved at all t.

In other words, when FD-preserving reductions are applied:

� the result of backward forensic analysis from any node v will identify the exact
same set of nodes before and after the reduction.

� the result of forward analysis carried out from any node u will yield the exact
same set of nodes, as long as the analysis is carried out at any of the times when
there is a basis for u to get compromised.

To illustrate the definition, observe that FD preservation allows the reduction in
Fig. 3.4, since
(a) backward reachability is unchanged for every node, and
(b) NewAnc(F) = {0}, and F@0 flows into S, F ′ and H in the original as well as
the reduced graphs.

5We aren’t suggesting that a compromised process must immediately exhibit suspicious behavior.
However, in order to fully investigate the extent of an attack, forensic analysis needs to focus on the
earliest time a node could have been compromised, rather than the time when suspicious behavior is
spotted. Otherwise, the analysis may miss effects that may have gone unnoticed between the time
of compromise and the time suspicious behavior was observed.

29

Source Dependence (SD) Preservation

We consider further relaxation of dependence preservation criteria in order to support
more aggressive reduction, based on the following observation about the typical way
forensic analysis is applied. An analyst typically flags an entity as being suspicious,
then performs a backward analysis to identify likely root causes. Root causes are
source nodes in the graph, i.e., nodes without incoming edges. Source nodes represent
network connections, preexisting files, processes started before the audit subsystem,
plugable media devices, and user (e.g., terminal) input. Then, the analyst performs
an impact (i.e., forward) analysis from these source nodes. To carry out this task
accurately, we need to preserve only information flows from source nodes; preserving
dependencies between all pairs of internal nodes is unnecessary.

Definition 7 (Source Dependence (SD) Preservation). A reduction G′ of G is said
to preserve source dependence iff for every node v and a source node u:

� forward reachability from u@0 to v is preserved, and

� backward reachability of u from v@t is preserved at all t.

Note that SD coincides with FD applied to source nodes. The second conditions
are, in fact, identical. The first conditions coincide as well, when we take into account
that NewAnc(u) = {0} for any source node u. (A source node does not have any
ancestors, but since we have defined NewAnc to always include zero, NewAnc of
source nodes is always {0}.)

Fig. 3.5 shows a reduction that preserves SD but not FD. In the figure, F and F ′

are two distinct files, while S, S ′ and S ′′ denote three distinct processes. Note that
FD isn’t preserved because a new flow arrives at S ′ at t = 2, and this flow can reach
F ′ in the original graph but not in the reduced graph. However, SD is preserved
because the reachability of S, S ′, S ′′ and F ′ from the source node F is unchanged.

F

S S ′ S ′′

F ′

F

S S ′ S ′′

F ′

1 2 3

4 5 6

1 2 3

4

Figure 3.5: Source dependence preserving reduction.

30

Efficient Computation of Reductions

Using the optimizations on versioned graph discussed earlier we can efficiently perform
reduction for FD and SD preservation. The naive versioning technique creates a new
version of node with every new incoming edge. But based on the definition of FD an
SD these is redundant. If a node v has no descendant there is no need for creating a
new version of the node.

Naive versioning also retains every single edge in the dependency graph which
is also redundant for FD and SD preservation. REO(or REO*) only adds an edge
between two nodes u and v if u is not an ancestor of v for FD preservation. In case
of SD the edge between node u and v is added only if it changes the sources that are
backward reachable from v.

In our paper [63], we formally prove that BuildVer, together with REO, RNO,
and CCO optimizations, preserves both full dependence (FD) and source dependence
(SD).

3.2 Compact Representation of Reduced Logs

Logs in their original format e.g., Linux audit records aren’t space-efficient, so we
developed a simple yet compact format called CSR. CSR stands for Common Semantic
Representation, signifying that a unified format is used for representing audit data
from multiple OSes, such as Linux and Windows. Translators can easily be developed
to translate CSR to standard log formats, so that standard log analyzers, or simple
tools such as grep, can be used.

In CSR, all subjects and objects are referenced using a numeric index. Complex
data values that get used repeatedly, such as file names, are also turned into indices.
A CSR file begins with a table that maps strings to indices. Following this table is a
sequence of operations, each of which correspond to the definition of an object (e.g.,
a file, network connection, etc.) or a forensic-relevant operation such as open, read,
write, chmod, fork, execve, etc.

Each operation record consist of abbreviated operation name, arguments (mostly
numeric indices or integers), and a timestamp. All this data is represented in ASCII
format for simplicity. Standard file compression can be applied on top of this format
to obtain further significant size reduction, but this is orthogonal to our work.

3.3 Compact Main Memory Representation

A commonly suggested approach for forensic analysis is to store the provenance graph
in a graph database. The database’s query capabilities can then be used to perform
backward or forward searches, or any other custom forensic analysis. Graph databases
such as OrientDB, Neo4j and Titan are designed to provide efficient support for graph

31

queries, but experience suggests that their performance degrades dramatically on
graphs that are large relative to main memory. For instance, a performance evaluation
study on graph databases [102] found that they are unable to complete simple tasks,
such as finding shortest paths on graphs with 128M edges, even when running on
a computer with 256GB main memory and sufficient disk storage. Log reduction
techniques can help, but may not be sufficient on their own. Over the span of an
APT (many months or a year), graph sizes can approach a billion edges even after
log reduction.

Forensic analysis requires queries over the provenance graph, e.g., finding shortest
path(s) to the entry node of an attack, or a depth-first search to identify impacted
nodes. The graph contains roughly the same information that might be found in
Linux audit logs. In particular, the graph captures information pertaining to most
significant system calls. Key argument values are stored (e.g., command lines for
execve, file names, and permissions), while the rest are ignored (e.g., the contents of
buffers in read and write operations).

Nodes in the provenance graph correspond to subjects and objects. Nodes are
connected by bidirectional edges corresponding to events (typically, system calls). To
obtain a compact representation, subjects, objects, and most importantly edges must
be compactly encoded. Edges typically outnumber nodes by one to two orders of
magnitude, so compactness of edges is paramount.

The starting point for our compact memory representation is to use compact
identifiers for referencing nodes and node attributes. Also using versioned graphs
and the optimizations described in Section 3.1 to achieve compactness helps improve
performance.

Specifically, the main techniques we rely on to reduce memory use are:

� Edge reductions: The biggest source of compaction is the redundant edge opti-
mization. Savings are also achieved because we don’t need timestamps on most
edges. Instead, timestamps are moved to nodes (subject or object versions).
This enables most stored edges to use just 6 bytes in our implementation, en-
coding an event name and about a 40-bit subject or object identifier.

� Node reductions: The second biggest source of compaction is node reduction,
achieved using RNO and CCO optimizations. In addition, our design divides
nodes into two types: base versions and subsequent versions. Base versions
include attributes such as name, owner, command line, etc. New base versions
are created only when these attributes change. Attribute values such as names
and command lines tend to be reused across many nodes, so we encode them
using compact ids. This enables a base version to be stored in 32 bytes or less.

� Compact representation for versions: Subsequent versions derived from base
versions don’t store node attributes, but just the starting and ending times-
tamps. By using relative timestamps and sticking to a 10ms timestamp granu-

32

larity6, we are able to represent a timestamp using 16-bits in most cases. This
enables a version to fit within the same size as an edge, and hence it can be
stored within the edge list of a base version. In particular, let S be the set of
edges occurring between a version v and the next version appearing in the edge
list. Then S is the set of edges incident on version v in the graph.

Edge lists are maintained as vectors that can grow dynamically for active nodes (i.e.,
running processes and open files) but are frozen at their current size for inactive
nodes. This technique, together with the technique of storing versions within the
edge list, reduces fragmentation significantly. As a result, we achieve a very compact
representation that often takes just a few bytes per edge in the original data.

3.4 Evaluation

3.4.1 Data Sets

Our evaluation uses data from live servers in a small laboratory, and from a red team
evaluation led by a government agency. We describe these data sets below.

Data from Red Team Engagement

This data was collected as part of the 2nd adversarial engagement organized in the
DARPA Transparent Computing program. Several teams were responsible for in-
strumenting OSes and collecting data, while our team (and others) performed attack
detection and forensic analysis using this data. The red team carried out attack cam-
paigns that extended over a period of about a week. The red team also generated
benign background activity, such as web browsing, emailing, and editing files.

Linux Engagement Data (Linux Desktop). Linux data (Linux Desktop) cap-
tures activity on an Ubuntu desktop machine over two weeks. The principal data
source was the built-in Linux auditing framework. The audit data was transformed
into a OS-neutral format by another team and then given to us for analysis. The data
includes all system calls considered important for forensic analysis, including open,
close, clone, execve, read, write, chmod, rm, rename, and so on. Table 3.1 shows the
total number of events in the data, along with a breakdown of important event types.
Since reads and writes provide finer granularity information about dependencies than
open/close, we omitted open/close from our analysis and do not include them in our
figures.

6This is the granularity typically available on most of our data sets.

33

Dataset
Total

Events
Read Write

Clone/
Exec

Other

Linux Desktop 72.6M 72.4% 26.2% 0.5% 0.9%
Windows Desktop 14.6M 77.1% 14.5% 1.2% 7.2%
SSH/File Server 14.4M 38.2% 58.3% 1.2% 2.3%

Web Server 2.8M 64.3% 30.3% 1.5% 3.9%
Mail Server 3M 70% 23.6% 1.7% 4.7%

Table 3.1: Data sets used in evaluation.

Windows Engagement Data (Windows Desktop). Windows data covers a
period of about 8 days. The primary source of this data is Event Tracing for Windows
(ETW). Events captured in this data set are similar to those captured on Linux.
The data was provided to us in the same OS-neutral format as the Linux data.
Nevertheless, some differences remained. For examples, network reads and network
writes were omitted (but network connects and accepts were reported). Also reported
were a few Windows-specific events, such as CreateRemoteThread. Registry events
were mapped into file operations. From Table 3.1, it can be seen that the system call
distribution is similar as for Linux, except for a much higher volume of “other” calls,
due to higher numbers of renames and removes.

Data From Laboratory Servers

An important benefit of the red team data is that it was collected by teams with
expertise in instrumenting and collecting data for forensic analysis. A downside is that
some details of their audit system configurations are unknown to us. To compensate
for this, we supplemented the engagement data sets with audit logs collected in our
research lab. Audit data was collected on a production web server, mail server, and
general purpose file and remote access server (SSH/File Server) used by a dozen users
in a small academic research laboratory. All of these systems were running Ubuntu
Linux. Audit data was collected over a period of one week using the Linux audit
system, configured to record open, close, read, write, rename, link, unlink, chmod,
etc.

3.4.2 Log Size Reduction

Table 3.2 shows the effectiveness of our techniques in reducing the on-disk size of
log data. The second column shows the size of the original data, i.e., Linux audit
data for laboratory servers, and OS-neutral intermediate format for red team en-
gagement data. The third column shows the reduction in size achieved by our CSR
representation7, before any reductions are applied.

7Recall that CSR is uncompressed, so there is room for significant additional reduction in size,
if the purpose is archival storage.

34

Dataset Size on CSR
Disk

Linux Desktop 12.9GB 5.6×
Windows Desktop 2.1GB 2.4×
SSH/File server 6.7GB 15.1×

Web server 1.3GB 13.3×
Mail server 1.2GB 11.9×

Average (Geometric mean) 8×

Table 3.2: Log size on disk. The second column reports the log size of original audit
data. The third column reports the factor of decrease in CSR log size on disk.

3.4.3 Dependence Graph Size

Table 3.3 illustrates the effect of different optimizations on memory use. On the
largest dataset (Linux desktop), our memory use with is remarkably low: less than
two bytes per event in the original data. On the other two larger data sets (Windows
desktop and SSH/file server), it increases to 3.3 to 6.8 bytes per event. The arithmetic
and geometric means (across all the data sets) are both less than 5 bytes/event.

Each event results in a forward and backward edge, each taking 6 bytes in our
implementation (cf. Section 3.3). Subtracting this 4.7M*12B = 56.4MB from the
111MB, we see that the 1.1M nodes occupy about 55MB, or about 50 bytes per node.
Recall that each node takes 32 bytes in our implementation, plus some additional
space for storing file names, command lines, etc. A similar analysis of Windows data
shows that about 2M events are stored occupying about 24MB, and that the 781K
nodes take up about 53B/node.

Dataset
Total No.
of Nodes

Total
Events

Memory
Usage(MB)

Linux Desktop 1.1M 72.6M 111

Windows Desktop 781K 10.3M 67

SSH/File Server 430K 14.4M 45

Web Server 141K 2.8M 16

Mail Server 189K 3M 21

Total 2.64M 103.1M 260

Table 3.3: Memory usage. The second column gives the total number of nodes in the
dependence graph before any versioning. The third column gives the total number of
events. The fourth column give the total memory usages after using the optimizations.
Average memory use across these data sets is less than 5 bytes/event.

35

Dataset
Versions per node
Naive Optimized

Linux Desktop 68.65 1.05

Windows Desktop 13.9 1.37

SSH/File Server 34.36 1.31

Web Server 20.62 1.29

Mail Server 16.20 1.32

Average 25.58 1.26

Table 3.4: Impact of naive and optimized versioning. Geometric means are reported
on the last row of the table.

Effectiveness of Version Reduction Optimizations

Table 3.4 shows the number of node versions created with the naive versioning algo-
rithm and our optimized algorithm. The second column shows that naive versioning
leads to a version explosion, with about 26 versions per node. However, optimization
versioning reduce the number versions by creating just about 1.3 versions per node,
on average.

Table 3.5 breaks out the effects of optimizations individually. Since some optimiza-
tions require other optimizations, we show the four most meaningful combinations:
(a) no optimizations, (b) all optimizations except redundant node (RNO), (c) all
optimizations except Cycle-Collapsing (CCO), and (d) all optimizations. When all
optimizations other than RNO are enabled, the number of versions falls to about 3.6×
from 25.6× (unoptimized). Enabling all optimizations except CCO leads to about 3
versions on average per node. Comparing these with the last column, we can con-
clude that RNO contributes about a 3× reduction and CCO a 2.4× reduction in the
number of versions, with the remaining 2.8× coming from REO. It should be noted
that REO and CCO both remove versions as well as edges, whereas RNO removes
only nodes.

Dataset
Versions per node

None No RNO No CCO All

Linux Desktop 68.65 4.56 17.75 1.05

Windows Desktop 13.9 2.60 1.38 1.37

SSH/File Server 34.36 4.32 2.21 1.31

Web Server 20.62 3.46 2.15 1.29

Mail Server 16.20 3.57 2.12 1.32

Average 25.58 3.63 3.01 1.26

Table 3.5: Effectiveness of different versioning optimizations. Geometric means are
reported on the last row of the table.

36

Chapter 4

Real-Time Attack Scenario
Reconstruction From COTS Audit
Data

In this chapter we present an approach and system for real-time reconstruction of
attack scenarios on an enterprise host called Sleuth. To meet the scalability and
real-time needs of the problem, we develop a platform-neutral, main-memory based,
dependency graph abstraction of audit-log data using the techniques discussed in the
previous chapter. We present efficient, tag-based techniques for attack detection and
reconstruction, including source identification and impact analysis. We also develop
methods to reveal the big picture of attacks by construction of compact, visual graphs
of attack steps.

4.1 Approach Overview and Contributions

Sleuth is OS-neutral, and currently supports Microsoft Windows, Linux and FreeBSD.
Audit data from these OSes is processed into a platform-neutral graph representa-
tion, where vertices represent subjects (processes) and objects (files, sockets), and
edges denote audit events (e.g., operations such as read, write, execute, and connect).
This graph serves as the basis for attack detection as well as causality analysis and
scenario reconstruction. Using the techniques discussed in chapter 3 we developed
a compact main-memory dependence graph representation. As mentioned earlier,
graph algorithms on main memory representation can be orders of magnitude faster
than on-disk representations, an important factor in achieving real-time analysis ca-
pabilities. In our experiments, we were able to process 79 hours worth of audit data
from a FreeBSD system in 14 seconds, with a main memory usage of 84MB. This
performance represents an analysis rate that is 20K times faster than the rate at
which the data was generated.

We introduce a tag-based approach for identifying subjects, objects and events

37

that are most likely involved in attacks. Tags enable us to prioritize and focus our
analysis, thereby addressing the second challenge mentioned above. Tags encode an
assessment of trustworthiness1 and sensitivity of data (i.e., objects) as well as processes
(subjects). This assessment is based on data provenance derived from audit logs. In
this sense, tags derived from audit data are similar to coarse-grain information flow
labels. Our analysis can naturally support finer-granularity tags as well, e.g., fine-
grained taint tags [113, 160], if they are available. Tags are described in more detail
in Section 4.2, together with their application to attack detection.

Next we have developed a novel algorithm that leverage tags for root-cause iden-
tification and impact analysis (Section 4.4). Starting from alerts produced by the
attack detection component, our backward analysis algorithm follows the dependen-
cies in the graph to identify the sources of the attack. Starting from the sources,
we perform a full impact analysis of the actions of the adversary using a forward
search. We present several criteria for pruning these searches in order to produce a
compact graph. We also present a number of transformations that further simplify
this graph and produce a graph that visually captures the attack in a succinct and
semantically meaningful way, e.g., the graph in Fig. 4.1. Experiments show that our
tag-based approach is very effective: for instance, Sleuth can analyze 38.5M events
and produce an attack scenario graph with just 130 events, representing five orders
of magnitude reduction in event volume.

We also introduce a customizable policy framework (Section 4.3) for tag initializa-
tion and propagation. Our framework comes with sensible defaults, but they can be
overridden to accommodate behaviors specific to an OS or application. This enables
tuning of our detection and analysis techniques to avoid false positives in cases where
benign applications exhibit behaviors that resemble attacks. (See Section 4.5.6 for
details.) Policies also enable an analyst to test out “alternate hypotheses” of attacks,
by reclassifying what is considered trustworthy or sensitive and re-running the analy-
sis. If an analyst suspects that some behavior is the result of an attack, they can also
use policies to capture these behaviors, and rerun the analysis to discover its cause
and impact. Since we can process and analyze audit data tens of thousands of times
faster than the rate at which it is generated, efficient, parallel, real-time testing of
alternate hypotheses is possible.

Our experimental evaluation (Section 4.5) is based mainly on a red team evalu-
ation organized by DARPA as part of its Transparent Computing program. In this
evaluation, attack campaigns resembling modern APTs were carried out on Windows,
FreeBSD and Linux hosts over a two week period. In this evaluation, Sleuth was
able to:

� process, in a matter of seconds, audit logs containing tens of millions of events

1In this chapter, we use the term trustworthiness tag in order to highlight its relationship to
whether we trust the sources influencing a node. Throughout the rest of this thesis, we have used
the term integrity because the term goes hand-in-hand with confidentiality. The terms integrity tag
and trustworthiness tag are interchangeable in this thesis.

38

generated during the engagement;

� successfully detect and reconstruct the details of these attacks, including their
entry points, activities in the system, and exfiltration points;

� filter away extraneous events, achieving very high reductions rates in the data
(up to 100K times), thus providing a clear semantic representation of these
attacks containing almost no noise from other activities in the system; and

� achieve low false positive and false negative rates.

Our evaluation is not intended to show that we detected the most sophisticated ad-
versary; instead, our point is that, given several unknown possibilities, the prioritized
results from our system can be right on spot in real-time, without any human assis-
tance. Thus, it really fills a gap that exists today, where forensic analysis seems to
be primarily initiated manually.

4.2 Tags and Attack Detection

We use tags to summarize our assessment of the trustworthiness and sensitivity of
objects and subjects. This assessment can be based on three main factors:

� Provenance: the tags on the immediate predecessors of an object or subject in
the dependence graph,

� Prior system knowledge: our knowledge about the behavior of important ap-
plications, such as remote access servers and software installers, and important
files such as /etc/passwd and /dev/audio, and

� Behavior: observed behavior of subjects, and how they compare to their ex-
pected behavior.

We have developed a policy framework, described in Section 4.3, for initializing and
propagating tags based on these factors. In the absence of specific policies, a default
policy is used that propagates tags from inputs to outputs. The default policy assigns
to an output the lowest among the trustworthiness tags of the inputs, and the highest
among the confidentiality tags. This policy is conservative: it can err on the side of
over-tainting, but will not cause attacks to go undetected, or cause a forward (or
backward) analysis to miss objects, subjects or events.

Tags play a central role in Sleuth. They provide important context for attack
detection. Each audited event is interpreted in the context of these tags to determine
its likelihood of contributing to an attack. In addition, tags are instrumental for
the speed of our forward and backward analysis. Finally, tags play a central role
in scenario reconstruction by eliminating vast amounts of audit data that satisfy
the technical definition of dependence but do not meaningfully contribute to our
understanding of an attack.

39

4.2.1 Tag Design

We define the following trustworthiness tags (t-tags):

� Benign authentic tag is assigned to data/code received from sources trusted to
be benign, and whose authenticity can be verified.

� Benign tag reflects a reduced level of trust than benign authentic: while the
data/code is still believed to be benign, adequate authentication hasn’t been
performed to verify the source.

� Unknown tag is given to data/code from sources about which we have no infor-
mation on trustworthiness. Such data can sometimes be malicious.

Policies define what sources are benign and what forms of authentication are sufficient.
In the simplest case, these policies take the form of whitelists, but we support more
complex policies as well. If no policy is applicable to a source, then its t-tag is set to
unknown.

We define the following confidentiality tags (c-tags), to reason about information
stealing attacks:

� Secret: Highly sensitive information, such as login credentials and private keys.

� Sensitive: Data whose disclosure can have a significant security impact, e.g.,
reveal vulnerabilities in the system, but does not provide a direct way for an
attacker to gain access to the system.

� Private: Data whose disclosure is a privacy concern, but does not necessarily
pose a security threat.

� Public: Data that can be widely available, e.g., on public web sites.

An important aspect of our design is the separation between t-tags for code and
data. Specifically, a subject (i.e., a process) is given two t-tags: one that captures its
code trustworthiness (code t-tag) and another for its data trustworthiness (data t-tag).
This separation significantly improves attack detection. More importantly, it can
significantly speed up forensic analysis by focusing it on fewer suspicious events, while
substantially reducing the size of the reconstructed scenario. Note that confidentiality
tags are associated only with data (and not code).

Pre-existing objects and subjects are assigned initial tags using tag initialization
policies. Objects representing external entities, such as a remote network connection,
also need to be assigned initial tags. The rest of the objects and subjects are created
during system execution, and their tags are determined using tag propagation policies.
Finally, attacks are detected using behavior-based policies called detection policies.

As mentioned before, if no specific policy is provided, then sources are tagged with
unknown trustworthiness. Similarly, in the absence of specific propagation policies,
the default conservative propagation policy is used.

40

4.2.2 Tag-based Attack Detection

An important constraint in Sleuth is that we are limited to information available in
audit data. This suggests the use of provenance reflected in audit data as a possible
basis for detection. Since tags are a function of provenance, we use them for attack
detection. Note that in our threat model, audit data is trustworthy, so tags provide
a sound basis for detection.

A second constraint in Sleuth is that detection methods should not require
detailed application-specific knowledge. In contrast, most existing intrusion detection
and sandboxing techniques interpret each security-sensitive operation in the context of
a specific application to determine whether it could be malicious. This requires expert
knowledge about the application, or in-the-field training in a dynamic environment,
where applications may be frequently updated.

Instead of focusing on application behaviors that tend to be variable, we focus our
detection techniques on the high-level objectives of most attackers, such as backdoor
insertion and data exfiltration. Specifically, we combine reasoning about an attacker’s
motive and means. If an event in the audit data can help the attacker achieve his/her
key high-level objectives, that would provide the motivation and justification for using
that event in an attack. But this is not enough: the attacker also needs the means
to cause this event, or more broadly, influence it. Note that our tags are designed
to capture means: if a piece of data or code bears the unknown t-tag, then it was
derived from (and hence influenced by) untrusted sources.

As for the high-level objectives of an attacker, several reports and white papers
have identified that the following steps are typical in most advanced attack cam-
paigns [2, 8, 93]:

1. Deploy and run attacker’s code on victim system.

2. Replace or modify important files, e.g., /etc/passwd or ssh keys.

3. Exfiltrate sensitive data.

Attacks with a transient effect may be able to avoid the first two steps, but most
sophisticated attacks, such as those used in APT campaigns, require the establishment
of a more permanent footprint on the victim system. In those cases, there does not
seem to be a way to avoid one or both of the first two steps. Even in those cases
where the attacker’s goal could be achieved without establishing a permanent base,
the third step usually represents an essential attacker goal.

Based on the above reasoning, we define the following policies for attack detection
that incorporate the attacker’s objectives and means:

� Untrusted code execution: This policy triggers an alarm when a subject with a
higher code t-tag executes (or loads) an object with a lower t-tag2.

2Customized policies can be defined for interpreters such as bash so that reads are treated the
same as loads.

41

� Modification by subjects with lower code t-tag: This policy raises an alarm when
a subject with a lower code t-tag modifies an object with a higher t-tag. Mod-
ification may pertain to the file content or other attributes such as name, per-
missions, etc.

� Confidential data leak: An alarm is raised when untrusted subjects exfiltrate
sensitive data. Specifically, this policy is triggered on network writes by subjects
with a sensitive c-tag and a code t-tag of unknown.

� Preparation of untrusted data for execution: This policy is triggered by an
operation by a subject with a code t-tag of unknown, provided this operation
makes an object executable. Such operations include chmod and mprotect3,4.

It is important to note that “means” is not diluted just because data or code passes
through multiple intermediaries. For instance, the untrusted code policy does not
require a direct load of data from an unknown web site; instead, the data could
be downloaded, extracted, uncompressed, and possibly compiled, and then loaded.
Regardless of the number of intermediate steps, this policy will be triggered when the
resulting file is loaded or executed. This is one of the most important reasons for the
effectiveness of our attack detection.

Today’s vulnerability exploits typically do not involve untrusted code in their first
step, and hence won’t be detected by the untrusted code execution policy. However,
the eventual goal of an attacker is to execute his/her code, either by downloading
and executing a file, or by adding execute permissions to a memory page containing
untrusted data. In either case, one of the above policies can detect the attack. A
subsequent backward analysis can help identify the first step of the exploit.

Additional detector inputs can be easily integrated into Sleuth. For instance, if
an external detector flags a subject as a suspect, this can be incorporated by setting
the code t-tag of the subject to unknown. As a result, the remaining detection policies
mentioned above can all benefit from the information provided by the external detec-
tor. Moreover, setting of unknown t-tag at suspect nodes preserves the dependency
structure between the graph vertices that cause alarms, a fact that we exploit in our
forensic analysis.

The fact that many of our policies are triggered by untrusted code execution should
not be interpreted to mean that they work in a static environment, where no new
code is permitted in the system. Indeed, we expect software updates and upgrades
to be happening constantly, but in an enterprise setting, we don’t expect end users
to be downloading unknown code from random sites. Accordingly, we subsequently

3Binary code injection attacks on today’s OSes ultimately involve a call to change the permission
of a writable memory page so that it becomes executable. To the extent that such memory permission
change operations are included in the audit data, this policy can spot them.

4Our implementation can identify mprotect operations that occur in conjunction with library
loading operations. This policy is not triggered on those mprotect’s.

42

describe how to support standardized software updating mechanisms such as those
used on contemporary OSes.

4.3 Policy Framework

We have developed a flexible policy framework for tag assignment, propagation, and
attack detection. We express policies using a simple rule-based notation, e.g.,

exec(s, o) : o.ttag < benign→ alert("UntrustedExec")

This rule is triggered when the subject s executes a (file) object o with a t-tag less
than benign. Its effect is to raise an alert named UntrustedExec. As illustrated by
this example, rules are generally associated with events, and include conditions on
the attributes of objects and/or subjects involved in the event. The effect of a policy
depends on its type. The effect of a detection policy is to raise an alarm. For tag
initialization and propagation policies, the effect is to modify tag(s) associated with
the object or subject involved in the event.

Our current detection policies are informally described in the previous section.
We therefore focus in this section on our current tag initialization and propagation
policies.

Tag Initialization Policies

These policies are invoked to initialize tags for new objects, or preexisting objects
when they are first mentioned in the audit data. Recall that when a subject creates
a new object, the object inherits the subject’s tags by default; however, in case of a
preexisting object tag initialization policies are triggered. For example,

init(o): o.type == FILE→
o.ttag = BENIGN AUTH, o.ctag = PUBLIC

Tag Propagation Policies

These policies can be used to override default tag propagation semantics. Different
tag propagation policies can be defined for different groups of related event types.Tag
propagation policies can be used to prevent “over-tainting” that can result from files
such as .bash history that are repeatedly read and written by an application each
time it is invoked. For example, the following policy skips taint propagation for this
specific file:

propRd(s, o): match(o.name, "\.bash_history$")→ skip5

5Here, “skip” means do nothing, i.e., leave tags unchanged.

43

4.4 Tag-Based Bi-Directional Analysis

4.4.1 Backward Analysis

The goal of backward analysis is to identify the entry points of an attack campaign.
Entry points are the nodes in the graph with an in-degree of zero and are marked
untrusted. Typically they represent network connections, but they can also be of
other types, e.g., a file on a USB stick that was plugged into the victim host.

The starting points for the backward analysis are the alarms generated by the
detection policies. In particular, each alarm is related to one or more entities, which
are marked as suspect nodes in the graph. Backward search involves a backward
traversal of the graph to identify paths that connect the suspect nodes to entry nodes.
We note that the direction of the dependency edges is reversed in such a traversal and
in the following discussions. Backward search poses several significant challenges:

� Performance: The dependence graph can easily contain hundreds of millions of
edges. Alarms can easily number in thousands. Running backward searches on
such a large graph is computationally expensive.

� Multiple paths: Typically numerous entry points are backward reachable from
a suspect node. However, in APT-style attacks, there is often just one real
entry point. Thus, a naive backward search can lead to a large number of false
positives.

The key insight behind our approach is that tags can be used to address both chal-
lenges. In fact, tag computation and propagation is already an implicit path compu-
tation, which can be reused. Furthermore, a tag value of unknown on a node provides
an important clue about the likelihood of that node being a potential part of an at-
tack. In particular, if an unknown tag exists for some node A, that means that there
exists at least a path from an untrusted entry node to node A, therefore node A is
more likely to be part of an attack than other neighbors with benign tags. Utilizing
tags for the backward search greatly reduces the search space by eliminating many ir-
relevant nodes and sets Sleuth apart from other scenario reconstruction approaches
such as [72, 86].

Based on this insight, we formulate backward analysis as an instance of shortest
path problem, where tags are used to define edge costs. In effect, tags are able to
“guide” the search along relevant paths, and away from unlikely paths. This factor
enables the search to be completed without necessarily traversing the entire graph,
thus addressing the performance challenge. In addition, our shortest path formula-
tion addresses the multiple paths challenge by preferring the entry point closest (as
measured by path cost) to a suspect node.

44

Dataset
Duration

(hh-mm-ss)
Open

Connect +
Accept

Read Write
Clone +

Exec
Close +

Exit
Mmap /
Loadlib

Others
Total # of

Events
Scenario
Graph

W-1 06:22:42 N/A 22.14% 44.70% 5.12% 3.73% 3.88% 17.40% 3.02% 100K Fig. 4.6
W-2 19:43:46 N/A 17.40% 47.63% 8.03% 3.28% 3.26% 15.22% 5.17% 401K Fig. 4.2

L-1 07:59:26 37% 0.11% 18.01% 1.15% 0.92% 38.76% 3.97% 0.07% 2.68M Fig. 4.3
L-2 79:06:39 39.58% 0.08% 12.19% 2% 0.83% 41.28% 3.79% 0.25% 38.5M -
L-3 79:05:13 38.88% 0.04% 11.81% 2.35% 0.95% 40.98% 4.14% 0.84% 19.3M Fig. 4.7

F-1 08:17:30 9.46% 0.40% 24.65% 40.86% 2.10% 12.55% 9.08% 0.89% 701K Fig. 4.4
F-2 78:56:48 11.78% 0.42% 16.60% 44.52% 2.10% 15.04% 8.54% 1.01% 5.86M Fig. 4.5
F-3 79:04:54 11.31% 0.40% 19.46% 45.71% 1.64% 14.30% 6.16% 1.03% 5.68M Fig. 4.1

Benign 329:11:40 11.68% 0.71% 26.22% 30.03% 0.63% 15.42% 14.32% 0.99% 32.83M N/A

Table 4.1: Dataset for each campaign with duration, distribution of different system
calls and total number of events.

For shortest path, we use Dijkstra’s algorithm, as it discovers paths in increasing
order of cost. In particular, each step of this algorithm adds a node to the shortest
path tree, which consists of the shortest paths computed so far. This enables the
search to stop as soon as an entry point node is added to this tree.

Cost function design. Our design assigns low costs to edges representing depen-
dencies on nodes with unknown tags, and higher costs to other edges. Specifically,
the costs are as follows:

� Edges that introduce a dependency from a node with unknown code or data
t-tag to a node with benign code or data t-tag are assigned a cost of 0.

� Edges introducing a dependency from a node with benign code and data t-tags
are assigned a high cost.

� Edges introducing dependencies between nodes already having an unknown tag
are assigned a cost of 1.

The intuition behind this design is as follows. A benign subject or object immediately
related to an unknown subject/object represents the boundary between the malicious
and benign portions of the graph. Therefore, they must be included in the search,
thus the cost of these edges is 0. Information flows among benign entities are not part
of the attack, therefore we set their cost to very high so that they are excluded from
the search. Information flows among untrusted nodes are likely part of an attack, so
we set their cost to a low value. They will be included in the search result unless
alternative paths consisting of fewer edges are available.

4.4.2 Forward Analysis

The purpose of forward analysis is to assess the impact of a campaign, by starting
from an entry point and discovering all the possible effects dependent on the entry

45

point. Similar to backward analysis, the main challenge is the size of the graph. A
naive approach would identify and flag all subjects and objects reachable from the
entry point(s) identified by backward analysis. Unfortunately, such an approach will
result in an impact graph that is too large to be useful to an analyst. For instance,
in our experiments, a naive analysis produced impact graphs with millions of edges,
whereas our refined algorithm reduces this number by 100x to 500x.

A natural approach for reducing the size is to use a distance threshold dth to
exclude nodes that are “too far” from the suspect nodes. Threshold dth can be
interactively tuned by an analyst. We use the same cost metric that was used for
backward analysis, but modified to consider confidentiality6. In particular, edges
between nodes with high confidentiality tags (e.g., secret) and nodes with low code
integrity tags (e.g., unknown process) or low data integrity tags (e.g., unknown socket)
are assigned a cost of 0, while edges to nodes with benign tags are assigned a high
cost.

4.4.3 Reconstruction and Presentation

We apply the following simplifications to the output of forward analysis, in order to
provide a more succinct view of the attack:

� Pruning uninteresting nodes. The result of forward analysis may include many
dependencies that are not relevant for the attack, e.g., subjects writing to cache
and log files, or writing to a temporary file and then removing it. These nodes
may appear in the results of the forward analysis but no suspect nodes depend
on them, so they can be pruned.

� Merging entities with the same name. This simplification merges subjects that
have the same name, disregarding their process ids and command-line argu-
ments.

� Repeated event filtering. This simplification merges into one those events that
happen multiple times (e.g., multiple writes, multiple reads) between the same
entities. If there are interleaving events, then we show two events representing
the first and the last occurrence of an event between the two entities.

4.5 Experimental Evaluation

4.5.1 Implementation

Most components of Sleuth, including the graph model, policy engine, attack de-
tection and some parts of the forensic analysis are implemented in C++, and consist

6Recall that some alarms are related to exfiltration of confidential data, so we need to decide
which edges representing the flow of confidential information should be included in the scenario.

46

of about 9.5KLoC.

4.5.2 Data Sets

Table 4.1 summarizes the dataset used in our evaluation. The first eight rows of the
table correspond to attack campaigns carried out by a red team as part of the DARPA
Transparent Computing (TC) program. This set spans a period of 358 hours, and
contains about 73 million events. The last row corresponds to benign data collected
over a period of 3 to 5 days across four Linux servers in our research laboratory.

Attack data sets were collected on Windows (W-1 and W-2), Linux (L-1 through
L-3) and FreeBSD (F-1 through F-3) by three research teams that are also part
of the DARPA TC program. The goal of these research teams is to provide fine-
grained provenance information that goes far beyond what is found in typical audit
data. However, at the time of the evaluation, these advanced features had not been
implemented in the Windows and FreeBSD data sets. Linux data set did incorporate
finer-granularity provenance (using the unit abstraction developed in [86]), but the
implementation was not mature enough to provide consistent results in our tests. For
this reason, we omitted any fine-grained provenance included in their dataset, falling
back to the data they collected from the built-in auditing system of Linux. The
FreeBSD team built their capabilities over DTrace. Their data also corresponded to
roughly the same level as Linux audit logs. The Windows team’s data was roughly at
the level of Windows event logs. All of the teams converted their data into a common
representation to facilitate analysis.

The “duration” column in Table 4.1 refers to the length of time for which audit
data was emitted from a host. Note that this period covers both benign activities and
attack related activities on a host. The next several columns provide a break down of
audit log events into different types of operations. File open and close operations were
not included in W-1 and W-2 data sets. Note that “read” and “write” columns include
not only file reads/writes, but also network reads and writes on Linux. However,
on Windows, only file reads and writes were reported. Operations to load libraries
were reported on Windows, but memory mapping operations weren’t. On Linux and
FreeBSD, there are no load operations, but most of the mmap calls are related to
loading. So, the mmap count is a loose approximation of the number of loads on
these two OSes. The “Others” column includes all the remaining audit operations,
including rename, link, rm, unlink, chmod, setuid, and so on. The last column
in the table identifies the scenario graph constructed by Sleuth for each campaign.
Due to space limitations, we have omitted scenario graphs for campaign L-2.

4.5.3 Engagement Setup

The attack scenarios in our evaluation are setup as follows. Five of the campaigns
(i.e., W-2, L-2, L3, F-2, and F3) ran in parallel for 4 days, while the remaining three

47

/var/dropbear_latest/
dropbearFREEBSD.tar

sshd

bash

sudoscp

whoami

date

ps

hostname

ls

3. fork

5. fork

7. fork

4. fork

6. fork

2. fork
8. fork

9. fork10.write

bsdtar
13. read

/var/dropbear_latest/
dropbear/dropbearkey

15.write

/var/dropbear_latest/
dropbear/dropbearscript

14.write

/var/dropbear_latest/
dropbear/dropbear

16.write

vi18. read
17. fork

sh

20. read
19. fork

sudodropbearkey 22. fork

23.execute

sudo

25. fork

dropbear

26. fork

27. execute

/usr/local/etc/dropbear/
dropbear_rsa_host_key

24. write

28. read

128.55.12.167

1. receive

29.receive

bash

ls

31. fork

30. fork

cat

37. fork

uname

33. fork

bash

39. fork

/usr/home/user/procstat

34. write38. write 32. writescp 40. fork

/usr/home/user/archiver

41. write

ps

35. fork

36. write

archiver43.execute 44. read

42. fork

128.55.12.167:2525

45. send

sudo

11. fork

12. fork

21. fork

Figure 4.1: Scenario graph reconstructed from campaign F-3.

(W-1, L-1, and F-1) were run in parallel for 2 days. During each campaign, the red
team carried out a series of attacks on the target hosts. The campaigns are aimed at
achieving varying adversarial objectives, which include dropping and execution of an
executable, gathering intelligence about a target host, backdoor injection, privilege
escalation, and data exfiltration.

Being an adversarial engagement, we had no prior knowledge of the attacks
planned by the red team. We were only told the broad range of attacker objectives
described in the previous paragraph. It is worth noting that, while the red team was
carrying out attacks on the target hosts, benign background activities were also being
carried out on the hosts. These include activities such as browsing and downloading
files, reading and writing emails, document processing, and so on. On average, more
than 99.9% of the events corresponded to benign activity. Hence, Sleuth had to
automatically detect and reconstruct the attacks from a set of events including both
benign and malicious activities.

We present our results in comparison with the ground truth data released by the
red team. Before the release of ground truth data, we had to provide a report of our
findings to the red team. The findings we report in this thesis match the findings we
submitted to the red team. A summary of our detection and reconstruction results
is provided in a tabular form in Table 4.3. Below, we first present reconstructed
scenarios for selected datasets before proceeding to a discussion of these summary
results.

48

4.5.4 Selected Reconstruction Results

Of the 8 attack scenarios successfully reconstructed by Sleuth, we discuss campaigns
W-2 (Windows) and F-3 (FreeBSD) in this section, while deferring the rest to Section
4.5.10. To make it easier to follow the scenario graph, we provide a narrative that
explains how the attack unfolded. This narrative requires manual interpretation of
the graph, but the graph generation itself is automated. In these graphs, edge labels
include the event name and a sequence number that indicates the global order in
which that event was performed. Ovals, diamonds and rectangles represent processes,
sockets and files, respectively.

Campaign W-2. Figure 4.2 shows the graph reconstructed by Sleuth from Win-
dows audit data. Although the actual attack campaign lasted half an hour, the host
was running benign background activities for 20 hours. These background activities
corresponded to more than 99.8% of the events in the corresponding audit log.
Entry: The initial entry point for the attack is Firefox, which is compromised on
visiting the web server 129.55.12.167.
Backdoor insertion: Once Firefox is compromised, a malicious program called dropper

is downloaded and executed. Dropper seems to provide a remote interactive shell,
connecting to ports 443 and then 4430 on the attack host, and executing received
commands using cmd.exe.
Intelligence gathering: Dropper then invokes cmd.exe multiple times, using it to
perform various data gathering tasks. The programs whoami, hostname and netstat

are being used as stand-ins for these data gathering applications. The collected data
is written to C:\Users\User1\Documents\Thumbs\thumbit\test\thumbs.db.
Data exfiltration: Then the collected intelligence is exfiltrated to 129.55.12.51:9418
using git.
Clean-up: Dropper downloads a batch file called burnout.bat. This file contains
commands to clean up the attack footprint, which are executed by cmd.exe (see
edges 11,12, 31-33).

Campaign F-3. (Figure 4.1). Under the command of an attacker who uses stolen
ssh credentials, sshd forks a bash process. Note that though there is no direct evidence
from the audit data about the stolen ssh credentials, because of the subsequent events
(scp) from this shell, we conclude this as a sign of an attacker that uses stolen ssh
credentials.

Next the attacker, invokes scp, which downloads a file into location
/var/dropbear latest/dropbearFREEBSD.tar, which is then uncompressed. The file
dropbearscript is next read and interpreted by sh. This action creates the process
dropbearkey, which writes to /usr/ local/etc/dropbear/dropbear ecdsa host key

and /usr/local/etc/dropbear/dropbear rsa host key. Next, another sudo process

49

created by bash starts another dropbear process which reads these two keys for fu-
ture use (presumably to assist in connecting to a remote host).

Dropbear next starts a shell process, which executes a series of commands ls,
bash, uname, ps, all of which write to a file /usr/home/user/procstats.

Finally, dropbear starts a bash process, which uses scp to download a file called
/usr/home/user/archiver, and executes that file. The resulting process, called
archiver, reads the file /usr/home/user/procstats, which contains the data output
earlier, and exfiltrates this information to 128.55.12.167:2525.

Summary. The above two graphs were constructed automatically by Sleuth from
audit data. They demonstrate how Sleuth enables an analyst to obtain compact
yet complete attack scenarios from hours of audit data. Sleuth is able to hone in on
the attack activity, even when it is hidden among benign data that is at least three
orders of magnitude larger.

4.5.5 Overall Effectiveness

Dataset
Drop &

Load
Intelligence
Gathering

Backdoor
Insertion

Privilege
Escalation

Data
Exfiltration

Cleanup

W-1 X X X X
W-2 X X X X X
L-1 X X X X X
L-2 X X X X X X
L-3 X X X X X X
F-1 X X
F-2 X X X X
F-3 X X X

Table 4.2: Sleuth results with respect to a typical APT campaign.

To assess the effectiveness of Sleuth in capturing essential stages of an APT,
in Table 4.2, we correlate pieces of attack scenarios constructed by Sleuth with
APT stages documented in postmortem reports of notable APT campaigns (e.g.,
the MANDIANT [8] report). In 7 of the 8 attack scenarios, Sleuth uncovered the
drop&load activity. In all the scenarios, Sleuth captured concrete evidence of data
exfiltration, a key stage in an APT campaign. In 7 of the scenarios, commands used
by the attacker to gather information about the target host were captured by Sleuth.

Another distinctive aspect of an APT is the injection of backdoors to targets
and their use for C&C and data exfiltration. In this regard, 6 of the 8 scenarios
reconstructed by Sleuth involve backdoor injection. Cleaning the attack footprint
is a common element of an APT campaign. In our experiments, in 5 of the 8 scenarios,

50

Sleuth uncovered attack cleanup activities, e.g., removing dropped executables and
data files created during the attack.

Dataset
Entry

Entities
Programs
Executed

Key Files
Exit

Points

Correctly
Identified
Entities

Incorrectly
Identified
Entities

Missed
Entities

W-1 2 8 7 3 20 0 0

W-2 2 8 4 4 18 0 0

L-1 2 10 7 2 20 0 1

L-2 2 20 11 4 37 0 0

L-3 1 6 6 5 18 0 0

F-1 4 13 9 2 13 0 1

F-2 2 10 7 3 22 0 0

F-3 4 14 7 1 26 0 0

Total 19 89 58 24 174 0 2

Table 4.3: Attack scenario reconstruction summary.

Table 4.3 shows another way of breaking down the attack scenario reconstruc-
tion results, counting the number of key files, network connections, and programs
involved in the attack. Specifically, we count the number of attack entry entities (in-
cluding the entry points and the processes that communicate with those entry points),
attack-related program executions, key files that were generated and used during the
campaign, and the number of exit points used for exfiltration (e.g., network sockets).
This data was compared with the ground truth, which was made available to us after
we obtained the results. The last two columns show the incorrectly reported and
missed entities, respectively.

The two missed entities were the result of the fact that we had not spent any
effort in cataloging sensitive data files and device files. As a result, these entities were
filtered out during the forward analysis and simplification steps. Once we marked the
two files correctly, they were no longer filtered out, and we were able to identify all
of the key entities.

In addition to the missed entities shown in Table 4.3, the red team reported that
we missed a few other attacks and entities. Some of these were in data sets we did
not examine. In particular, campaign W-2 was run multiple times, and we examined
the data set from only one instance of it. Also, there was a third attack campaign
W-3 on Windows, but the team producing Windows data sets had difficulties during
W-3 that caused the attack activities not to be recorded, so that data set is omitted
from the results in Table 4.3. Similarly, the team responsible for producing Linux
data sets had some issues during campaign L-3 that caused some attack activities not
to be recorded. To account for this, Table 4.3 counts only the subset of key entities
whose names are present in the L-3 data set given to us.

According to the ground truth provided by the red team, we incorrectly identified
21 entities in F-1 that were not part of an attack. Subsequent investigation showed

51

that the auditing system had not been shutdown at the end of the F-1 campaign, and
all of these false positives correspond to testing/administration steps carried out after
the end of the engagement, when the auditing system should not have been running.

Dataset
Log Size
on Disk

of
Events

Duration
hh:mm:ss

Packages
Updated

Binary
Files
Written

Server 1 1.1G 2.17M 00:13:06 110 1.8K
Server 2 2.7G 4.67M 105:08:22 4 4.2K
Server 3 12G 20.9M 104:36:43 4 4.3K
Server 4 3.2G 5.09M 119:13:29 4 4.3K

Table 4.4: False alarms in a benign environment with software upgrades and updates.
No alerts were triggered during this period.

4.5.6 False Alarms in a Benign Environment

In order to study Sleuth’s performance in a benign environment, we collected audit
data from four Ubuntu Linux servers over a period of 3 to 5 days. One of these is a
mail server, another is a web server, and a third is an NFS/SSH/SVN server. Our
focus was on software updates and upgrades during this period, since these updates
can download code from the network, thereby raising the possibility of untrusted
code execution alarms. There were four security updates (including kernel updates)
performed over this period. In addition, on a fourth server, we collected data when
a software upgrade was performed, resulting in changes to 110 packages. Several
thousand binary and script files were updated during this period, and the audit logs
contained over 30M events. All of this information is summarized in Table 4.4.

As noted before, policies should be configured to permit software updates and
upgrades using standard means approved in an enterprise. For Ubuntu Linux, we had
one policy rule for this: when dpkg was executed by apt-commands, or by unattended-
upgrades, the process is not downgraded even when reading from files with untrusted
labels. This is because both apt and unattended-upgrades verify and authenticate the
hash on the downloaded packages, and only after these verifications do they invoke
dpkg to extract the contents and write to various directories containing binaries and
libraries. Because of this policy, all of the 10K+ files downloaded were marked benign.
As a result of this, no alarms were generated from their execution by Sleuth.

52

Dataset Duration Memory Runtime

(hh:mm:ss) Usage Time Speed-up

W-1 06:22:42 3 MB 1.19 s 19.3 K

W-2 19:43:46 10 MB 2.13 s 33.3 K

W-Mean 6.5 MB 26.3 K

L-1 07:59:26 26 MB 8.71 s 3.3 K

L-2 79:06:39 329 MB 114.14s 2.5 K

L-3 79:05:13 175 MB 74.14 s 3.9 K

L-Mean 177 MB 3.2 K

F-1 08:17:30 8 MB 1.86 s 16 K

F-2 78:56:48 84 MB 14.02 s 20.2 K

F-3 79:04:54 95 MB 15.75 s 18.1 K

F-Mean 62.3 MB 18.1 K

Table 4.5: Memory use and runtime for scenario reconstruction.

4.5.7 Runtime and Memory Use

Table 4.5 shows the runtime and memory used by Sleuth for analyzing various
scenarios. The measurements were made on a Ubuntu 16.04 server with 2.8GHz
AMD Opteron 62xx processor and 48GB main memory. Only a single core of a single
processor was used. The first column shows the campaign name, while the second
shows the total duration of the data set.

The third column shows the memory used for the dependence graph. The compact
representation using the techniques described in Chapter 3 enables Sleuth to store
data spanning very long periods of time. As an example, consider campaign L-2,
whose data were the most dense. Sleuth used approximately 329MB to store 38.5M
events spanning about 3.5 days. Across all data sets, Sleuth needed about 8 bytes
of memory per event on the larger data sets, and about 20 bytes per event on the
smaller data sets.

The fourth column shows the total run time, including the times for consuming
the dataset, constructing the dependence graph, detecting attacks, and reconstructing
the scenario. We note that this time was measured after the engagement when all the
data sets were available. During the engagement, Sleuth was consuming these data
as they were being produced. Although the data typically covers a duration of several
hours to a few days, the analysis itself is very fast, taking just seconds to a couple
of minutes. Because of our use of tags, most information needed for the analysis is
locally available. This is the principal reason for the performance we achieve.

The “speed-up” column illustrates the performance benefits of Sleuth. It can
be thought of as the number of simultaneous data streams that can be handled by

53

Dataset
Untrusted
execution

Modification by
low code t-tag subject

Preparation of untrusted
data for execution

Confidential
data leak

Single t-tag Split t-tags Single t-tag Split t-tags Single t-tags Split t-tags Single t-tag Split t-tags

W-1 21 3 1.2 K 3 0 0 6.1 K 11

W-2 44 2 3.7 K 108 0 0 20.2 K 18

L-1 60 2 53 5 1 1 19 6

L-2 1.5 K 5 19.5 K 1 280 8 122 K 159

L-3 695 5 26.1 K 2 270 0 62.1 K 5.3 K

Average Reduction 45.39x 517x 6.24x 112x

Table 4.6: Reduction in (false) alarms by maintaining separate code and data trust-
worthiness tags. The average reduction shows the average factor of reduction we get
for alarms generation when using split trustworthiness tag over single trustworthiness
tag.

Sleuth, if CPU use was the only constraint.
In summary, Sleuth is able to consume and analyze audit COTS data from

several OSes in real time while having a small memory footprint.

4.5.8 Benefit of split tags for code and data

As described earlier, we maintain two trustworthiness tags for each subject, one corre-
sponding to its code, and another corresponding to its data. By prioritizing detection
and forward analysis on code trustworthiness, we cut down vast numbers of alarms,
while greatly decreasing the size of forward analysis output.

Table 4.6 shows the difference between the number of alarms generated by our four
detection policies with single trustworthiness tag and with the split trustworthiness
(code and integrity) tags. Note that the split reduces the alarms by a factor of 100
to over 1000 in some cases.

Table 4.7 shows the improvement achieved in forward analysis as a result of this
split. In particular, the increased selectivity reported in column 5 of this table comes
from splitting the tag. Note that often, there is a 100x to 1000x reduction in the size
of the graph.

4.5.9 Analysis Selectivity

Table 4.7 shows the data reduction pipeline of the analyses in Sleuth. The sec-
ond column shows the number of original events in each campaign. These events
include all the events in the system (benign and malicious) over several days with an
overwhelming majority having a benign nature, unrelated to the attack.

The third column shows the final number of events that go into the attack scenario
graph.

The fourth column shows the reduction factor when a naive forward analysis with
single trustworthiness tag (single t-tag) is used from the entry points identified by

54

our backward analysis. Note that the graph size is very large in most cases. The fifth
column shows the reduction factor using the forward analysis of Sleuth— which is
based on split (code and data) trustworthiness tags. As can be seen from the table,
Sleuth achieved two to three orders of magnitude reduction with respect to single
t-tag based analysis.

The output of forward analysis is then fed into the simplification engine. The
sixth column shows the reduction factor achieved by the simplifications over the
output of our forward analysis. The last column shows the overall reduction we get
over original events using split (code and data) trustworthiness tags and performing
the simplification.

Overall, the combined effect of all of these steps is very substantial: data sets
consisting of tens of millions of edges are reduced into graphs with perhaps a hundred
edges, representing five orders of magnitude reduction in the case of L-2 and L-3 data
sets, and four orders of magnitude reduction on other data.

4.5.10 Discussion of Additional Attacks

In this section, we provide graphs that reconstruct attack campaigns that weren’t dis-
cussed in Section 4.5.4. Specifically, we discuss attacks L-1, F-1, F-2, W-1, and L-3.
Attack L-1. In this attack (Figure 4.3), firefox is exploited to drop and execute
via a shell the file mozillanightly. The process mozillanightly first downloads
and executes mozillaautoup, then starts a shell, which spawns several other pro-
cesses. Next, the information gathered in file netrecon.log is exfiltrated and the file
removed.

Attack F-1. In this attack (Figure 4.4), the nginx server is exploited to drop
and execute via shell the file dropper. Upon execution, the dropper process forks
a shell that spawns several processes, which write to a file and reads and writes to
sensitive files. In addition, dropper communicates with the IP of the attacker. We
report in the figure the graph related to the restoration and administration carried
out after the engagement, as discussed in Section 4.5.5.

Attack F-2. The start of this attack (Figure 4.5) is similar to F-1. However,
upon execution, the dropper process downloads three files named recon, sysman,
and mailman. Later, these files are executed and used which are used to exfiltrate
data gathered from the system.

Attack W-1. In this attack (Figure 4.6), firefox is exploited twice to drop
and execute a file mozillanightly. The first mozillanightly process downloads
and executes the file photosnap.exe, which takes a screenshot of the victim’s screen
and saves it to a png file. Subsequently, the jpeg file is exfiltrated by mozillanightly.
The second mozillanightly process downloads and executes two files: 1) burnout.bat,
which is read, and later used to issue commands to cmd.exe to gather data about the
system; 2) mnsend.exe, which is executed by cmd.exe to exfiltrate the data gathered
previously.

55

Attack L-3. In this attack (Figure 4.7), the file dropbearLINUX.tar is down-
loaded and extracted. Next, the program dropbearkey is executed to create three
keys, which are read by a program dropbear, which subsequently performs exfiltra-
tion.

56

firefox.exe

cmd.exe

git-receive-pack.exe

C:\\Users\\User1\\Documents\\Thumbs\
\thumbit\\test\\thumbs.db

git.exe

129.55.12.167:4430

C:\\Users\\User1\\Downloads\
\firefox\\burnout.bat

dropper

dropper

129.55.12.51:80

129.55.12.51:9418

C:\\dropper

git-remote-http.exe

C:\\Users\\User1\\Downloads\\firefox\\dropper

129.55.12.167:8000
7. write

8. fork

9. execute

10. send

29. send

30. receive

22. fork

23. fork

24. fork 25. send

27. send

20. write

21. chmod

26. read

1. receive

2. write 3. fork

4. execute

5. receive
6. send

28. receive

31. rm

11. write

12. read13. fork
33. rm

32. rm

129.55.12.167:443

hostname

18. fork

19. write

netstat

16. fork

17. write

whoami

14. fork

15. write

Figure 4.2: Scenario graph reconstructed from campaign W-2.

Dataset
Initial
of

Events

Final
of

Events

Reduction Factor
Single
t-tag

Split
t-tag

Sleuth
Simplif.

Total

W-1 100 K 51 4.4x 1394x 1.4x 1951x

W-2 401 K 28 3.6x 552x 26x 14352x

L-1 2.68 M 36 8.9x 15931x 4.7x 74875x

L-2 38.5 M 130 7.3x 2971x 100x 297100x

L-3 19.3 M 45 7.6x 1208x 356x 430048x

F-1 701 K 45 2.3x 376x 41x 15416x

F-2 5.86 M 39 1.9x 689x 218x 150202x

F-3 5.68 M 45 6.7x 740x 170x 125800x

Average Reduction 4.68x 1305x 41.8x 54517x

Table 4.7: Comparison of selectivity achieved using forward analysis with single trust-
worthiness tags, forward analysis with split code and data trustworthiness tags, and
finally simplifications.

57

firefox

sh

mozillanightly

129.55.12.167:443

cat

129.55.12.167:8000

dir

rm

129.55.12.167:4430

whoami

ls

mozillaautoup

/home/User1/traffic_gen/mozillanightly

/home/User1/traffic_gen/mozillaautoup

hostname

/tmp/netrecon.log

2. write

4. fork

5. execute

11. send

15. receive

22. execute

23. send

16. execute

14. send

20. execute

21. send

7. chmod6. write

8. execute

9. write

19. send

33. execute

34. rm

18. execute

35. rm

1. receive

3. fork

13. fork

17. send

24. execute

32. send

36. rm

sh

10. read

12. receive

/etc/sudoers

/etc/shadow

/etc/passwd

26. write

28. write

30. write
27. read

29. read

31. read

openssl
25. fork

Figure 4.3: Scenario graph reconstructed from campaign L-1.

/etc/shadow

/etc/sudoers

/var/tmp/nginx/
client_body_temp/dropper

<unknown>

/etc/passwd

129.55.12.167:443

129.55.12.167:8000

dropper

cat

nginxsh

sh

opensslwhoami

2. send

1. receive

3. write

4. fork

5. fork

6. execute

7. send8. receive 9. fork
10. send

10. fork

11. write

14. read

18. fork

19. read

21. write

15. write
12. fork

13. write

16. write

20. read

17. write

sudo

sshdbash

vi

23. fork

24. fork

25. fork sudobash

make

27. fork

28. fork

29. fork

cc33. fork

cc

30. fork

/usr/ports/www/nginx/work/nginx-1.10.1/
src/http/ngx_http_request_body.c

26. write

31. mmap

/usr/ports/www/nginx/work/nginx-1.10.1/
objs/src/http/ngx_http_request_body.o

32. write

ld

34. fork

35. read

cp

/usr/ports/www/nginx/work/
nginx-1.10.1/objs/nginx_191

36. write

37. mmap

/usr/local/sbin/nginx38. write

43. execute

sudo

bash

39.fork

40. fork

41. fork

sh

42. fork

nginx

???22. receive

???

44. receive

45. send

Missing Audit Data!

Figure 4.4: Scenario graph reconstructed from campaign F-1.

58

/var/tmp/nginx/client_body_temp/dropper

/tmp/mailer/mailer.log

/tmp/sysman
/tmp/mailer/mailman

129.55.12.167:8000

129.55.12.167:443

129.55.12.167:2525

ls

sh

dropper

nginx

whoami

sh

hostname

mailman

uname

sh

2. send

1. receieve

3. write 4. fork

5. fork6. execute
12. send

13. receive

27. write
14. fork

17. fork

21. write

19. fork

22. write

23. fork

24. write

25. fork

26. write

28. write

29. receive

30. fork

36. fork

37. execute

38. read

39. sendnetstat

15. fork

16. write

/tmp/syslog.dat

20. write

18. write

31. forksysman

32. execute

34. send

129.55.12.167:6666

33. read

sh

35. fork

netrecon

8. fork

/tmp/netrecon

7. write

/tmp/netrecon.log

10. write

11. read

9. execute

Figure 4.5: Scenario graph reconstructed from campaign F-2.

mozillanightly

cmd.exe

firefox.exe

mnsend.exe

129.55.12.167:7770

mozillanightly

whoami.exe

C:\\Users\\User1\\Downloads\\firefox\
\burnout.bat

photosnap.exe hostname.exe

C:\\Users\\User1\\Downloads\\firefox\
\mnsend.exe

129.55.12.167:4430

C:\\Users\\User1\\Downloads\
\photosnap.exe

C:\\Users\\User1\\Downloads\
\pic.png

C:\\Users\\User1\\Downloads\\firefox\
\mozillanightly

129.55.12.167:443

netstat.exe

C:\\Users\\User1\\Downloads\\firefox\
\4662.log

C:\\Users\\User1\\Downloads\
\mozillanightly

3. fork

5. send

6. send

7. receive
8. write

9. fork

10. execute

11. write12. chmod

4. execute
15. receive 14. send

13. read

17. receive

16. send

18. fork

19. rm

20. rm

23. execute

22. fork 24. send

27. send

29. fork

30. write 35. read

31. fork

32. write

33. fork

34. write

36. write

47. receive
51. send

38. execute
37. fork

40. send 39. read

50. rm

46. rm

25. write
26. read

28. fork
49. rm

48. rm

129.55.12.167:8000

1. receive

2. write

cmd.exe

129.55.12.167:4430

129.55.12.167:443

21. write

Figure 4.6: Scenario graph reconstructed from campaign W-1.

59

dropbear

128.55.12.167:39490

/etc/dropbear/dropbear_dss_host_key

sudo

/etc/dropbear/dropbear_rsa_host_key

/var/dropbear_latest/dropbearLINUX/dropbear

/var/dropbear_latest/dropbearLINUX/dropbearkey

128.55.12.167:38510

dropbearkey dropbear

128.55.12.167:38509

/etc/dropbear/dropbear_ecdsa_host_key

128.55.12.167:39335

128.55.12.167:40246

9. fork

13. write

11. write

10. execute

12. write

15. execute

14.fork

18. read
17. read

16. read

33. send
36. send34. send

37. send

19. fork

35. send

tar

5. write

7. write

6. chmod

8. chmod

3. fork

/var/dropbear_latest/dropbearLINUX.tar

4. read

scp
1. fork

2. write

shred

38. fork

41. write

39. write
40. write

rm

42. fork

45. rm

43. rm
44. rm

/etc/nsswitch 27. read

/etc/shells

26. read

/etc/shadow

25. read

/proc/vmstat

24. read

/etc/localtime
28. read

/proc/timer_list

23. read

/proc/sys/kernel/
ngroups_max/run/utmp

21. read

/var/log/lastlog

30. write

/run/utmp

32. write
/var/log/wtmp

29. write

/dev/ptmx

31. write

/proc/loadavg20. read

/proc/interrupts

22. read

Figure 4.7: Scenario graph reconstructed from campaign L-3.

60

Chapter 5

Combating Dependence Explosion
in Forensic Analysis Using
Alternative Tag Propagation
Semantics

The challenges faced in scenario reconstruction are formidable due to the intermixing
of benign and attack activities. This causes forensic analysis to suffers from the
dependence explosion problem, resulting in a vast number of benign events to be
flagged as part of the attack. Existing forensic analysis techniques that rely on coarse-
grained provenance are ill-equipped to deal with this explosion. Although Sleuth’s
approach of cost-based pruning of forward paths is helpful, it is effective only on
fast-moving attacks. For long-running attacks, it produces graphs with numerous
benign nodes. In this chapter, we propose two novel techniques, tag attenuation
and tag decay, to mitigate dependence explosion. Our techniques take advantage of
common behaviors of benign processes, while providing a conservative treatment of
processes and data with suspicious provenance. Our system, called Morse, is able
to construct a compact scenario graph that summarizes attacker activity by sifting
through millions of system events in a matter of seconds. Our experimental evaluation
carried out using data from two government-agency sponsored red team exercises
and demonstrates that our techniques are (a) effective in identifying stealthy attack
campaigns, (b) reduce the false alarm rates by more than an order of magnitude, and
(c) yield compact scenario graphs that capture the vast majority of the attacks, while
leaving out benign background activity.

61

5.1 Approach Overview and Summary of Contri-

butions

We begin with a motivating example in Section 5.2 that illustrates the challenges
in detecting and summarizing stealthy attack campaigns. We then introduce our
techniques for mitigating dependence explosion in Section 5.3. Similar as Sleuth,
we associate tags to subjects and objects and propagate these tags along the direction
of the information play. In Morse we mainly identify two types of tags:

� data tags that capture the integrity and confidentiality aspects of a data item
for both subjects and objects, and

� subject tags that are associated only with subjects, and indicate our level of
suspicion that a particular subject is malicious. Although this tag is similar
to code trustworthiness tag mentioned in Chapter 4 but there are some key
differences which is discussed in Section 5.3

The core idea behind our approach is to modulate tag propagation using subject tags.
In particular, our tag propagation rules are lenient on benign subjects, and take
advantage of their typical behaviors in order to reduce dependence explosion. At the
same time, we use conservative tag propagation rules for suspicious subjects that may
be under the direct control of attackers.

We introduce two key concepts, tag attenuation and tag decay that mitigate de-
pendence explosion through benign processes. Tag decay captures the intuition that
a benign subject, if it is subverted and becomes malicious, will do so soon after con-
suming suspicious input that contains an exploit. For this reason, we allow the data
tags of benign subjects to decay gradually and become benign over time, unless they
exhibit suspicious behavior. This feature breaks the dependency between suspicious
inputs and outputs of a benign subject after a certain threshold of time.

Tag attenuation captures the intuition that objects serve as imperfect intermedi-
aries for propagating malicious behavior through benign subjects. In particular, each
such propagation requires the intermediary object to contain an exploit that compro-
mises the subject that consumes it. To capture the difficulty of creating a series of
such exploits, we attenuate data tags of a benign subject before propagating it to the
object that it writes into.

In Section 5.4, we present a policy-based attack detection approach similar to
Sleuth but also takes advantage of tag attenuation and decay to significantly reduce
false positives. Our techniques for attack campaign reconstruction are described in
Section 5.5.

We use the motivating example from Section 5.2 to illustrate its operation in
Section 5.6. Our experimental evaluation (Section 5.7) shows that Morse is effective
in detecting a range of stealthy APT-style campaigns, where some of the critical steps

62

40 files

bash

load

Attack Activities

... ...

load
~bob/ccleaner

~bob/.ssh/known_hosts

/usr/local/bin/ssh

/usr/bin/scp

Pipe

~bob/aa.txt ~bob/zz.txt ~bob/aa.tkn ~bob/zz.tkn

x.x.x.x scp -t
./ccleaner ./ccleaner

fork+exec

sshd sshd

dbus-launch

dbus-daemon

fork+exec

sshd sshd

sshd

scp -r ~bob/*
bob@bkupsrv:work/

fork+exec ssh bob@bkupsrv
scp -r -d -t ./work/

load
128.55.12.117

/usr/local/etc/ssh_config

fork+exec
fork+exec

Benign Activities

... ...

Figure 5.1: Motivating example: CCleaner ransomware. Rectangles denote subjects
(processes), while oval-shaped nodes denote files and diamonds denote network ob-
jects. Edges denote events, and are oriented in the direction of information flow.
Edges without a specific event label denote reads and writes.

are invisible in the data. For instance, our system was able to detect campaigns that
relied on:

� previously stolen credentials,

� in-memory (rather than file-based) malware, and

� preexisting malware on the target system, including instances of rootkits, Trojan
ssh servers and kernel malware.

Our tag attenuation and decay techniques decreased false positives by an order of
magnitude, while reducing scenario graph sizes by 35x, all without missing any sig-
nificant attacker activity. Evasion attacks and lateral movement are also discussed in
Section 5.7.

5.2 Motivating Attack Scenario

In this section, we illustrate the problem of dependency explosion using an attack
scenario from a recent red team engagement that was carried out as part of a research
program organized by a government agency. The red team’s goal was to organize a
highly stealthy ransomware attack, with the following stealth and evasive elements:

� Stolen credentials. The red team assumed that the login credentials of the
victim user had already been stolen by the attacker. This enabled the attacker
to gain access to the victim machine without raising any suspicion.

� Use of malware matching a benign application. The red team made use of
malware named ccleaner that was crafted to evade virus signatures. Note that

63

ccleaner [156] is a widely used application that analyzes all files and removes
unneeded and unwanted files. This behavior blends in perfectly with that of
ransomware that reads/encrypts/removes many files.

� Extensive interaction with benign background activity. A benign backup task
periodically copied over all user files to a backup server, including files created
by the attacker’s malware. Moreover, malware execution made use of benign
supporting processes such as dbus-launch.

Fig. 6.1 shows a fragment of the dependence graph (also known as provenance graph)
relating to this attack, constructed from the audit log produced by the Linux auditd

daemon. Rectangles in this graph are subjects (processes), while objects are depicted
as ovals (files) and diamonds (network connections). Edges in the graph correspond
to system events such as read, write, load, fork, execve, and so on. Edges are
oriented in the direction of information flow, and annotated with event names. To
reduce clutter, we omit annotations on read and write edges.

Logically, the attack begins with the theft of login credentials for the user Bob,
but this step is assumed to have taken place “out-of-band” and is not visible in the
audit data. Using these credentials, the attacker Trudy logs into Bob’s machine B
using ssh. There are numerous logins into B, as shown at the left end of Fig. 6.1.
Some of these are by Bob and others may be by Trudy. To reduce clutter, we elide
the details of these ssh sessions, except the one corresponding to the attack.

In the ssh session corresponding to the attack, Trudy downloads ccleaner malware
using scp, and then executes it. This malware analyzes the files in Bob’s home
directory. It selects several files to hold as ransom. Each of these files are replaced
with their encrypted versions, which are indicated with a .tkn suffix in the figure.
When ccleaner starts up, it also executes dbus-launch, a behavior associated with
some of the libraries and toolkits used by it.

In a parallel ssh session, Bob logs into B and initiates a backup of the files in
his home directory to a second host A. This activity is shown at the left bottom of
Fig. 6.1, and happens to take place immediately after the ransomware attack.

Note that benign activities surrounding the attack far exceed the attack activity.
To reduce clutter, we have elided many of these benign activities, including: many ssh
sessions for Bob, the details of all the files that were backed up, subsequent activities
of dbus-launch, and so on. If those details were included, then the picture will be at
least 10 times larger.

Challenges This attack poses many challenges for detection and forensic analysis
tools. By using stolen credentials, Trudy enters the system without triggering any
alarms related to typical break-in activities, e.g., scanning for and exploiting known
vulnerabilities, or clicking on email attachments. By using novel malware with a dis-
guised name, Trudy avoids triggering most code signature and file-name based mal-

64

Event Tag to New tag value for different subject types
update benign suspect suspect environment

create(s, x) x.dtag s.dtag
read(s, x) s.dtag min(s.dtag, x.dtag)
write(s, x) x.dtag min(s.dtag + ab, x.dtag) min(s.dtag, x.dtag) min(s.dtag + ae, x.dtag)
periodically: s.dtag max(s.dtag, db∗s.dtag+(1− db)∗Tqb) no change max(s.dtag, de∗s.dtag+(1− de)∗Tqe)

Table 5.1: Propagation rules for operations on data. Here, dtag refers to the data
tag. Tqb and Tqe stand for quiescent tag values for benign and suspect environment
processes, set respectively to 〈0.75, 0.75〉 and 〈0.45, 0.45〉 in our implementation. At-
tenuation (ab and ae) and decay rate (db and de) settings are discussed in Section 5.7.

ware detectors. By blending with the behavior of legitimate ccleaner program, Trudy
can also evade behavior-based and anomaly-based attack detectors. In contrast, we
present effective detection techniques using provenance tags, and in particular, a pri-
oritized approach for tag propagation. Our technique is not only accurate on ccleaner,
but also other stealthy attacks, including those that use in-memory payloads, browser
extensions, and in one instance, kernel-resident malware.

The challenges faced in scenario reconstruction become extremely formidable,
given all the intermixing with benign activities in this attack. SLEUTH’s approach
of cost-based pruning of forward paths is somewhat helpful, but the resulting graph
still contains over 3000 nodes. This is at least an order of magnitude larger than
what can be visualized and understood by an analyst. In contrast, we present a tag
prioritization method that generates a far smaller and compact attack graph that
only contains around 40 nodes.

5.3 Tags and Propagation

Provenance graphs faithfully capture all possible dependencies, and hence do nothing
to address dependence explosion. The core of our approach is to develop a system of
tags and propagation rules that prioritize a subset of dependencies for attack investiga-
tion. Our prioritization takes advantage of behaviors common to benign applications
in order to prune away dependency chains unlikely to play a role in attacks. At the
same time, it is conservative (i.e., assumes the worst-case behavior) in its reasoning
about malicious subjects, thus making it evasion-resistant. Key to this approach is
our method for tagging subjects as benign or malicious, a topic covered in Table 5.2,
Sections 5.5.2 and 5.6. Here, we begin by defining the subject tags used to differentiate
these groups:

� suspicious code: This value indicates that the subject’s code is suspect, i.e., it
could be malware.

65

� suspicious environment: This value, abbreviated as susp env, indicates that the
subject’s code is benign, but its execution was started by a suspicious subject,
which controlled the command-line parameters and environment variables.

� benign: This tag value indicates that both the code and running environment of
a subject are benign. Benign subjects may contain exploitable vulnerabilities,
so they may be compromised by malicious inputs.

� trusted: This tag indicates that the subject is capable of protecting itself from
malicious inputs.

Unlike subject tags that are associated only with subjects, data tags are associated
with objects as well as subjects, as both contain stored data. A data tag is a tuple
〈c, i〉, where:

� c is the confidentiality tag that captures data sensitivity, and

� i the integrity tag that captures data trustworthiness.

Highly confidential data needs protection from unauthorized disclosure. Logically, we
distinguish between high and low values for confidentiality. However, since it is easier
to express tag propagation rules as real-valued functions, we use real values for data
tags. Note that by convention, lower numerical values correspond to higher levels of
confidentiality. Thus, secret data such as private keys and password files should be
assigned a confidentiality tag of zero, while public information should be assigned a
tag of 1.0. Values in the range [0.0, 0.5) are considered high confidentiality, while the
range [0.5, 1.0] corresponds to low confidentiality.

High integrity data is safe to consume, i.e., it won’t compromise the subject, or
otherwise enable an attacker to control its behavior. In contrast, low integrity data
may compromise a subject that executes it. For this reason, we refer to high integrity
data (specifically, the range [0.5, 1.0]) as benign and low integrity data (specifically,
the range [0.0, 0.5)) as suspicious. Note the convention that higher numerical values
correspond to higher levels of integrity. Thus, highly trusted data is given an integrity
tag of 1.0, while highly suspicious data will have an integrity tag close to zero. In some
contexts, it is helpful to define suspiciousness tag, which is obtained by subtracting
the integrity tag value from 1.0.

The flow of data tags within the dependence graph is modulated by subject tags
in our framework. To express these modulation rules concisely, we extend standard
arithmetic operations to data tags as follows, where op is one of +,−, ∗ or / operators.
Operations such as min and average can be extended similarly.

〈c1, i1〉 op k = 〈c1 op k, i1 op k〉
〈c1, i1〉 op 〈c2, i2〉 = 〈c1 op c2, i1 op i2〉

66

Event Tag to New tag value for different subject types
update benign suspect suspect environment

load(s, x) s.stag min(s.stag, x.itag)
s.dtag min(s.dtag, x.dtag)

exec(s, x) s.stag x.itag min(x.itag, susp env) x.itag
s.dtag 〈1.0, 1.0〉 min(s.dtag, x.dtag) min(s.dtag, x.dtag)

inject(s, s′) s′.stag min(s′.stag, s.itag)
s′.dtag min(s.dtag, s′.dtag)

Table 5.2: Propagation rules for code operations. Here, stag and dtag denote subject
and data tags. The integrity component of dtag is referenced using itag.

Tag Propagation Rules

Events cause data tags to propagate in the direction of information flow. Unchecked
propagation leads to a dependence explosion, so our core idea is to use subject tags
to modulate data tags flowing through a subject. The guiding principles behind our
design are:

� tag propagation should be conservative for suspect subjects, but can be lenient
for benign subjects.

� tag propagation should prioritize data flows that an attacker can control, while
de-emphasizing other data flows.

� only benign subjects can have benign data integrity; for other subjects, data
integrity is forced to be low, say, 0.45.1

Tables 5.1 and 5.2 consider the main operations that propagate tags. Note that fork

implicitly copies the parent’s tags to the child. Other system calls such as chmod,
unlink, and mprotect are security-relevant but do not change provenance. As a
result, we are left with just the operations listed in the first column of Tables 5.1
and 5.2. These operations typically take two arguments s and x that represent the
subject performing the operation and the object being operated on.

The second column in the table identifies the tag that will need to be updated as
a result of the operation in the first column. The next three columns specify, respec-
tively, the new tag values of this tag for benign, suspicious and suspect environment
processes.

1Suspect subjects may be malicious and hence can generate low-integrity output even if they
only consume benign input. Suspect environment subjects are spawned by suspect subjects, so they
may already hold low integrity data in their memory (as command-line arguments, environment
variables, etc.) and can output this data even before consuming input from low-integrity objects.

67

Propagation Rules for Operations on Data

The first row in Table 5.1 corresponds to object creation. The object simply inherits
the subject’s data tag in all cases. Note, however that an empty file contains no con-
fidential or malicious content. Hence, for benign subjects, we delay this propagation
of subject’s tag until the first write operation. We avoid this lenient treatment for
suspicious and suspect environment subjects, so that objects created by them will
have low integrity from the very beginning.

The second row concerns a read operation. Note that if a process reads highly
confidential (or low integrity) data, this immediately leads to the process memory
holding highly confidential (or low integrity) data. For this reason, we update the
subject’s data tag to be the minimum of its current value and the tag of the data just
read.

The next row concerns the write operation, which propagates the subject’s tag
to the object being written. For suspicious processes, this propagation is immediate,
i.e., we assume that (a) the most confidential data within process memory may be
output at this point, and (b) lowest integrity data within the process memory may be
written. This conservative treatment ensures that all outputs of a malicious process
will be treated with suspicion.

Tag attenuation for benign subjects. Note that even if a benign subject pre-
viously read highly confidential (or low integrity) data, an attacker cannot control
whether a write operation will output such data. To factor this, we attenuate the
confidentiality and integrity tags of a benign subject before propagating them to the
object. Recall that smaller confidentiality (or suspiciousness) corresponds to larger
tag value, so we can achieve attenuation by multiplying by a factor f > 1. However, a
multiplicative factor will have no effect if the original tag value is zero. So, we prefer
an additive factor. We use different additive factors ab and ae for benign and suspect
environment subjects. Since an attacker is likely to have more control over suspect
environment subjects, ae < ab.

For updating the data tags of objects being written, we take the min operation,
so that the object’s tag indicates the most confidential (and the lowest integrity) data
contained within.

Tag decay for benign subjects. If a benign process is compromised by suspicious
input, then this compromise will happen soon after input consumption. Otherwise,
it is likely that the input, even though it was deemed suspicious at first, is really
benign. So capture this intuition, we gradually lift the integrity tag to its quiescent
value by applying a decay operator. Decay is not applied to higher tag values, thus
leaving them untouched.

Tag decay is meaningful for confidentiality as well. Long-running benign applica-
tions that use highly sensitive data, e.g., passwords or keys, are designed to use them
quickly, and then erase them from memory, or at least prevent them from being emit-
ted in their output. For simplicity, we have used the same decay rate and quiescent

68

Name Description Operation(s) Data integrity Other
condition conditions

MemExec Prepare binary code for execution mmap(s, p),mprotect(s, p) s.itag < 0.5 incl exec(p)
FileExec Execute file-based malware exec(s, o), load(s, o) o.itag < 0.5 s.stag is benign
Inject Process injection inject(s, s′) s.itag < 0.5 s′.stag is benign
ChPerm Prepare malware file for execution chmod(s, o, p) o.itag < 0.5 incl exec(p)
Corrupt Corrupt files write(s, o),mv(s, o), rm(s, o) s.itag < 0.5 ≤ o.itag
Escalate Privilege escalation any(s) s.itag < 0.5 changed userid
DataLeak Confidential data leak write(s, o) s.itag < 0.5 s.ctag < 0.5 ≤ o.ctag, socket(o)

Table 5.3: Provenance-based policies for attack detection. Here, socket(o) holds when
o refers to a socket, while incl exec(p) holds if p includes the execute permission.

value for both confidentiality and integrity tags.
As is common in modeling decays, we have used an exponential decay function. If

the decay operation is applied once for each period t, then a tag with an initial value
v0 < Tqb will change to vn after n periods, as given by the following equation. Since
db < 1.0, vn converges to Tqb for large n.

vn = v0 ∗ dnb + (1− dnb) ∗ Tqb

This rationale for decay does not apply to suspicious processes, so no decay oper-
ator is applied to them. For benign processes running within a suspect environment,
a decay operator can be applied, but the rate parameter de should be larger than
db, reflecting a greater level of skepticism about their behavior in comparison with
benign processes. For the same reason, Tqe should be smaller than Tqb. In our imple-
mentation, we have used Tqe = 〈0.45, 0.45〉.

Propagation Rules for Operations on Code

Table 5.2 specifies propagation rules for code-related operations. In general, loading
causes the integrity tag of loaded object to propagate to the subject. (This is the
primary means of determining subject tags, a topic further discussed in Section 5.6.)
For this propagation, we treat data integrity in the range of [0.5.1.0] as benign, while
the range [0.0, 0.5) is treated as suspicious. In addition, recall that the maximum data
integrity of a subject is bounded by its subject tag. For this reason, all operations
that load code into a subject s propagate the data integrity of the code object to the
data integrity of s. In particular, we take the min of the data integrity of s and the
code object.

Consider the load operation that is typically used to load a library into a subject’s
memory. When a benign process loads an object, its subject tag is downgraded to
suspicious if the object has a low integrity tag; otherwise, the subject tag is left un-
changed. This behavior is captured by the min operation used to update the subject
tag of benign subjects on a load operation. The same logic applies to suspicious as
well as suspect environment subjects.

69

Although exec is similar to load in terms of loading new code for execution, there
are several important differences as well. In particular, exec causes the code memory
to be cleared, so we simply overwrite the subject tag for benign code with the integrity
of the new code. Moreover, since exec causes data memory to be cleared, we set the
data tag to 〈1.0, 1.0〉 to indicate the absence of confidential data, and to reset its
data integrity tag to be high. (Recall the condition that data integrity tags can never
exceed the subject tag, so, the value of the integrity tag will automatically be reduced
to that of the object just loaded.)

The above logic for updating subject tag on exec operations applies to subjects
with a suspect environment as well. In addition, we no longer consider the process
to be running in a suspect environment since the process performing the exec isn’t
suspicious. But we do not reset the subject’s data tags, as our level of trust on these
processes are strictly less than that of benign subjects.

For exec’s by suspicious processes, the above argument for replacing their subject
tag with that of the executable continues to hold. However, note that since the
process is starting out to be suspicious, the process after exec must be considered, at
a minimum, to be in a suspect environment, and hence we take a min with susp env.
For data tag value, we apply the min operator as in the case of load.

Finally, we turn our attention to the inject operation, which loosely corresponds
to one subject modifying the code of another. There may be no single system event
that corresponds to inject, so it may be necessary to piece together a set of related
operations. For instance, on Windows, an inject may correspond to a combination of
operations made by a process s to open the memory of another process s′, write to it,
and then create a remote thread. On Linux, it may correspond to a combination of
ptrace system call made by s to attach to another process s′, followed by operations
to modify the memory of s′. Regardless of when an inject is recognized, its behavior
is similar to code loading. So, the rules for updating the tag are similar to those for
the load operation.

5.4 Provenance-Based Attack Detection

Our key contribution here is to show that naive tag propagation can lead to a large
number of false positives, while our tag prioritization achieves a dramatic reduction
in this number. Secondly, our policies are more refined, enabling them to detect
stealthy attacks based on in-memory malware. According to a recent report [6], a
majority of threat actors (57%) avoided file-resident malware in 2018, choosing to go
with in-memory malware, as it can evade most existing threat detectors (which are
based on the presence or execution of file-resident malware). As further evidence of
novelty in these policies, our approach was able to detect attacks that made use of
preexisting rootkits and kernel-resident malware.

Table 5.3 summarizes the attack detection policies used in our system. These
policies have the same general structure: they all concern a system call (e.g., writing

70

an object), with conditions imposed on (a) the data integrity tags of the subject
and/or objects involved, and (b) other information associated with the call, such as
permissions and userids. The policies in Table 5.3 abstract some of the essential
steps of APT attacks [2, 8, 105], including the initial exploit, foothold establishment,
privilege escalation, and exfiltration of sensitive data.

The first row of Table 5.3 aims to capture the execution of in-memory malware.
This may either represent a memory corruption exploit used in the initial exploit
stage, or an advanced in-memory payload used for attacker’s foothold establishment
or expansion. In order to trigger this policy, a subject’s data must have suspicious
provenance (signified by an integrity tag less than 0.5), and some of this data should
be readied for execution, which requires the use of mmap or mprotect system calls
with execute permission enabled. (Note that mmap and mprotect also occur during
library loading operations. Our system maps these operations into a load, thus
preventing this policy from being triggered by file loads.)

The second row is aimed at file-based malware execution. It is triggered by the
load or execution of a file with suspicious provenance. The third row is similar, except
that instead of a subject voluntarily loading suspicious code, malware is injected into
its address space by another subject.

The fourth row detects a step in preparing file-based malware for execution by
making the file executable. It requires the object’s data to have suspicious provenance.

The fifth row detects overwriting of important system files (or registry entries),
a step that is typically used to establish a (more permanent) foothold on a host. It
is triggered by an attempt by a subject with suspicious provenance to overwrite a
higher integrity object.

The sixth row recognizes a privilege escalation attack. This policy is triggered by
any system call by a subject with suspicious provenance, provided the userid before
and after the call are different.

Finally, the last row captures data exfiltration: an alarm is triggered when a
subject with suspicious provenance writes sensitive data to a network socket that is
not authorized for confidential data.

5.5 Attack Scenario Reconstruction

The central goal is to connect various attack steps to provide a high-level summary
of an ongoing attack campaign. To achieve this, we first develop a dependence-based
analysis to identify the initial attack step, also called the entry point. We then perform
a tag-based forward dependency analysis to construct a graph that summarizes the
campaign. We describe these two steps below.

71

5.5.1 Entry Point Identification

Attack campaigns consist of many steps. Some of these steps lead to numerous alerts,
e.g., file corruption and data leak policies can easily raise thousands of alerts. It is
infeasible for an analyst to track down each alert individually, so we have developed
an alert aggregation and prioritization technique further described below.

Given an alarm, we first associate it with a subject or object originating it. For
alarms raised on an input event, we consider the object to be the originating node.
For all other events, the subject is considered the originator. We also assume that
each alarm has an associated weight, which is a real number between 0 and 1 that
reflects our confidence level in the alarm.

Given an alarm originating at node n, we perform a backward search in the de-
pendence graph for the closest node n′ that also triggered an alarm. If we don’t find
such an n′, then we call this a primary alarm, and set precursor(n) to null, and
weight(n) to be the weight of the alarm. Otherwise, the new alarm is classified as
secondary; we set precursor(n) to precursor(n′), and add the weight of the alarm to
the weight of precursor(n′). Note that primary alarms have the combined weight of
all the alarms ever raised.

For simplicity, our implementation follows only subject to subject edges while
searching for n′, and ignores edges between subjects and objects. (For alarms orig-
inating on objects, the first hop uses an object-to-subject edge, but the rest are
subject-to-subject edges.)

An analyst can now pick the top few primary alarms with the highest weight, and
investigate them further. We designate the least common ancestor of the selected
primary alarm nodes as the entry point. In cases where the top-ranked primary
alarms have a much higher weight than the rest, this entry point discovery does not
require human assistance, and can be fully automated.

5.5.2 Forward Analysis

If the entry point or any of the primary alarm nodes are processes with benign subject
tags, then their subject tag is modified to suspicious. Tag propagation rules are rerun
on these processes, as well any descendants whose tag has changed as a result of this.

Next, a depth-first search of the dependence graph is initiated at the entry point
node. This search does not visit nodes whose data integrity tag is above a set threshold
(which defaults to 0.5, but may be changed by the analyst). This search identifies
the nodes that will be included in the scenario graph. Next, we add all the edges
incident on these nodes. We then add all the nodes attached to these newly added
edges. As a final step, we combine multiple edges between two nodes if they have the
same name, e.g., multiple reads.

72

S:scp -t ./ccleaner

O:~/ccleaner

CRTWR

S:./ccleaner

LDEXE

S:scp -r /home/admin/*
 admin@128.55.12.118:./backup/

RD

SUCLN

O:~/8675309
O:~/883929418855.tmp

CRT WR RM

O:~/9006492568
O:~/883929418855.tkn

O:~/024543832898
O:~/2124894608

CRT WR

S:dbus-launch --autolaunch
 67c5ab56bd0c88de0302473d5bb380e2

 --binary-syntax --close-stderr

CLN

O:~/8675309.tkn

WRCRT RD

RD

O:/var/lib/dbus/machine-id

RD

O:Pipe

RD

RD WR

SUCLN

S://bin/dbus-daemon
--fork --print-pid 5

 --print-address 7 --session

CLN

O:/sys/devices/system/cpu/online

RD

O:/etc/drirc

RD

O:/home/admin/*

RD

O:/usr/bin/dbus-launch

EXE

RD

O:/etc/passwd

RD

O:Pipe

RD

WR

SU

O:/bin/dbus-daemon

EXE

O:/usr/share/dbus-1/services/org.xfce.FileManager.service

RD

Figure 5.2: Scenario Graph constructed by Morse for CCleaner Ransomware

5.6 Putting it All Together: Analysis of CCleaner

We now illustrate how the techniques described so far come together to analyze the
ccleaner attack from Section 5.2. The resulting graph, as seen by the analyst, is
shown in Fig. 5.2. Note that the graph generation is fully automated, and involves
no manual post-processing.
Data Tag Initialization. Newly created objects and subjects inherit their tags
from the subjects that create them, as described in Tables 5.1 and 5.2. But we need
a separate mechanism for assigning tags to pre-existing entities such as (a) processes
and files existing before the start of data collection, and (b) network endpoints.

Tag initialization can be based on an organization’s host configuration practices
and policies. Alternatively, they may be learned by observing the use of files during
a training period. Neither of these options were available to us in our experiments.
The dataset we used did not come with any documentation of host configuration
practices. Moreover, although some training data was included, the behavior observed
on the days of attacks differed significantly from the training data, thus ruling out the
training option as well. For this reason, we relied on the following minimalist approach
in our evaluation: we designated /etc/passwd, /etc/shadow and the /var/log/

directory as confidential. All files originally present on the system were assigned high
integrity. Finally, network addresses were assigned low integrity and confidentiality.
This tag initialization is consistent with our threat model (Section 5.7) and sufficient
for our evaluation. Our tag initialization code, used in the analysis of all the attacks
in our evaluation, consists of 14 lines in E∗.
Subject Tag Initialization. Similar to our treatment of pre-existing files, all pro-
cesses that were running at the start of data collection (e.g., servers such as sshd)
were marked benign.

Subject tags of benign processes change to suspicious if they exhibit suspect be-
havior, e.g., loading or executing low-integrity code, or being injected by a lower
integrity subject (Table 5.2). Additionally, when a number of alarms can be traced
back to a subject, that subject is marked suspicious (Section 5.5.1).

73

Attack Detection. Note that the initial login by Trudy does not trigger any alarms.
She is using stolen credentials, but our system has no information about this theft.
Her IP address is unremarkable as well. When she downloads ccleaner, it is given a
low integrity since it is being downloaded from an unknown internet site. When this
file is executed, it triggers the FileExec alarm from Table 5.3. The ccleaner process
is also marked as a suspect subject by the exec rule in Table 5.2. As a result, its file
overwrite (or remove) operations trigger the Corrupt alarm as well.

While the policies shown in Table 5.3 have been sufficient in our experimental
evaluation, note that additional attack detectors can easily be incorporated in our
system, and used to (a) identify and tag suspicious subjects, and (b) trigger scenario
graph generation.
Entry Point Identification. The entry-point identification technique described
in Section 5.5 traces back the above FileExec and Corrupt alarms to Trudy’s scp

process. It is now given a subject tag of suspicious, and the tag propagation rules are
rerun.

Forward Analysis. Since the scp and ccleaner processes have suspicious subject
tags, no tag attenuation or decay is applicable to them. Hence, every file written by
these subjects is assigned a low integrity tag, and their child processes continue to be
suspicious.

When ccleaner’s child executes dbus-launch, a benign file, it is marked as suspect
environment, as per the execve rule in Table 5.2 (middle column). As a suspect
environment process, when it executes another benign file, dbus-daemon, this execve
rule (see the right-most column) causes it to be marked benign. Note that dbus-

daemon still has low data integrity, but due to attenuation and decay, its child
processes end up having benign subject and data tags.

Recall that our forward analysis starts at the entry point node and traverses for-
ward through all nodes (objects or subjects) with data integrity ≤ 0.5. The resulting
graph is shown in Fig. 5.2.

Refinement and Rerun. Analysts can refine and rerun this analysis in order to
convince themselves that some components of the attack haven’t been missed. Since
our forward analysis typically takes a small fraction of a second, analysts can explore
refinements rapidly.

Some of the possible refinement actions include: (a) marking additional subjects
as suspicious, (b) trying alternative attenuation and decay values, (c) changing the
tag value threshold for including a node in the scenario graph, or (d) extending the
graph forward at selected nodes. For this attack, there were no obvious candidates
for (a). We tried (b) through (d), but found no more malicious activity.

5.7 Experimental Evaluation

Platform. The system under attack consisted of multiple hosts running recent

74

Data- Duration # of Short attack
Attack name used in ground truth and short description of attack

set (hh:mm) events name

L-3 263:05 714 M

Firefox
backdoor

Firefox backdoor w/ Drakon in-memory: Firefox is exploited by a
malicious web site to execute an in-memory payload. This provides
a remote console for the attacker (Fig. 5.6).

Browser
extension

Browser extension w/ Drakon dropper: Exploit the victim system
using a preexisting malicious Firefox browser extension, drop and
execute a malicious file on disk (Fig. 5.11).

Executable
attachment

Phishing e-mail w/ executable attachment: A malicious executable
file was sent as an email-attachment, which, after opening,
established a connection to the attacker’s machine.

F-3 263:28 21 M
Malicious

HTTP request

Nginx backdoor w/ Drakon in-memory (4 instances): Attacker
exploits Nginx server using a malicious HTTP request. Nginx then
downloads and executes several malicious files (Fig. 5.7).

L-4
15:28 36.5 M

User-level
rootkit

Azazel: Using a preexisting user-level rootkit, the attacker
connected to the system using a remote shell and ran
reconnaissance commands. (Fig. 5.12)

CCleaner
ransomware

VNC attack: Motivating example discussed in Section 5.2 (Fig. 5.2).

Recon w/
Metasploit

Metasploit: Malware was downloaded and executed using Metasploit,
giving the attacker remote access. Attacker ran various
reconnaissance commands using this capability (Fig. 5.8).

Kernel
malware

Firefox Drakon: In-memory exploit works with a preexisting
malicious kernel module for privilege escalation. This allowed the
attacker to compromise the sshd server (Fig. 5.9).

F-4 11:53 37.2 M

Dropbear
Trojan

Dropbear SSH: Using a pre-installed Trojan ssh server, the attacker
logged into the victim, ran multiple reconnaissance commands and
exfiltrated the results.

Recon w/
Rootkit

Micro APT: The attacker uploaded two rootkits using scp to the
target systems separately, executed them, gained root privilege
and ran multiple recon commands (Fig. 5.10).

Table 5.4: Attacks contained in our datasets. L-3 and F-3 are from the 3rd DARPA
TC red team engagement, while L-4 and F-4 are from the 4th engagement.

versions of Ubuntu Linux and FreeBSD. Our analysis was performed on an Ubuntu
18.04 Linux laptop with an Intel 2.7GHz i7-7500U CPU and 16GB memory.
Threat Model. Similar to previous research on attack reconstruction from audit
logs [60, 61, 72, 92, 105], we assume that attackers cannot compromise audit record
collection or the log itself. Best results are obtained if (a) victim systems start
off in a benign state, i.e., without any pre-existing malicious software, and (b) all
security-relevant system calls and arguments are included in the audit log. However,
real-world systems may not always satisfy these conditions. Indeed, several of the
attacks in our dataset relied on pre-existing malware. The logs were also incomplete
due to missing system-call arguments and/or provenance in some cases. Despite these
factors, Morse was able to produce very good results.

75

Firefox
Backdoor

Browser
Extension

Executable
Attachment

User-Level
Rootkit

CCleaner
Ransomware

Recon w/
Metasploit

Kernel
Malware

Malicious
HTTP Req.

Dropbear
Trojan

Recon w/
Rootkit

101

102

103

104

105

11

13,100
6,500

21,700

3,100 2,300
3,600

470

59,967

334

11
24

44
95

39

14

315 288

1,988

15

G
r
a
p
h
S
iz
e

(n
u

m
b

er
o
f

n
o
d
es

)
Naive forward propagation Using Tag Decay

Figure 5.3: Reduction in scenario graph size achieved using tag attenuation and decay.
The average size reduction is 35 times, and no relevant nodes were dropped.

5.7.1 Dataset

Many previous works [60, 72, 86, 92, 98] have based their evaluation on attack datasets
created by the authors themselves. This choice is not optimal, as it can introduce a
bias in attack selection that favors the authors. Yet, it is unavoidable in the absence
of third-party datasets. We have therefore chosen to evaluate our system using at-
tacks carried out by an independent red team, as part of the DARPA Transparent
Computing (TC) program.

DARPA organized five red team engagements between 2016 and 2019. The scale
and sophistication of these engagements increased significantly after the first two
engagements, so we focused our evaluation on the third and fourth engagements.
(The fifth engagement had not taken place by the time this work was carried out in
early 2019.) Note that the third engagement data has already been publicly released
[3] by DARPA, while the rest may be available on request.

In its choice of attacks, the red team was guided by what they considered were
emerging stealthy APT techniques. But they were less concerned about data com-
pleteness. For instance, audit data collection typically began long after many back-
ground services had been started. As a result, they were unable to track provenance
through such services. Moreover, some of the red team attacks relied on rootkits or
malicious kernel modules that had been present on the victim system prior to audit
data collection. We believe that similar gaps are unavoidable in real-world systems,
and hence the red team data enables a realistic evaluation that wouldn’t have been
possible, had we created the data on our own.

76

Dataset
FileExec MemExec ChPerm Corrupt CDL Escalate Total Alarms

Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

L-3 479 1.31x 1.45M 13.96x 9 1.41x 184K 10.53x 13.4K 40.36x 959 1.54x 1.65M 11.54x
L-4 53 18.33x 337K 16.73x 66 22.45x 32K 13.68x 1.88K 15.95x 211 1.92x 371K 16.45x
F-3 19 1x N/A N/A 1.81K 1.86x 6.4K 1.91x 41.03K 94.19x 113 21.98x 49.4K 11.32x
F-4 38 9.5x N/A N/A 1.82K 2.65x 166K 16.85x 53.90K 4.84x 243 4.52x 222K 7.85x

Average 3.89x 15.28x 3.53x 8.25x 23.28x 4.14x 11.40x

Table 5.5: Alarm reduction due to tag attenuation and decay, with ab = 0.2, db =
0.25, ae = 0.1, de = 0.5. The last two columns show the reduction across all alarm
types, while the others break it down by alarm type. “Base” columns show the alarms
generated by Sleuth, while “Ours” show the reduction achieved by Morse.

Data from DARPA TC Engagement 3

In our evaluation, we used the datasets from the Trace and Cadets teams in the
DARPA TC program [3]. Trace data, henceforth called L-3 dataset, is derived from
Linux audit data. Cadets data, called F-3 dataset, is derived from FreeBSD DTrace
[4] data. More details about these datasets is shown in Table 5.4.

According to the ground truth provided, there were four attacks that (mostly)
succeeded in L-3, plus several failed attempts. There were five attacks in F-3, of
which four were repetitions of the same attack. The last attack, which also appeared
in L-3, is a web-site password stealing attack that lures the user to a phishing web
site. There are no subsequent effects on the victim’s machine or network. As a result,
this attack is not visible in the system-call audit data, which just shows the user
visiting a web site — a perfectly normal activity. So we have omitted this attack
from our analysis, and show only the remaining attacks in Table 5.4.

Data from DARPA TC Engagement 4

The L-4 and F-4 datasets shown in Table 5.4 are from the 4th red team engagements
involving a pair of Ubuntu Linux and a pair of FreeBSD systems that interact with
each other. While the attacks themselves were more stealthy than Engagement 3,
and involved attacks that spanned multiple hosts, the adversarial team chose to work
in a serial fashion, focusing on just a single operating system on each day of the
engagement. As a result, the datasets were shorter.

5.7.2 Effectiveness of Tag Attenuation and Decay

Parameter Selection. Our method is characterized by the rates of attenuation and
decay for benign and suspect environment subjects. Values of these four parameters
(ab, db, ae and de) can be chosen based on a high-level understanding of how they affect
alarms. For instance, consider a benign subject s1 reads a file f1 with integrity 0.0
and writes to file f2, which is then read by another benign subject s2 that then writes
to f3, which, in turn, is read by a benign s3 that then writes to f4. If we set ab = 0.2,

77

∞ 22 21 20 2−1 2−2 2−3 2−4 2−5

105

106

Decay half-life (seconds)

T
ot

al
A

la
rm

s

TC Engagement 3 (L-3 and F-3)

a = 0
a = 0.10
a = 0.20
a = 0.30

0

100

200

300

400

500

F
al

se
N

eg
at

iv
es

∞ 22 21 20 2−1 2−2 2−3 2−4 2−5
104

104.5

105

105.5

Decay half-life (seconds)

T
ot

al
A

la
rm

s

TC Engagement 4 (L-4 and F-4)

a = 0
a = 0.10
a = 0.20
a = 0.30

0

100

200

300

400

500

Fa
ls

e
N

eg
at

iv
es

Figure 5.4: Total number of alarms and false negatives on TC Engagement 3 and
Engagement 4 datasets using different attenuation and decay rates. The scale for
total number of alarms is on the left, while the false negative scale is on the right.
The total number of true positives are 126 and 425. The total number of alarms
without attenuation and decay are 1.69 million and 0.59 million respectively, and
they reduce by 10x with tag attenuation and decay.

78

then it is easy to see that f2 and f3 will have low integrity (specifically, integrity
of 0.2 and 0.4 respectively), but f4 will have a high integrity. In other words, this
choice of ab limits low integrity data from propagating beyond two subject-to-object
hops. This seems like a sensible choice: it is extremely unlikely that one can craft
malicious data f1 that will first exploit a vulnerability in s1 to compromise it, and
cause it to produce another malicious file f2, which, in turn, exploits a vulnerability
in the second benign subject s2, causing it to produce another malicious file f3 that in
turn contains an exploit for s3. For suspect environment subjects, we set ae = 0.1 to
reflect the fact that attackers have more control over suspect environment subjects.

We can use a similar process for choosing the decay rate parameter db. When a
benign subject consumes malicious input, it usually takes a very short time for the
exploit to succeed or fail, say, 50 to 200 milliseconds. Accordingly, we could set the
half-life of db to be a slightly above this threshold, at 0.25 seconds. Note that in this
context, half-life is the duration in which the difference between the current data tag
and its quiescent value will be halved. For instance, if a benign subject starts with an
integrity of 0.15, in 0.25 seconds its integrity will increase to 0.45. (Recall that we use
0.75 as the quiescent data tag value for benign subjects.) For suspect environment
subjects, we use double this value, i.e., de = 0.5 seconds.

We validate the above analysis-driven selection of decay and attenuation param-
eters using three sets of experiments below.

Scenario Graph Size Reduction

Figure 5.3 summarizes the reduction in scenario graph sizes achieved using tag atten-
uation and decay. These graphs were generated as described in Section 5.5.2: starting
from the primary alarm, and retaining only nodes with data integrity below 0.5. The
geometric mean of the reduction achieved across all the attacks in our dataset is about
35. No relevant nodes were missed.

Note that in some cases, the resulting graphs are still large, especially in the case
of Dropbear, with about 2K nodes. This is because Dropbear is an SSH server that
continues to be used for the duration of the dataset, and any of its actions during this
period could actually be malicious. However, in realistic settings, the analyst would
want to construct the scenario graph soon after an alarm is triggered. We observed
that if the graph is generated within 10 minutes of the attack, our approach would
indeed generate a compact graph consisting of just 20 nodes.

Sleuth [61], our previous work, also achieves alarm reduction using two sub-
ject tags, called code- and data-trustworthiness tags. By triggering only on code-
trustworthiness, it reduced false alarms by two orders of magnitude on TC Engage-
ment 1 dataset. However, this strategy causes it to miss half the attacks in Engage-
ment 3 and 4, including the Firefox backdoor, user-level rootkit, kernel malware,
dropbear, and some of the malicious HTTP requests.

79

Alarm Reduction

To properly evaluate our approach of alarm reduction, we calculated the alarm re-
duction achieved on an hourly basis, and computed its geometric mean. This was
done individually for each alarm type, as well as the total number of alarms. These
results are shown in Table 5.5. Across all datasets and all alarm types, our approach
achieved an average of 11.4x reduction in the number of alarms.

Note that Morse’s FileExec, MemExec, ChPerm, Corrupt and DataLeak
policies match those of Sleuth but for the use of tag attenuation and decay. Conse-
quently, Sleuth’s alarm counts correspond to the “Base” column in Table 5.5. Thus,
Morse generates an order of magnitude fewer alarms than Sleuth.

False Negatives

High values for tag attenuation and/or decay can lead to false negatives. To assess
this potential, we plot the total alarm numbers and the false negatives (based on the
ground truth) in Fig. 5.4. Alarm number curves are sloping down, with the y-scale
shown on the left of each chart. False negative curves slope upward, and their scale
is shown on the right side of the chart.

From the charts, it is clear that false negatives are generally absent at attenuation
rates of 0.2 or lower, but they increase afterwards. At rates above 0.25, if low integrity
data from the internet is written to a file after passing through a pipe, the file will
have high data integrity (i.e., ≥ 0.5). This behavior, seen with some services such as
ssh, causes attacks to be missed. These results support our initial choice of 0.2 for
attenuation rate. If additional margin of safety is desired, it can be reduced to 0.1.
While this increases alarms, we found that the scenario graph sizes are unchanged
from Fig. 5.3.

At our chosen attenuation rate, false negatives due to decay don’t increase sig-
nificantly until we reach decay rates at least 4x faster than the 250ms we suggested
earlier. These results hold for both datasets we have used in our evaluation. Although
not shown here due to space limitations, this observation holds even if we separate
the datasets further based on the OS.

Summary of Effectiveness

For the attenuation and decay rate selected at the beginning of this section, we achieve
an 11.4x reduction in alarms without experiencing false negatives. We also achieve a
35x reduction in scenario graph size without false negatives. The decay rate could be
increased by a further 4x before experiencing false negatives, while the attenuation
rate could be decreased by 2x without changing scenario graph sizes, thus providing
significant margins of safety.

80

Data
set

Size on
disk (GB)

Number of
attacks

Graph generation
time/attack (sec.)

L-3 23.79 3 0.043
L-4 2.27 4 0.053

F-3 1.18 4 0.030
F-4 1.26 2 0.220

Table 5.6: Runtime for scenario graph generation.

Data
set

Total
events

File size
on disk (GB)

Memory
Usage (GB)

L-3 714 M 23.79 0.49
L-4 36.5 M 2.27 0.11

F-3 21 M 1.18 0.19
F-4 37.2 M 1.26 0.11

Total 808.7 M 28.5 0.90

Table 5.7: Main memory size of dependence graphs.

5.7.3 Runtime Performance

Table 5.6 shows performance related to scenario graph reconstruction. The second
column shows on-disk sizes of data sets in compressed Apache Avro binary format.
The third column shows the number of attacks in each dataset, while the fourth shows
the average time to generate the scenario graphs for these attacks. Even though the
data set sizes range from a few to tens of GBs, scenario graph generation is very fast,
taking on average 69 milliseconds per attack across the 13 attack instances in our
dataset. The principal source of this speed is the compact in-memory dependence
graph representation used in our implementation. Specifically, we have developed (a)
a versioned graph representation that is acyclic, and (b) a notion of full dependence
preservation [63] that eliminates the need to store the vast majority of events, while
guaranteeing accurate forensic analysis results. Table 5.7 shows the resulting in-
memory size of the dependence graph for each dataset. Memory usage varies between
0.7 and 9 bytes per event across these datasets, with the overall average of 1.12
bytes of memory per event.

Construction of the dependence graph from Apache Avro format is fast, taking
about a second per 100K events. This is 10x to 100x faster than the rate of data
generation, enabling Morse to operate in real-time. Consumption from our CSR
format is even faster, operating at about 1M events per second.

81

5.7.4 Analysis of Evasion Attacks

A natural question is whether attackers can evade detection by abusing our mecha-
nisms for mitigating dependence explosion. Tag decay can be abused by artificially
introducing delays between the time a subject reads input and the time it writes it.
Tag attenuation can be abused by making many intermediate copies of data. Both
abuses are easy if performed by an attacker-controlled process. However, our system
is designed to tag such processes with a suspicious subject tag. Since tag decay and
attenuation are not applied to suspect subjects, no evasion is possible for such sub-
jects. To successfully abuse our tag explosion mitigation techniques, attackers need
to control or co-opt processes with benign or susp env subject tags.
Controlling benign processes. The primary means for attackers to control a
process is by having it execute their code. This requires the use of a load, exec or
inject operation shown in Table 5.2. Since these operations change the subject to be
suspicious,, they don’t serve the goal of controlling a process with benign subject tag.

Command interpreters such as python and bash can use read operations to load
scripts, and this may provide an evasion path for an attacker. Our system treats read
operations as loads for command interpreters, thereby closing off this option. (The
list of command interpreters is specified in E∗.)

Another evasion strategy is to use in-memory code. By monitoring the mmap/mprotect
operations required for this, our MemExec policy can detect such attacks (and did
so in our evaluation).

Finally, attackers may use stolen credentials to access an interactive command
shell. We rely on additional suspicious activities to detect such attacks. In our
experimental datasets, attackers downloaded and executed malware, overwrote library
files outside of the normal software update/install mechanisms, or exfiltrated sensitive
information. Our entry point identification traced these actions to the shell process.
This process was assigned a suspect subject tag, stopping it from abusing our tag
optimizations.

Naturally, it is possible for attacks to go undetected. But since we support ad-
ditional external detectors, this possibility isn’t specific to our system. Indeed, an
analyst won’t even initiate a forensic analysis without signs of an attack, so the tag
values become moot.
Co-opt benign process. Attackers may try to have their data copied over many
times by benign processes. The tag of the final copy can then surpass the low integrity
(or high confidentiality) threshold due to tag attenuation. But this isn’t as simple as
using a benign cp program to copy data. In particular, the attacker would have to
control command-line arguments to cp. This can be accomplished if the attacker’s
process created the cp process, but then, cp would be a susp env subject (discussed
further below) rather than a benign one. So, attackers have to rely on pre-existing
file-copying workflows, e.g., the backup operation in the ccleaner example. We believe
it is hard enough to find a string of such benign workflows, but if an attacker manages
to do so, the mitigation measures described below provide a way to cope with them.

82

Naive
Propagation

Without Using
env Tag

Using
env Tag

104

105
111,082

3,593 2,833

T
ot

al
N

u
m

b
er

of
N

o
d
es

Figure 5.5: Size of the scenario graph without decay or attenuation, without using
env tag (i.e., no decay or attenuation for suspect environment subjects) and using
env tag.

S:firefox

MEM

MPR CRT

O:/dev/glx_alsa_675

WR

O:stdout

WR

O:IP:3d8245e8:80

WR

O:stderr

WR

O:IP:2e92135:80

WR

O:/home/admin/cache

CRT WR MOD RD RDRD

O:/etc/passwd

RD

S:cache

RD

O:/etc/hosts

RD

CRTMPR RM

SU

O:IP:b49c6b92:80

WR

O:/var/log/xtmp

CRT WR MOD

O:/etc/ld.so.cache

RD

RD

O:/proc/sys/vm/overcommit_memory

RD

/proc/<PID>/stat

RD

O:/etc/group

RD

Figure 5.6: Firefox Backdoor. Firefox was first compromised by a malicious ad
server, resulting in an in-memory payload. This generated multipleMemExec alarms.
Next, an Escalate alarm was triggered, as the attacker escalated privilege using a ker-
nel implant. Installed prior to the engagement, this implant was accessed using the
device /dev/glxalsa675. Subsequently, DataLeak alarms were raised when Firefox
read and exfiltrated /etc/passwd. In the second part of the attack, a cache process
displayed many of the same behaviors (and raised the associated alarms) as the com-
promised Firefox, but the provenance of this process was missing in the data. As a
result, two distinct entry points were identified, namely, the Firefox and cache pro-
cesses. A forward analysis from these entry points resulted in the above graph. Note
that cache removes a file (/home/admin/cache) downloaded by Firefox, indicating
that the two attacks are related.

83

Control susp env process. Techniques to induce susp env processes to execute at-
tacker’s code are the same as those for benign processes. Thus, the detection/mitigation
measures mentioned above for benign processes will pose challenges for attacking
susp env processes,2 forcing them to look for other avenues, e.g., by providing mali-
cious arguments, or manipulating their input/output channels. Reflecting the added
opportunities provided by this richer interface, we use a quiescent value of 〈0.45, 0.45〉
for these processes, i.e., their data integrity will never rise above 0.5, so they will al-
ways be present in the scenario graph seen by the analyst.

Tag attenuation, however, can cause some outputs of susp env processes to have
data integrity above 0.5. To avoid missing attack elements due to this, an analyst
can disable the use of susp env tag altogether, replacing it with suspicious tag. We
found that this change had no effect on the scenario graphs for some attacks, but
affected others significantly. But when we examine the total size of all scenario
graphs in our dataset, it isn’t substantially larger after this change. (See Fig. 5.5.)
In our experience, we found that for some attacks such as the ccleaner and kernel
malware, use of susp env led to substantial simplification of the graph that made
it easier to understand the attack initially. Starting with this understanding, it was
much easier to ascertain that the nodes added by the elimination of susp env tag were
unimportant.

Mitigation. In the discussion above, we showed that many of the obvious approaches
for abusing our tag optimization don’t work. The remaining abuse mechanisms can
be mitigated using the “refinement and rerun” process described in Section 5.6: ana-
lysts can retry scenario graph construction by varying (a) processes assigned suspect
subject tags, (b) attenuation/decay rates, (c) tag threshold for inclusion in the sce-
nario graph, etc. As our system is driven by a small set of rules, the implementation
is very fast, enabling retrials to be completed in a fraction of a second (Table 5.6).

5.7.5 Detection Details and Scenario Graphs

For the attacks in our dataset, we discuss below their detection, entry-point identi-
fication, forensic analysis and scenario graph generation. Two attacks are omitted
because the scenario graph was too large (Dropbear Trojan), or uninteresting (Exe-
cutable Attachment).

Attacks Within Single Hosts

� Firefox backdoor: This attack uses an in-memory payload. The scenario graph
for this attack is shown in Fig. 5.6.

2Just as command interpreters may use read operations for code loading, they may accept code
arguments on their command-line. To account for this, we suppress the transition to susp env if a
suspect subject executes a command interpreter.

84

O:/tmp/vUgefal

S:/tmp/vUgefal BBBB

EXE

O:IP:8b7b0071:80

WR

O:/var/log/devc

MOD WR ATR

O:IP:3da72780:80

WR

O:/dev/null

WR

O:/dev/random

RD

RD

O:/etc/pw.vT9LD5.orig

RD

Figure 5.7: Malicious HTTP Request. This figure shows one of the more suc-
cessful attempts of this attack, which began with an exploit of nginx. A malicious
file /tmp/vUgefal was then downloaded and executed, raising a FileExec alarm. The
attacker went on to write another file /var/log/devc, which was intended to be in-
jected into the sshd process, but this attempt failed. Our entry point identification
identified vUgefal process. A forward analysis from this process yielded the above
graph. We also performed a backward analysis to identify the network entry point
and the nginx process that downloaded /tmp/vUgefal, but these nodes are not shown
above.

� Browser extension: This attack exploited a vulnerable Firefox extension. Its
scenario graph is shown in Fig. 5.11.

� Malicious HTTP request: The attacker tried compromising the sshd process on
the FreeBSD system but failed. The scenario graph shown in Fig. 5.7 captures
one of the attack attempts that includes downloading and executing a malicious
file.

� CCleaner ransomware: Detection of this attack was described in depth in Sec-
tion 5.6.

� Recon with Metasploit: Similar to the ccleaner attack, the attacker uploaded a
malicious file /usr/local/bin/hc to the system using stolen credentials. The file
was later executed and used for running recon as shown in Fig. 5.8.

� Kernel malware: This attack uses pre-installed kernel malware for privilege
escalation, and compromising an existing sshd process, as described in Fig. 5.9.

Attacks With Lateral Movement

Morse tracks lateral movement using cross-host tag propagation. Specifically, if host
A reads from host B within the same enterprise, we propagate the data tags from the

85

S:./hc SU

O:/tmp/ext96481.

CRT WR

S:/tmp/ext96481.

CLN

O:Pipe

WR

O:IP:80370cb9:443

WR

O:/usr/local/bin/hc

EXE

O:/proc/<PID>/*
O:/etc/hosts

O:/proc/net/*
O:/usr/bin/*

O:/bin/dbus-daemon
O:/usr/lib/*

RD

O:/etc/passwd

RD

RD

O:/etc/group

RD

O:/bin/bash

RD

EXE

SU

WR

RD

RD

RD

Figure 5.8: Recon with Metasploit. This attack began with a malicious file hc
that was scp’d onto the victim host using previously stolen credentials. When this file
was executed, a FileExec alarm was triggered. This process, together with another
piece of downloaded malware /tmp/ext96481, probed and exfiltrated sensitive data
to a remote IP address. These actions raised DataLeak alarms. Morse traced these
alarms back to hc. A forward analysis from this node results in the above scenario
graph. A backward analysis from hc revealed the scp process involved and the network
entrypoint, but these are not shown above.

86

S:firefox CLNSU

O:IP:56811fc9:80

WR

O:/tmp/libnet.so

WR CRT

O:/dev/glx_alsa_675

WR

MEM

MPRATR

O:IP:6242293d:80

WR

O:IP:80370c0a:53

WR

RD

S:/usr/sbin/sshd -D

RD

RD LD

WR

RM

CLN

O:Pipe[23-24]

CRTWR

O:Pipe[9-10]

CRT WR

S:/usr/sbin/sshd -D -R

CLN

MPR CRT

O:/home/admin/files/docs/audiobackup

MOD WR CRTATR

S:/home/admin/files/docs/audiobackup 25.7.74.53 80 3

CLN

RD RD

SUCLN

O:/proc/<PID>/oom_score_adj

WR

O:IP:80370c7a:<Ports>

WR

O:IP:80370c75:<Ports>:80370c76:22

WR WR

O:/proc/<PID>/loginuid

WR

O:/usr/sbin/sshd

EXE

O:/dev/urandom

RD

O:/etc/hosts.deny

RD

RDRD

O:/etc/localtime

RD

RD

LD EXE

SU

O:/dev/null

WR

O:/home/admin/work/hosts

RD

O:/home/admin/files/docs/passwd

RD

O:/home/admin/files/launchmyserver.sh

RD

Figure 5.9: Kernel Malware. Firefox, compromised by a malicious website, ex-
ecuted an in-memory payload that triggered several MemExec alarms. Next, an
Escalate alarm was triggered, as the attacker escalated privilege using a kernel
implant installed prior to the engagement. Firefox then downloaded a malicious
file /tmp/libnet.so, which was meant to be injected into an existing sshd process.
However, in the data, there is no injection, but sshd did raise several MemExec
alarms, as well as a FileExec alarm due to loading /tmp/libnet.so. Next, sshd
downloaded /home/admin/file/docs/audiobackup and made it executable, raising a
ChPerm alarm. It also performed some recon and exfiltrated the information, caus-
ing several DataLeak alarms. In total, more than 500 secondary alarms were raised,
all tracing back to Firefox. A forward analysis, performed about 10 minutes after the
attack, yielded the above scenario graph.

O:/usr/home/Bill/./mt

S:./mt

EXE

O:/dev/tty

WR

O:IP:6cf7f069:80

WR

S:uname -a

CLN

O:/usr/home/Bill

REN

O:/usr/home/Bill/passwd

REN

O:/libexec/ld-elf.so.1

LD

LD

O:/etc/libmap.conf

RD

RD

O:/var/run/ld-elf.so.hints

RD

RD

RD

O:IP:6cf7f069:80O:pipe6-7

WR

RD

O:/usr/home/Bill/./passwd

RD

O:/usr/bin/uname

EXE

O:/usr/home/admin/./mt

S:./mt

EXE

O:/dev/tty

WR

WR

S:netstat -na

CLN

O:IP:80370c0a:53

WR

O:/libexec/ld-elf.so.1

LD

LD

O:/etc/libmap.conf

RD

RD

O:/var/run/ld-elf.so.hints

RD

RD

O:pipe6-7

RD RD

RD

O:/usr/bin/netstat

EXE

Figure 5.10: Recon with Rootkit attack. This attack began with uploads of mt,
a rootkit, to two FreeBSD hosts. When mt was executed, a FileExec alarm was
triggered. As mt gathered and exfiltrated sensitive information to an external IP
address, DataLeak alarms were raised. These alarms were clustered independently
on the two machines, tracing back to the mt process. A forward analysis from this
process yielded the above graph. Note that the two graphs are disconnected, except
for the dotted line showing the shared attacker site. A backward analysis from mt
showed that the attacker logged in using scp, presumably using stolen credentials.

87

O:/lib64/ld-linux-x86-64.so.2

S:/etc/firefox/native-messaging-hosts/pass_mgr /home/admin/.mozilla/native-messaging-hosts/pass_mgr.json

LD

O:IP:3d8245e8:80

WR

O:Pipe[114-115]

WRCRT

MEM

CRT MPRATR

S:/bin/sh -c 2E2F6774636163686520263E2F6465762F6E756C6C2026

CLN

O:/etc/firefox/native-messaging-hosts/gtcache

WRCRT

O:Pipe[86-113]

RD

RD

S:firefox

RD

SUCLN

S:./gtcache

CLN

S:/tmp/ztmp

WR

SU

O:IP:a242ef4b:80

WR

S:uname -a

CLN

LD EXE

O:/bin/sh

EXE

O:Pipe[26-27]

WR

CRTMPR ATR

CLN

SUCLN

O:IP:92994497:80

WR

O:IP:119200fc:80

WR

O:Pipe[116-117]

WR CRT

O:/tmp/ztmp

RM MODWR CRT

O:/lib/x86_64-linux-gnu/libc.so.6

LD

LD

O:/dev/urandom

RD

RD

RD

O:/etc/passwd

RD

EXE LD

RD

O:Pipe[305-306]

RD

WR CRT

SU

O:/bin/uname

EXE

O:Pipe[67-71]

RD

Figure 5.11: Browser extension. The attack started when a vulnerable browser-
plugin pass mgr got compromised while visiting a malicious website. This raised
MemExec alarms. Next, the compromised plug-in downloaded a program gtcache
and executed it, resulting in a FileExec alarm. In turn, gtcache downloaded and
executed ztmp. Both programs performed recon to collect and exfiltrate sensitive
information to the network, resulting in several DataLeak alarms. Tracing back from
these alarms, Morse identified pass mgr as the entry point. A forward analysis from
this node yielded the above scenario graph.

sending subject on B to the receiving subject on A. Subject tags are also propagated
in the case of remote access services. Hence, if a suspicious process on host B launches
an ssh session on A, the sshd process on A will also be tagged suspicious. With this
tracking, Morse was able to detect both attacks in our dataset that involved lateral
movement:

� User-level rootkit: The attacker utilizes a pre-existing user-level rootkit to log
into a Linux host, and then moves laterally into a second host. See Fig. 5.12
for additional details.

� Recon with rootkit: The F-4 attack in Fig. 5.10 is simpler, consisting of two
instances of the same attack on two machines.

88

S:socat TCP4-LISTEN:4444,reuseaddr,fork EXEC:cat CLN

S:/bin/bash -l

CLN

S:cat

CLN SUCLN

CLN

S:ps -aux

CLN

S:uname -a

CLN

S:cat /etc/hosts

CLN

S:cat /etc/shadow

CLN

S:/usr/bin/clear_console -q

CLN

S:groups

CLN

S:ls /etc/bash_completion.d

CLN

S:cargo --list

CLN

S:tail -n +2

CLN

S:sudo chsh -s /bin/bash -P

SU

SU SU SU SU

SU

SU

SU

SU SU SUSUCLN

S:chsh -s /bin/bash -P

SU

SU

S:sh -c /bin/bash

CLN

SU

S:/bin/bash

CLN

CLN CLN

SUCLN

S:ifconfig

CLN

S:tcpdump -i eth1 -n icmp

CLN

S:tcpdump -i em2.128 -n icmp

CLN

S:tcpdump -i em2.128

CLN

S:ssh -C admin@128.55.12.79

CLN

S:ssh -C admin@128.55.12.118

CLN

S:ps aux

CLN

S:/bin/sh /usr/bin/lesspipe

CLN

S:dircolors -b

CLN

SU SUSU SU SU SU

S:/usr/sbin/sshd -D -R

SU SUCLN

S:basename /usr/bin/lesspipe

CLN

S:dirname /usr/bin/lesspipe

CLN

SUSU

SU

CLN

S:-bash

SU

SUCLN

S:wall

CLN

S:wall -P

CLN S:/usr/bin/clear_console -q

CLN

S:ls /etc/bash_completion.d

CLN

S:cargo --list

CLN

S:tail -n +2

CLN

S:/bin/sh /usr/bin/lesspipe

CLN

S:dircolors -b

CLN

S:sudo echo greetings

SU

S:sudo wall -P

SU

SU

SU

S:sh -c /bin/bash

CLN

SU

SU SU SUSUCLN

S:basename /usr/bin/lesspipe

CLN

S:dirname /usr/bin/lesspipe

CLN

SU SU

SU

SUCLN

S:echo greetings

SU

SU

SU

S:/bin/bash

CLN

CLN CLN CLNCLN CLN

SUCLN

S:cat /etc/hosts

CLN

S:uname -a

CLN

S:ls --color=auto

CLN

S:ls --color=auto work

CLN

S:cat /home/admin/work/hosts

CLN

SU

SUCLN

SUSU SU SU SU

Figure 5.12: User-level rootkit. This attack takes advantage of a user-level rootkit,
in the form of a shared library libselinux.so, which had been installed on the victim
host prior to the start of the engagement. During the engagement, the attacker
accessed this rootkit to exfiltrate /etc/shadow to a remote IP address, raising a
DataLeak alarm. This was the sole indication of unusual behavior in the audit data,
thus making this the most stealthy attack in our dataset. The attacker, possibly after
using password cracking on this shadow file, obtains access to a second machine via
ssh. Since the sole alarm was generated by a bash process, we marked it suspicious,
and performed a forward analysis from there. Since the resulting graph was large,
we refined the forward analysis to follow only process creation and execution edges
to yield the above graph. Note that the attacker ran several commands to collect
sensitive data, such as tcpdump, ifconfig, and ps. Other notable commands include
clear console and chsh. On the second machine, since a suspect process from the
first machine connected to it, the target process (sshd) was marked as a suspect
subject by Morse. The scenario graph originating from this sshd process has been
shown together with the scenario graph generated on the first host, with the network
connection indicated with a dashed line.

89

Chapter 6

Probabilistic Confidentiality Tag

The ultimate goal of most APTs is to exfiltrate sensitive data relevant to the attacker’s
interest. According to IBM’s X-Force Threat Intelligence Index 2021[64], the top three
attack types of 2020 are Ransomware, Data theft and Server access. 59% percent of
ransomware attacks also blend in data theft so that the attacker can threatened to leak
the sensitive data if a ransom is not paid. To gain access to sensitive information, the
attackers need to gain control of the targeted network by first establishing a foothold
and then moving laterally within the network to gain higher privilege. Although each
APT campaign has its own degree of sophistication, however, the literature agrees
that an attack can be decomposed into some general phases. The Tao of Network
Security Monitoring subdivides the attacks in to five stages [23] and the Cyber Kill
Chain (Lockheed Martin) into seven stages [93], whereas MITRE ATT&CK proposes
a more fine-grained partitioning called tactics [106]. Despite the reference model,
the first step always requires gathering information on the target and it is commonly
defined as “reconnaissance”.The goal of the reconnaissance phase is to identify weak
points of the target network to find weaknesses in its defense. Attackers gathers
information of the victim organization for identifying exploitable weaknesses which
may lead to infiltration of the target network. In some cases the exfiltrated data is also
used for reconnaissance for creating new routes to access other victim environments.

Tag-based or Provenance-based approaches provide a robust basis for detecting
exfiltration because it does not depend on specific patterns of confidential data use.
Pattern-based approaches are prone to false positives because of use by legitimate
applications, and false negatives due to attacks that purposely evade known patterns.
Instead, provenance-based techniques tracks the flow of confidential data to untrusted
network endpoints, so it is unaffected by the exact manner in which confidential data is
gathered. Moreover, legitimate use cases rarely involve untrusted network endpoints,
so those can be largely avoided as well.

The robustness of provenance-based approaches does not address the orthogonal
problem of cataloging all confidential data sources. Every file on every host has to be
tagged, which is a daunting task, considering that a single host often contains hun-

90

S:/usr/sbin/sshd -D -R CLN

S:-bash

SU

CLN

S:ls /etc/bash_completion.d

SU

S:cargo --list

SU

S:tail -n +2

SU

S:/bin/sh /usr/bin/lesspipe

SU

S:dircolors -b

SU

S:netstat -na

SU

S:grep --color=auto LISTEN

SU

S:ls --color=auto /lib

SU

S:fuser -k 4444/tcp

SU

S:fuser 4444/tcp

SU

S:setsid socat TCP4-LISTEN:4444,reuseaddr,fork EXEC:cat

SU

S:/usr/bin/clear_console -q

SU

CLN

S:basename /usr/bin/lesspipe

SU

S:dirname /usr/bin/lesspipe

SU

S:socat TCP4-LISTEN:4444,reuseaddr,fork EXEC:cat

SU

CLN

S:cat

SUS:/bin/bash -l

SU

SU SU SU SU

CLNSU

S:groups

SU

S:ps -aux

SU

S:uname -a

SU

S:cat /etc/hosts

SU

S:cat /etc/shadow

SU

S:sudo chsh -s /bin/bash -P

SU SU

SUCLN

S:chsh -s /bin/bash -P

SU

CLN

S:sh -c /bin/bash

SU

CLN

S:/bin/bash

SU

SU SUSUSU

CLN

S:ifconfig

SU

S:tcpdump -i eth1 -n icmp

SU

S:tcpdump -i em2.128 -n icmp

SU

S:tcpdump -i em2.128

SU

S:ssh -C admin@128.55.12.79

SU

S:ssh -C admin@128.55.12.118

SU

S:ps aux

SU

Figure 6.1: Motivating example: Kernel Rootkit.

dreds of thousands of files. Moreover, not every confidential file is equally sensitive:
an ssh private key is a lot more valuable to an attacker than a typical data file, which
in turn is more valuable than most binaries. Previous tag-based approaches rely on
a few discrete tag values (e.g., “confidential” and “public”), and does not adequately
capture the range of differences in sensitivities of files. Moreover, existing tag-based
approaches are not sensitive to the quantity of information exfiltrated which is crucial
for detecting if an attacker is carrying out reconnaissance on the system using system
tools, e.g., network information, host information etc.

In this chapter, we have developed and implemented a new approach that assigns
real-valued confidentiality tags to files. By interpreting a file’s confidentiality tag as
a probability that an attacker would target a file, we take into account the increased
value of multiple confidential files. At the same time, our probability interpretation
models the diminishing returns from each additional exfiltrated content. Finally, we
have developed a novel approach for automating confidentiality tag assignment by
observing the use of files during normal observation. In particular, files that are
always read prior to privilege change, such as the shadow password file, are assigned
high confidentiality.

6.1 Motivating Attack Scenario

In this section, we illustrate the importance of detecting reconnaissance and data
exfiltration using an attack scenario from a red team engagement that was carried
out as part of the DARPA Transparent Computing program. The red team’s goal was
to organize a highly stealthy cyber- attack, using the following stealthy maneuvers:

91

� Supply Chain Attack. The red team placed a malicious library containing a
rootkit called Azazel before the data gathering started to simulate supply chain
attack. This enabled the attacker to create a backdoor to later gain access to
the system.

� Stolen Credentials. The red team assumed that the login credentials of the
victim user had already been stolen by the attacker. This enabled the attacker
to gain access to the victim machine without raising any suspicion.

� Reconnaissance using system tools. The red team performed reconnaissance on
the victim machine and the network using system tools only and moved laterally
to another machine using the gathered information.

Fig. 6.1 shows the process tree of the dependence graph (also known as provenance
graph) relating to this attack, constructed from the audit log produced by the Linux
auditd daemon. Ovals in this graph are subjects (processes). Edges in the graph
correspond to system events such as read, write, load, fork, execve, and so on. Edges
are oriented in the direction of information flow, and annotated with event names.
To reduce clutter, we only display the process tree of the attack scenario.

Logically, the attack begins with the theft of login credentials for the user Bob,
but this step is assumed to have taken place “out-of-band” and is not visible in the
audit data. Using these credentials, the attacker Trudy logs into Bob’s machine B
using ssh. Also, a malicious library file called libselinux.so was also placed inside the
/lib directory which also assumed to have taken place “out-of-band” to simulate a
Supply Chain Attack.

In one of the ssh sessions, Trudy logs into Bob’s machine and modified the
LD PRELOAD variable to point to the malicious libselinux.so shared object and
exits the system to reduce the attack footprint. Later, when Bob logs into the system
and ran the netcat command, it allowed the rootkit to be loaded into it’s memory
and created the backdoor which would allow the attacker to gain root privilege to
the system as well. Once the backdoor was created, Trudy would later enter the
system using root privilege and perform some reconnaissance on the system to map
the network, steal the shadow file, gather group information, etc. Using the gathered
information Trudy would perform lateral movement within the network to access the
systems that contains sensitive information to her interest.

Note that benign activities surrounding the attack far exceed the attack activity.
To reduce clutter, we have elided many of these benign activities, including: many ssh
sessions for Bob, the details of all the files involved during the sessions, subsequent
activities of ssh logins, and so on. If those details were included, then the picture will
be at least 10 times larger.

Challenges: This attack poses many challenges for detection and forensic analysis
tools. By using stolen credentials, Trudy enters the system without triggering any

92

alarms and completely disassociates her connection of interfering with the malicious
shared library. By using a supply chain attack no alarms would be triggered when
loading the malicious library into a legitimate system tool by a legitimate user. The
only malicious step that took place in this machine is the reconnaissance step taken
to gather sensitive information about the network and the victim machine which by
themselves are not suspicious.

The challenges faced in finding the entry point and generating the complete attack
scenario is even more formidable. The only single event malicious step in this attack
took place towards the end of the attack when Trudy accessed the shadow file. Gen-
erating a forward graph from that particular process would result in an incomplete
attack graph. Also, the attacker cloned the bash process multiple times to hide the
backdoor used using the socat process. Only by detecting the socat process as the
entry point of the attack and running the forward search could give the actual and
complete attack scenario. Otherwise an analyst would have to manually search in
order to find every single part of the attack, which could take days to months.

6.2 Approach Description

Our attack detection and campaign reconstruction techniques operate on a depen-
dence graph. The nodes in this graph represent objects and subjects, and edges rep-
resent events involving two nodes. Objects consist of files, network connections, and
other types of inter-process communication mechanisms. Subjects are processes, while
events are system calls.

Like most previous techniques on attack campaign investigation, our techniques
are also based on dependence analysis. A node in the graph can have numerous
ancestors, each of which could have potentially influenced its content or behavior.
When analyzing a particular event on a particular node, it would be impractically
inefficient to consider each of its ancestors individually, as there can easily be millions
of such ancestors. A common technique for speeding up this analysis is to maintain
a compact summary of information about the ancestors in the form of information
flow tags.

We rely on a graph dependency based formulation introduced more recently in the
context of attack campaign reconstruction [61, 62, 63, 105]. Two tags are associated
with each object: a confidentiality tag that indicates if the object contains sensitive
data, and an integrity tag that pertains to the trustworthiness of its data. Subjects
also contain data, so they too have data confidentiality and integrity tags. In addition,
we introduce an additional sensitivity tag for subjects. Unlike confidentiality and
integrity tags that primarily capture provenance, sensitivity tag is primarily used
during training for inferring confidentiality tag for objects for tag assignment.

Our method is characterized by the three tags mentioned above, the rules for
computing and updating these tags, and tag-based policies for attack detection. We

93

use the same interpretation of integrity tag mentioned in previous works [61, 62].
That is why we omit the description for that. We discuss the subject sensitivity tag
in detail in the training section.

6.2.1 Probabilistic Confidentiality Tags

The most common goal of stealthy attack campaigns is to access and exfiltrate con-
fidential data, e.g., login credentials, financial information, intellectual property, etc.
Confidentiality tags provide important contextual clues that enable accurate attack
detection: data that is likely to be targeted can be assigned high confidentiality (i.e.,
tag values close to 1.0) while the less likely targets are given low confidentiality (i.e.,
tag values close to 0.0). Using these tags, detectors can better discriminate attack
activities from benign background activity.

Accurate tag assignment is a central challenge in applying tag-based techniques.
While it is easy enough to assign a confidentiality tag of 1.0 to highly sensitive infor-
mation such as passwords and private keys, the choice of tags for other files (especially
user files) is far from clear. The underlying problem is the lack of a constructive defi-
nition of confidentiality tags, one that will provide a basis to assign numerical values.
This lack of definition not only impedes tag assignments for files, but also makes it
difficult to reason about the combined value of multiple (moderately) sensitive files to
an attacker. We overcome this problem by developing a probability-based definition
of a confidentiality tag.

Definition 8 (Confidentiality Tag). A confidentiality tag of data item is intended to
capture the probability that this data will be targeted for theft/exfiltration by attackers.

It is not easy to predict every attacker goal and/or preferred attack methods, so
the probability assignments won’t be perfect. Nevertheless, the definition provides a
basis for assigning numbers in the range [0, 1] to data files. More importantly, the
probability interpretation enables reasoning about combined value of multiple files.
If files f1 and f2 are useful to an attacker with probabilities C1 and C2 respectively,
then their combination would be useful with a probability C given by

C = 1− (1− C1)(1− C2) = C1 + C2 − C1C2 (6.1)

This formula is simply the product rule for probabilities, assuming that C1 and C2

are independent1

Note that this rule captures our intuition that the combined value of two files is
more than a single file. If both C1 and C2 are very small, then their combined value
is very close to C1 +C2; otherwise, the C1C2 term cannot be ignored, so the combined

1Specifically, 1 − C1 and 1 − C2 represent probabilities that f1 and f2 are not useful to the
attacker. Thus, (1−C1)(1−C2) represents the probability that neither file is useful to the attacker.
The complement of this quantity represents the probability that at least one of the files is useful to
the attacker.

94

value is somewhat less than the sum. This captures the intuition that as the attacker
accesses more and more sensitive data files, the incremental value added by each file
becomes smaller and smaller. As an example, if the attacker reads 10 files, each
with a confidentiality of 0.01, the combined confidentiality is close to 10 ∗ 0.01 = 0.1.
However, if he reads 100 such files, the combined confidentiality is 0.63, which is far
less than 100 ∗ 0.01 = 1.0.

6.2.2 Confidentiality Tag Assignment

Our technique for inferring object confidentiality tags relies on a training phase.
The inferring scheme is designed to facilitate human understanding using the subject
sensitivity tags, so that an analyst can examine the learned confidentiality tags, and
override them if she so desires. For example, organization specific sensitive files that
would require manual tagging.

Subject Sensitivity Tag In a benign setting highly confidential files containing
system related information are always accessed by subjects with high privilege, for
example the /etc/shadow files can be accessed only by a root process. On the other
hand, processes that communicate with networks do not access confidential files or
sensitive configuration files. For inferring files confidentiality we categorize subjects
into multiple groups. We assign real values between 1.0 and 0 for sensitivity tags for
inferring object confidentiality from these values. Our assumption here is that files
that are only accessed by processes with higher privilege have high probability that
an attacker would target that file. If any files are publicly available or that can be
accessed by any process are unlikely to be an attacker’s target. Another observation
is that, a normal user rarely read system information related files. These files are
mostly read by background processes in the system but can be viewed by anyone.
Reading just a couple of these files may not be harmful but doing it for numerous
files could indicate that someone is trying to gather information about the system.
Files that are regularly accessed by normal users or processes that does not require
any high privilege are mostly never a target of the attacker. For these reasons we infer
confidentiality tags based on the type of subjects they are accessed in benign setting.
Here, we begin by defining the sensitivity tags used to differentiate these groups:

� inv. subject: Only the init process is part of this group. The assigned value for
this group is 1.0.

� root subject: All subjects with root privilege are put into this group. The
assigned value for this group is 0.8.

� non-root benign subject: Any non-root processes with no network activity are
put into this group. The moment the process access (read/write) a network
connection, the tag is updated. The assigned value for this group is 0.4.

95

� non-root unknown subject: Any non-root processes after making a network con-
nection are put into this group. The assigned value for this group is 0.0.

The number corresponds to how many of the files if accumulated will be considered
to be confidential. Reading just a couple of files that are mainly accessed by the root
subject could make a process instantly to be confidential. Where as files that are
mainly accessed by benign subject requires a whole lot to be read to be confidential.
On the other regular files are not given any confidential properties.

We further subdivided the sensitivity tags between non-root benign subject and
non-root untrusted subject depending on the distance of their interaction. For exam-
ple, if a non-root benign subject reads files that are updated by non-root untrusted
subjects we assign the sensitivity tag value of 0.1 for that subject. If a non-root
benign subject reads files that are updated by a non-root subject with sensitivity tag
value of 0.1 we assign the sensitivity tag value of 0.2 for that subject and so on.

We don’t create any group based on the network connection for root subjects be-
cause in benign settings we observed root processes with network activity interacting
with sensitive files e.g., sshd processes.

Inferring Confidentiality Tags from Training Data. The training phase re-
quires data that contains only benign activity. During the training phase for a par-
ticular file, we keep track of all the subjects and their sensitivity tags that read that
file and calculate the geometric mean of the sensitivity of the readers. If file A was
read by n subjects having sensitivity of S1, S2, ..., Sn. The geometric mean of the
sensitivity of the readers of file A will be,

G(SA) = exp(
1

n

n∑
i=1

log(Si + δ))− δ

Here Si can be zero and to handle that we add and later subtract a very small δ
value.

Once we have calculated the mean sensitivity of the readers, the initial confiden-
tiality of file A is inferred as,

CA = G(SA)

6.2.3 Update and Propagation of Tags

Once the tags are inferred from the training we assign them to the objects during the
start of detection time and let them propagate. Note that we do not use the subject’s
sensitivity tag during detection. The sensitivity tag can be replaced by other tags
during detection representing the subjects behavior as in [61, 62] and combined to
get better results. But in this work we are mainly focusing on the data tags. We
update the data tags using the following methods:

96

Propagation of Confidentiality Tags. When a process reads a file, any confiden-
tial data in the file moves into the address space of the process. For this reason, the
confidentiality tag of a subject is updated using Equation 6.1 whenever it performs
a read. Subsequently, when it writes to an object, confidential data can propagate
from its memory to this object. So objects inherit their confidentiality tags from
subjects. Specifically, when a subject creates (or completely overwrites) an object,
the object’s confidentiality tag is set to the confidentiality of the subject. For writes
that partially overwrite the original content, the object accumulates the subject’s
confidentiality tags using Equation 6.1.

Exceptions from these default propagation rules can be specified for specific ap-
plications. For instance, an authentication server may read highly confidential data
such as the user’s password, but the application may be deemed trustworthy and not
prone to leak this information. In such a case, it is appropriate to create a specialized
rule that decreases the confidentiality tag’s probability by a weighting factor before
propagation. We use the integrity tag of the subject to control the propagation of
confidentiality during write. If the subject’s confidentiality is Cs and integrity is Is
then the object’s confidentiality Ca, after the write operation will be,

Ca = 1− (1− Ca) ∗ ((1− Is) ∗ (1− Cs) + Is ∗ 1.00)

This ensures that if a subject contains no exploit then the objects confidentiality
will stay the same otherwise it will be decreased based on the probability the process
containing exploit.

Propagation Rules for Operations on Code. During a clone operation we sim-
ple propagate the tags as it is from the parent to the child process. On load events
we use the same propagation rules as read.

Although exec is similar to load in terms of loading new code for execution, there
are several important differences as well. In particular, exec causes data memory to
be cleared, that we set the confidentiality tag to be 0 and the integrity tag to be
benign, to indicate the absence of confidential data, and to reset its data integrity
tag to be high. Next, we update the confidentiality and the integrity tag to be the
same as the object that was executed.

6.2.4 Attack Detection

We only generate two types of alarm in these work. Note that, we do not focus on
alarms that are generated on code operations such as File Execution alarms which
are generated extremely low in number and are detected quite accurately and demon-
strated in previous work. But as APT attacks are getting sophisticated, attackers
are moving further away from file based attacks. They are mostly carrying out their
attacks by gaining access to the system through stolen credentials, supply chain at-

97

tacks and using system tools. That is why we only focus on alarms generated using
the data tags. We mainly have two types of alarms:

� ProcConf. If a process with low integrity tag (high probability of being com-
promised) becomes confidential i.e., (1 − C) < t, where t is a threshold value,
this alarm is raised.

� DataLeak. If a process with low integrity tag (high probability of being compro-
mised) becomes confidential i.e., (1− C) < t, where t is a threshold value, and
starts writing to an unknown network address or to the terminal, this alarm is
raised.

Although by definition ProcConf alarm will always be triggered before the DataLeak
alarm but the DataLeak alarm can be used to track individual applications that are
leaking sensitive information and also the network address it is leaking the information
to. Also if a benign process already containing sensitive information is compromised
later the ProcConf alarm will not be generated. In that case, the DataLeak alarm
can help to detect the attack during the exfiltration.

6.2.5 Entry Point Identification and Attack Scenario Recon-
struction

One of the core goal of our work is to identify the initial step of an attack campaign.
Although reconnaissance is the initial steps of an APT attack, an attacker could per-
form it in multiple phase in a long time to hide this step. As a result, numerous alarms
will be raised at different time of the attack campaign. It is infeasible for an analyst
to track down each alert individually, so we have developed an alert aggregation and
prioritization technique further described below.

At first we associate an alarm with a subject. Given an alarm originating at node
n, we perform a backward search along the process tree in the dependence graph for
the closest group of nodes N that also triggered an alarm. If we don’t find such a
node, then we place the current node n to a new group N and mark node n as the
entry point of the alarm. Otherwise, the new alarm n is placed in group N and the
marked node in that group is considered the entry point for alarm n.

The backward search is performed until it reaches the initial process or the remote
login server process such as an ssh process.

Next, an analyst can now investigate each alarm group and make an informed
decision. In cases of a group containing numerous alarms can be an indication of
several reconnaissance attempts are being taken place and an analyst could investigate
that group by generating the attack scenario using a forward analysis.

The forward analysis is carried out by running a depth-first search from the entry
point subject. To not clutter the scenario graph the depth-first search only follow
subject to subject edges and subject to object edges. Object to subject edges are

98

ignored at first. If numerous suspicious files were dropped into the system in that
case the depth-first search criteria can to be modified to allowed to include one or
more object to subject edge on each unique path from the entry point. This would
prevent from cluttering the scenario graph and provide better summary of the attack.

6.3 Evaluation

Platform. The system under attack consisted of multiple hosts running recent ver-
sions of Ubuntu Linux. Our analysis was performed on an Ubuntu 20.04 Linux laptop
with an Intel 2.7GHz i7-7500U CPU and 16GB memory.

Threat Model. We assume that attackers cannot compromise audit record collec-
tion or the log itself. Although bests results can be obtained if the log collection
is performed on clean systems and every single system call events are captured but,
in real-world systems it is hard to satisfy these criteria. The datasets we tested our
techniques on contained pre-existing malware and even crucial system call events were
dropped/missing. However, ConfTag was able to detect every single reconnaissance
and dataleak steps despite these factors.

6.3.1 Dataset

Similar to previous research on attack reconstruction from audit logs [61, 62, 105],
we valuate our system using attacks carried out by an independent red team, as
part of the DARPA Transparent Computing (TC) program. However, the DARPA
TC datasets had some drawbacks due to multiple failed attack attempts and reusing
the same type of attacks throughout the engagements. Due to this factor, to better
evaluate our system’s capability we also collected our own attack logs and used them
for attack detection which, we discuss in detail next. We also collected data logs from
long running benign systems to perform a false positive analysis.

Dataset from DARPA TC Engagements

DARPA TC program carried out five engagements in total where engagement 3 and
engagement 5 datasets are both publicly available [3]. We evaluated our system
using the data collected by the Trace team on both of these datasets including data
from engagement 4. Most of the attacks carried out in these engagements assumed
the attacker already had access to stolen credentials which was carried out before the
data collection started. Moreover, many of attacks depended on preexisting malwares
and rootkits which were also installed in the system before the data collection started.
Next, we further discuss the attack scenarios during each of the engagements:

99

Engagement 3. There were mainly 4 attacks that partially succeeded during this
engagement. Among them one of the attacks is a website password stealing where
the victim was lured to a malicious website and was scammed to provide sensitive
information. These attack did not generate any relevant system call events and is not
visible in the dataset. The other attack consisted of an attacker sending a malicious
attachment. But the attack failed soon after the victim clicked and executed the
malicious attachment. As a result, there were no data exfiltration or reconnaissance
steps in the attack and is out of scope for our system.

One of the two successful attacks in the dataset was a Firefox in-memory attack
where a Firefox process was compromised and a malware was dropped and executed
which later gathered information about the system and exfiltrated it. The in-memory
attack on Firefox read numerous files in the victim machine (probably to find a
vulnerability). One interesting aspect of the attack is that there were multiple relevant
events missing which could be a part of the attack. The other successful attack was
a pre-installed malicious browser extension which also gathered information of the
system and exfiltrated it.

Engagement 4. This dataset contained 4 attacks in total and took place within
two Linux Ubuntu machines. Most of the attacks during this engagement assumed
that the attackers had access to stolen credentials. The attacks consisted of a ran-
somware, attack carried out using Metasploit that performed a system wide search to
check if any security sensitive applications were running, a compromised Firefox pro-
cess injecting a sshd process and a stealthy preexisting rootkit attack through which
an attacker entered the system and performed system wide reconnaissance and also
lateral movement.

Engagement 5. This engagement generated the largest and longest dataset in the
DARPA TC program, involving three Linux Ubuntu machines and generated almost
5 billion events in total. This dataset contained 3 attacks where, two of the attacks
were stealthy rootkit attacks that failed midway. The other attack involved a Firefox
process which was compromised due to an in-memory attack and later compromised
an sshd process using in-memory injection technique. In all three of these attacks,
the attacker was able to perform some form of reconnaissance on the system and some
data exfiltration as well.

Dataset Generated and Collected in Our Lab

Due to a lot of failed attacks during the engagements the attacks did not contain
proper reconnaissance and data exfiltration steps. For that reason, to further evaluate
our system we generated a dataset containing 6 different attack scenarios. The attacks
contained little to almost no file based attacks and were mainly carried out using
system tools. Here are the description of the attacks that were carried out:

100

Scene A. In this scenario the attacker using the cronjob started a bash process
with root privilege. Next using the root privilege the attacker ran system wide recon-
naissance and gathered the information in a file. This file was later compressed and
uploaded to the attacker’s server for exfiltration.

Scene B. The attacker gained a root shell in the system by using the LD PRELOAD
environment variable. Once root access was gained, the attacker gathered sensitive
information of the system and redirected that to a file. The file was later exfiltrated
using an scp process which was initiated from the attacker’s machine using stolen
credentials.

Scene C. In this scenario the attacker compromised the vim process which resulted
with a shell. This time the attacker only gathered very low sensitive information
regarding the system such as the bash history file and network related information
and gathered that into a compressed file. Later this file was uploaded to the attacker’s
server. Using this information the attacker created a reverse shell on the victim’s
machine to use it as a backdoor and erased all previous steps.

Scene D. Same as before the attacker compromised the vim process which resulted
in a root bash process this time. This time the attacker gather info about the network
of the victim’s system and then created a new user in the system. Attacker’s ssh key
was added to root authorized keys for persistence.

Scene E. The attacker combined multiple steps from the previous scenarios in this
attack. At first the attacker got a root shell by compromising the vim process. Next,
a script file was created and scheduled to run by the cronjob with root privilege.
The script creates a persistent backdoor with root privilege using systemd. To avoid
detection by security tools, the script is padded with zeroes in the end to turn it into
a large file. This step was mainly carried out to avoid generating hash for the file.

Scene F. In this scenario the attacker compromised the system using stolen cre-
dentials so that whenever the find command is run, it will provide the attacker with
a root shell. Using the root shell the attacker gathers very low sensitive information
about the system such as, bash history and network information and redirected that
information to a compressed file. Next the attacker inserted a backdoor on the vic-
tim’s php web server and also uploaded the data to the web server for exfiltration.
Later the attacker from their machine accessed the backdoor and also downloaded
the data from the web server.

101

6.3.2 Analysis of the Confidentiality Tag Inferred during Train-
ing

We take a look at the confidentiality tags that were automatically assigned during
training to evaluate our tag inference technique.

At first, we look at the confidentiality of the files that should have high probability
of being target of an attacker. Files such as /etc/shadow, /etc/group and ssh keys
automatically received extremely high probability during training. Exfiltrating even
a single one of these files will trigger an alarm in our system. We also notice every
single file in the /root/ directory also received extremely high probability as well. We
also looked at the /proc/pid/maps file which received a 40% probability. Multiple
process would access these files so a couple of access should not massively increase
the probability of data gathering taking place. But if someone is iterating through all
the map files in the /proc/ directory could be an indication that an attacker might be
performing reconnaissance by mapping out the process memory space. Log files such
as /var/log also was marked having a high probability. Interestingly the /etc/passwd
file received a very low probability as many processes with network connection read
this file.

Next we look at some interesting findings. We discover that the /etc/ssh directory
which contains the public and private keys of the host have also received high proba-
bility. Configuration files such as in the /etc/pam.d/ directory and /etc/modprobe.d/
also received higher probability of containing sensitive information. Although writing
to these files may be considered malicious, but an attacker might be interested in
knowing the configuration setting to perform an attack. All device files in the /sys/
and /dev/ directory also received high confidentiality as well.

We also did notice benign files receiving high probability. For example, files related
to dpkg because only a root system administrator was allowed to perform package
updates in our benign dataset. Also files in the /run/ directory received high confi-
dentiality as well.

6.3.3 Threshold Selection

In this section, we tune the threshold parameter t for generating alarms in our system.
As mentioned earlier, if a process contains confidentiality C both ProcConf and
DataLeak alarm is triggered on (1 − C) < t. We use the precision and recall graph
on Engagement 4 dataset to tune the threshold parameter t, as shown in Fig 6.2. We
used this particular dataset because, this had 3 successful attacks which can be used
to generate better precision and recall graphs.

As we can see from the graphs, on a threshold value of 10−3 we get the highest
precision along with the highest recall. But because precision falls right after that
point, we select the value just before that in our evaluation which is 10−4. In our eval-
uation we use the same threshold on every other dataset including the data gathered

102

10−810−710−610−510−410−310−210−1100

0

0.2

0.4

0.6

0.8

1

threshold

ra
te

Precision
Recall

Figure 6.2: Precision and Recall for detecting Threshold value t.

in our lab.

6.3.4 Evaluation of Inferred Confidentiality Tag and Confi-
dentiality Accumulation

Using the threshold selected in the previous section we evaluate on system on all the
datasets which is shown in Figure 6.3. We evaluate our system by first generating the
precision and recall percentage and then calculating their F1-score (harmonic mean)
when both inferred tags are used along with accumulation. We also show how the
system would perform without the accumulation. Finally we selected some files to be
highly confidential which are mentioned in the MITRE ATT&CK framework [106]
to create the Base initial tags. The files includes the shadow file, ssh keys and the
/proc/pid/map files. Although the /etc/passwd file was considered to be a highly
confidential file in the DARPA TC program, but marking it as highly confidential
significantly reduces the performance of the Base system and it generates massive
amount of false positives. That is why we did not consider that file to be confidential
in the Base technique.

As we can observe from the results, in many of the cases just using the inferred
confidentiality tag or the base tags most of the attack are not detected at all. However,
even when some part is detected the coverage is significantly lower. As for using the
inferred confidentiality tag along with accumulation most of the attacks are detected
with high coverage and low false positives. Only in Engagement 5 we do see a lower
amount of precision but still high recall. The reason behind that is there was a
backup scp process running in the system which was gathering a huge number of files
in the system and sending it to a remote network location. In our system, all network

103

Engagement 3
Dataset

Engagement 4
Dataset

Engagement 5
Dataset

Our Lab
Dataset

0

20

40

60

80

100

72.7

97.7

33.7

98.2

36.4
27.4

0.7

33.3

0

32.1

3.6

19.6

R
a
te

(P
er

ce
n
ta

ge
%

)
Probabilistic Confidentiality Tag Inferred Confidentiality Tag Base Tag

Figure 6.3: Comparison of F1-score (Harmonic mean of precision and recall value)
on using the Inferenced confidentiality tags and accumulation, just the Inferenced
confidentiality tags and using Base confidentiality tags.

Dataset # of Events Duration False Alarms
Server 1 5.19 M 119h:13m:29s 0
Server 2 4.53 M 105h:08m:22s 1
Server 3 20.9 M 104h:36m:43s 0

Eng 5 1.43 B 248h:21m:34s 1

Table 6.1: False positive alarms generated on benign datasets.

connections are considered to be untrusted because no previous information about
trusted network address were provided in the dataset. The precision could be raised
higher if that information was provided. In Engagement 5 the low precision happened
due to how the attack was carried out. The firefox process that was part of the initial
attack started running on the last day of the engagement. As the firefox process
was previously compromised, it kept on iterating through the system and generated
those false positives. But due to the entry point detection, these false alarms were also
grouped with the initial compromised firefox process and was able to generate concise
graph for the analyst. Whereas, the base technique failed to detect the compromised
firefox and only generated an alarm when the shadow file was exfiltrated in the second
attack.

104

6.3.5 False Positive Analysis

In this section we look at how our system performs on benign long running dataset
shown in Table 6.1. We collected three dataset from three different lab servers which
ran for multiple days with normal user usage. As we can see from the table, only
a single DataLeak alarm was raise in total on one of the server. We also used one
of the machines in Engagement 5 dataset for the false positive analysis because that
particular dataset did not contain any attack according to the ground truth but did
contain benign activity. Even with huge traffic the dataset only generated a single
Dataleak alarm. This analysis shows that our system does not generate much false
positives when benign activities are carried out in the system.

105

Chapter 7

Conclusion and Future Work

APTs continue to be the biggest threat not only for large organizations but also for
individuals. Attackers are constantly improving their techniques by making their
attacks stealthier and harder to detect for current state-of-the-art SIEMs. The main
challenges reside in handling the large amount of data required to correlate the attack
events due to the long running nature of APTs. In this thesis, we demonstrated the
effectiveness of tag-based techniques, not only in attack detection and forensic analysis
but also on how it can be used to speed up the process.

At first, we presented different techniques that allows for compact in-memory
dependence graph generation. These techniques are capable of reducing the number
of events by a factor of 7 without compromising dependency information. We also
demonstrated how to massively speed up the forensic analyses process by converting
the timestamped provenance graph to a compact versioned graph.

Next, we developed three different tag-semantics for accurate real-time attack de-
tection and forensic analyses. Sleuth is capable of detecting and generating the
attack graph of any file-based attacks in real-time using COTS audit logs. By simply
dividing the trustworthiness tag into code and data trustworthiness, Sleuth is ca-
pable of reducing the number of false positives and also the size of the attack graph
by a factor of 100 to over 1000.

To deal with increasing stealthiness of APT attacks and control the dependence
explosion problem, we introduce two techniques called tag attenuation and tag decay
in Morse. By modulating the tag propagation using the subject’s code tag on
benign subjects, we demonstrated that our approach is highly effective in automatic
detection of stealthy APT-style campaigns in real-time. Our techniques cut down
false alarms by over an order of magnitude, while yielding compact scenario graphs
that were smaller by a factor of 35x on average. Due to the conservative nature of
tag propagation for malicious process, attackers are unable to evade our detection
system.

Lastly, we introduce the semantic of probabilistic tags on confidentiality. As
attackers are moving away from malware based attacks and are mainly carrying out

106

their attack using stolen credentials and system tools, recognizing the reconnaissance
and data leak steps have become crucial in detecting current APTs. By using our
automated confidentiality inference system and accumulation technique our system
is capable of detecting every single reconnaissance and data leak in multiple datasets
with high precision and recall.

In the future, we plan on incorporating probabilistic tags to the subject behavior
to detect anomalous processes. We call this tag subject benignity tag and is intended
to capture the probability of a process being malicious. To update this tag based on
the behavior of the subject, we employ a number of detectors of suspicious behavior.
These detectors trigger alarms. Some alarms are very reliable indicators of compro-
mise, so they warrant a significant decrease in the subject benignity. Others are more
ambiguous and may result in small or negligible decreases.

To facilitate the specification of rules for updating benignity tags, we divide it
into three components, a) parent tag (value inherited from parent) b) child tag (com-
ponent accumulated from its children) and c) behavior tag (derived from the process
behavior). We combine these components into the benignity tag to classify if the
process is malicious. Our technique for updating behavior tags relies on a training
phase. We perform frequency based training using different time-window to generate
distributions of the alarms triggered in benign data sets. If during detection we see
significant deviation from the benign distribution we lower the behavior tag of the
process.

Probabilistic view of subject tags also allows for incorporating outside anomaly
detectors in our system as well. Probabilistic subject benignity tags in combination
with probabilistic confidentiality tags could massively improve the detection of long
running and stealthy APTs.

107

Bibliography

[1] Actions Taken by Equifax and Federal Agencies in Response to the 2017 Breach.
https://www.gao.gov/assets/700/694158.pdf.

[2] APT Notes. https://github.com/kbandla/APTnotes. Accessed: 2016-11-10.

[3] DARPA transparent computing engagement 3 and 5 data release. https://

github.com/darpa-i2o/Transparent-Computing/. Accessed: 2021-12-30.

[4] FreeBSD DTrace. https://wiki.freebsd.org/DTrace/. Accessed: 2019-5-1.

[5] IBM QRadar SIEM. https://www.ibm.com/us-en/marketplace/

ibm-qradar-siem.

[6] IBM X-Force Threat Intelligence Index. https://www.ibm.com/security/

data-breach/threat-intelligence. Accessed: 2019-3-7.

[7] Logrhythm, the security intelligence company. https://logrhythm.com/.

[8] MANDIANT: Exposing One of China’s Cyber Espionage Units.
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/

mandiant-apt1-report.pdf. Accessed: 2016-11-10.

[9] Micro Focus ArcSight ESM. https://www.microfocus.com/en-us/products/

siem-security-information-event-management/overview.

[10] The opm data breach: How the government jeopardized our national se-
curity for more than a generation. https://oversight.house.gov/report/

opm-data-breach-government-jeopardized-national-security-generation/.

[11] SIEM, AIOps, Application Management, Log Management, Mach ine Learning,
and Compliance. https://www.splunk.com/.

[12] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 2009.

108

https://www.gao.gov/assets/700/694158.pdf
https://github.com/kbandla/APTnotes
https://github.com/darpa-i2o/Transparent-Computing/
https://github.com/darpa-i2o/Transparent-Computing/
https://wiki.freebsd.org/DTrace/
https://www.ibm.com/us-en/marketplace/ibm-qradar-siem
https://www.ibm.com/us-en/marketplace/ibm-qradar-siem
https://www.ibm.com/security/data-breach/threat-intelligence
https://www.ibm.com/security/data-breach/threat-intelligence
https://logrhythm.com/
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.microfocus.com/en-us/products/siem-security-information-event-management/overview
https://www.microfocus.com/en-us/products/siem-security-information-event-management/overview
https://oversight.house.gov/report/opm-data-breach-govern ment-jeopardized-national-security-generation/
https://oversight.house.gov/report/opm-data-breach-govern ment-jeopardized-national-security-generation/
https://www.splunk.com/

[13] Akritidis. Cling: A memory allocator to mitigate dangling pointers. In USENIX
Security, 2010.

[14] Akritidis, Costa, Castro, and Hand. Baggy bounds checking: an efficient and
backwards-compatible defense against out-of-bounds errors. In USENIX secu-
rity, 2009.

[15] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. Preventing memory error exploits with wit. May 2008.

[16] Abdulellah Alsaheel, Yuhong Nan, Shiqing Ma, Le Yu, Gregory Walkup,
Z Berkay Celik, Xiangyu Zhang, and Dongyan Xu. {ATLAS}: A sequence-
based learning approach for attack investigation. In 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

[17] Paul Ammann, Sushil Jajodia, and Peng Liu. Recovery from malicious trans-
actions. IEEE Transactions on Knowledge and Data Engineering, 2002.

[18] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. SIGPLAN Not., 2014.

[19] Zhifeng Bao, Henning Köhler, Liwei Wang, Xiaofang Zhou, and Shazia Sadiq.
Efficient provenance storage for relational queries. In CIKM, 2012.

[20] Elena Gabriela Barrantes, David H. Ackley, Stephanie Forrest, Trek S. Palmer,
Darko Stefanović, and Dino Dai Zovi. Randomized instruction set emulation to
disrupt binary code injection attacks. Washington, DC, October 2003.

[21] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer. Trust-
worthy whole-system provenance for the Linux kernel. In USENIX Security,
2015.

[22] Adam Bates, Dave (Jing) Tian, Grant Hernandez, Thomas Moyer, Kevin R. B.
Butler, and Trent Jaeger. Taming the costs of trustworthy provenance through
policy reduction. ACM Trans. Internet Technol., 2017.

[23] Y. Bejtlich. The Tao of Network Security Monitoring Beyond Intrusion Detec-
tion. Pearson Education, 2004.

[24] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foun-
dations. Technical Report MTR-2547, Vol. 1, MITRE Corp., Bedford, MA,
1973.

[25] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. pages 158–168, Ottawa, Canada, June 2006.

109

[26] Sandeep Bhatkar, Abhishek Chaturvedi, and R. Sekar. Dataflow anomaly de-
tection. In IEEE Security and Privacy, 2006.

[27] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation:
an efficient approach to combat a board range of memory error exploits. In
USENIX Security Symposium, 2003.

[28] Sandeep Bhatkar and R. Sekar. Data Space Randomization. In Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2008.

[29] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In USENIX Security
Symposium, 2005.

[30] K. J. Biba. Integrity Considerations for Secure Computer Systems. In Techni-
cal Report ESD-TR-76-372, USAF Electronic Systems Division, Hanscom Air
Force Base, Bedford, Massachusetts, 1977.

[31] Prithvi Bisht and V.N. Venkatakrishnan. XSS-Guard: Precise Dynamic Detec-
tion of Cross-Site Scripting Attacks. Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 23–43, 2008.

[32] T Bowen, D Chee, M Segal, R Sekar, P Uppuluri, and T Shanbag. Building
survivable systems: An integrated approach based on intrusion detection and
confinement. In Darpa Information Security Symposium, 2000.

[33] Uri Braun, Simson Garfinkel, David A Holland, Kiran-Kumar Muniswamy-
Reddy, and Margo I Seltzer. Issues in automatic provenance collection. In
Provenance and Annotation Workshop, 2006.

[34] Nathan Burow, Xinping Zhang, and Mathias Payer. Sok: Shining light on
shadow stacks. In 2019 IEEE Symposium on Security and Privacy (SP), pages
985–999. IEEE, 2019.

[35] L. Cavallaro and R. Sekar. Taint-enhanced anomaly detection. In International
Conference on Information Systems Security, 2011.

[36] Lorenzo Cavallaro, Prateek Saxena, and R Sekar. Anti-taint-analysis: Practical
evasion techniques against information flow based malware defense. Technical
report, Secure Systems Lab at Stony Brook University, 2007.

[37] Adriane P. Chapman, H. V. Jagadish, and Prakash Ramanan. Efficient prove-
nance storage. In ACM SIGMOD, 2008.

[38] Chen Chen, Harshal Tushar Lehri, Lay Kuan Loh, Anupam Alur, Limin Jia,
Boon Thau Loo, and Wenchao Zhou. Distributed provenance compression. In
ACM SIGMOD, 2017.

110

[39] Tzi-cker Chiueh and Fu-Hau Hsu. Rad: A compile-time solution to buffer
overflow attacks. In 21st International Conference on Distributed Computing,
page 409, Phoenix, Arizona, April 2001.

[40] Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stack-
Guard: automatic adaptive detection and prevention of buffer-overflow attacks.
In USENIX Security Symposium, 1998.

[41] Hervé Debar and Andreas Wespi. Aggregation and correlation of intrusion-
detection alerts. In RAID. Springer, 2001.

[42] Dorothy E Denning. An intrusion-detection model. IEEE Transactions on
software engineering, 1987.

[43] Dhurjati and Adve. Efficiently detecting all dangling pointer uses in production
servers. In DSN, 2006.

[44] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.
Labels and Event Processes in the Asbestos Operating System. In SOSP. ACM,
2005.

[45] Hiroaki Etoh and Kunikazu Yoda. Protecting from stack-
smashing attacks. Published on World-Wide Web at URL
http://www.trl.ibm.com/projects/security/ssp/main.html, June 2000.

[46] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo
Gong. Anomaly detection using call stack information. In IEEE Security and
Privacy, 2003.

[47] Stephanie Forrest, Steven Hofmeyr, Anil Somayaji, and Thomas Longstaff. A
sense of self for unix processes. In IEEE Security and Privacy, 1996.

[48] Debin Gao, Michael K Reiter, and Dawn Song. Gray-box extraction of execution
graphs for anomaly detection. In ACM CCS, 2004.

[49] Debin Gao, Michael K. Reiter, and Dawn Song. On gray-box program tracking
for anomaly detection. pages 103–118, San Diego, CA, USA, August 2004.

[50] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,
Chung Hwan Kim, Sanjeev R Kulkarni, and Prateek Mittal. SAQL: A stream-
based query system for real-time abnormal system behavior detection. In
USENIX Security Symposium, 2018.

111

[51] Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu, Sanjeev R Kulkarni, and
Prateek Mittal. AIQL: Enabling efficient attack investigation from system mon-
itoring data. In USENIX ATC, 2018.

[52] Ashish Gehani and Dawood Tariq. Spade: support for provenance auditing in
distributed environments. In International Middleware Conference, 2012.

[53] Jonathon T Giffin, Somesh Jha, and Barton P Miller. Efficient context-sensitive
intrusion detection. In NDSS, 2004.

[54] Ashvin Goel, W-C Feng, David Maier, and Jonathan Walpole. Forensix: A
robust, high-performance reconstruction system. In 25th IEEE International
Conference on Distributed computing systems workshops, 2005.

[55] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The
Taser intrusion recovery system. In SOSP, 2005.

[56] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. Bothunter: Detecting malware infection through ids-driven dialog correla-
tion. In USENIX Security Symposium, 2007.

[57] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo
Seltzer. Unicorn: Runtime provenance-based detector for advanced persistent
threats. arXiv preprint arXiv:2001.01525, 2020.

[58] N. Hasabnis, A. Misra, and R. Sekar. Light-weight bounds checking. In Code
Generation and Optimization, 2012.

[59] Wajih Ul Hassan, Adam Bates, and Daniel Marino. Tactical provenance analysis
for endpoint detection and response systems. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 1172–1189. IEEE, 2020.

[60] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. Nodoze: Combatting threat alert fatigue with
automated provenance triage. In NDSS, 2019.

[61] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R. Sekar, Scott Stoller, and V.N. Venkatakrishnan. SLEUTH: Real-
time attack scenario reconstruction from COTS audit data. In USENIX Secu-
rity, 2017.

[62] Md Nahid Hossain, Sanaz Sheikhi, and R. Sekar. Combating dependence explo-
sion in forensic analysis using alternative tag propagation semantics. In 2020
IEEE Symposium on Security and Privacy (SP), 2020.

112

[63] Md Nahid Hossain, Junao Wang, R Sekar, and Scott D Stoller. Dependence
preserving data compaction for scalable forensic analysis. In USENIX Security,
2018.

[64] IBM X-Force threat intelligence index. https://www.ibm.com/downloads/

cas/M1X3B7QG. Accessed: 2021-12-08.

[65] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Fazzini Mattia, Taesoo
Kim, Alessandro Orso, and Wenke Lee. Rain: Refinable attack investigation
with on-demand inter-process information flow tracking. In ACM CCS, 2017.

[66] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo Kim,
Alessandro Orso, and Wenke Lee. Enabling refinable cross-host attack inves-
tigation with efficient data flow tagging and tracking. In USENIX Security,
2018.

[67] Jones and Kelly. Backwards-compatible bounds checking for arrays and pointers
in C programs. In Workshop on Automated Debugging, 1997.

[68] Klaus Julisch. Clustering intrusion detection alarms to support root cause
analysis. Transactions on Information and System Security (TISSEC), 2003.

[69] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-
injection attacks with instruction-set randomization. pages 272–280, Washing-
ton, DC, October 2003.

[70] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. Libdft: Practical Dynamic Data Flow Tracking for Commodity
Systems. SIGPLAN Not., 2012.

[71] Kil, Jun, Bookholt, Xu, and Ning. Address space layout permutation (ASLP):
Towards fine-grained randomization of commodity software. In ACSAC, 2006.

[72] Samuel T. King and Peter M. Chen. Backtracking intrusions. In SOSP, 2003.

[73] Samuel T. King, Zhuoqing Morley Mao, Dominic G. Lucchetti, and Peter M.
Chen. Enriching intrusion alerts through multi-host causality. In NDSS, 2005.

[74] Calvin Ko, George Fink, and Karl Levitt. Automated detection of vulnerabili-
ties in privileged programs by execution monitoring. In Proceedings of the 10th
Annual Computer Security Applications Conference, pages 134–144, Orlando,
FL, 1994. IEEE Computer Society Press.

[75] Calvin Ko, Manfred Ruschitzka, and Karl Levitt. Execution monitoring of
security-critical programs in distributed systems: A specification-based ap-
proach. In IEEE Security and Privacy, 1997.

113

https://www.ibm.com/downloads/cas/M1X3B7QG
https://www.ibm.com/downloads/cas/M1X3B7QG

[76] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin
Kirda, Xiao-yong Zhou, and XiaoFeng Wang. Effective and efficient malware
detection at the end host. In USENIX Security, 2009.

[77] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information Flow Control for
Standard OS Abstractions. In SOSP. ACM, 2007.

[78] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson, and Gio-
vanni Vigna. Automating mimicry attacks using static binary analysis. Balti-
more, MD, August 2005.

[79] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion detection
and correlation: challenges and solutions. Springer Science & Business Media,
2005.

[80] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based
attacks. In ACM CCS, 2003.

[81] S. Kumar and E. Spafford. A pattern-matching model for intrusion detection.
In National Computer Security Conference, 1994.

[82] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
R Sekar, and Dawn Song. Code-pointer integrity. In The Continuing Arms
Race: Code-Reuse Attacks and Defenses, Morgan-Claypool and ACM Press,
2018.

[83] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim, Brendan
Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. Ldx: Causality inference by
lightweight dual execution. ASPLOS, 2016.

[84] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,
Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela Ciocarlie,
Ashish Gehani, and Vinod Yegneswaran. Mci: Modeling-based causality infer-
ence in audit logging for attack investigation. In NDSS, 2018.

[85] Lap Chung Lam and Tzi-cker Chiueh. Automatic extraction of accurate
application-specific sandboxing policy. In Recent Advances in Intrusion De-
tection, pages 1–20. Springer, 2004.

[86] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack
provenance via binary-based execution partition. In NDSS, 2013.

[87] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. LogGC: Garbage collecting
audit log. In ACM CCS, 2013.

114

[88] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A data mining framework for
building intrusion detection models. In IEEE Security and Privacy, 1999.

[89] Lixin Li, Jim Just, and R. Sekar. Address-space randomization for windows sys-
tems. In Annual Computer Security Applications Conference (ACSAC), 2006.

[90] Ninghui Li, Ziqing Mao, and Hong Chen. Usable Mandatory Integrity Protec-
tion for Operating Systems . In S&P. IEEE, 2007.

[91] Zhenkai Liang, Weiqing Sun, V. N. Venkatakrishnan, and R. Sekar. Alcatraz:
An Isolated Environment for Experimenting with Untrusted Software. In ACM
TISSEC, 2009.

[92] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. Towards a timely causality analysis for enterprise
security. In NDSS, 2018.

[93] Lockheed Martin. The cyber kill chain. https://www.lockheedmartin.com/

en-us/capabilities/cyber/cyber-kill-chain.html. Accessed: 2021-12-08.

[94] Peter Loscocco and Stephen Smalley. Meeting Critical Security Objectives with
Security-Enhanced Linux. In Ottawa Linux Symposium, 2001.

[95] Teresa F Lunt, Ann Tamaru, and F Gillham. A real-time intrusion-detection
expert system (IDES). SRI International. Computer Science Laboratory, 1992.

[96] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu
Zhang, and Dongyan Xu. Accurate, low cost and instrumentation-free security
audit logging for windows. In ACSAC, 2015.

[97] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and
Dongyan Xu. MPI: Multiple perspective attack investigation with semantic
aware execution partitioning. In USENIX Security, 2017.

[98] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. ProTracer: Towards practical
provenance tracing by alternating between logging and tainting. In NDSS, 2016.

[99] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. Fast memory-
efficient anomaly detection in streaming heterogeneous graphs. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1035–1044, 2016.

[100] Ziqing Mao, Ninghui Li, Hong Chen, and Xuxian Jiang. Combining Discre-
tionary Policy with Mandatory Information Flow in Operating Systems. In
Transactions on Information and System Security (TISSEC). ACM, 2011.

115

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

[101] the PaX team. Address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt, 2001.

[102] Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell, and
David A Bader. A performance evaluation of open source graph databases. In
PPAA, 2014.

[103] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrish-
nan. Propatrol: Attack investigation via extracted high-level tasks. In In
International Conference on Information Systems Security, Springer, 2018.

[104] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrish-
nan. Poirot: Aligning attack behavior with kernel audit records for cyber threat
hunting. In ACM CCS, 2019.

[105] Sadegh M. Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, and V.N.
Venkatakrishnan. HOLMES: Real-time APT Detection through Correlation of
Suspicious Information Flows. In IEEE Security and Privacy, 2019.

[106] MITRE Corporation. Adversary Tactics and Techniques Knowledge Base
(ATT&CK). https://attack.mitre.org/. Accessed: 2019-03-04.

[107] Kiran-Kumar Muniswamy-Reddy and David A Holland. Causality-based ver-
sioning. ACM Transactions on Storage (TOS), 2009.

[108] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I
Seltzer. Provenance-aware storage systems. In USENIX ATC, 2006.

[109] Kiran-Kumar Muniswamy-Reddy, Charles P Wright, Andrew Himmer, and
Erez Zadok. A versatile and user-oriented versioning file system. In USENIX
FAST, 2004.

[110] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
Softbound: highly compatible and complete spatial memory safety for c. SIG-
PLAN Not., 2009.

[111] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summariza-
tion with bounded error. In ACM SIGMOD, 2008.

[112] Necula, Condit, Harren, McPeak, and Weimer. CCured: type-safe retrofitting
of legacy software. ACM TOPLAS, 2005.

[113] James Newsome and Dawn Song. Dynamic taint analysis for automatic detec-
tion, analysis, and signature generation of exploits on commodity software. In
NDSS, 2005.

116

https://attack.mitre.org/

[114] Peng Ning, Yun Cui, and Douglas S Reeves. Constructing attack scenarios
through correlation of intrusion alerts. In ACM CCS, 2002.

[115] Peng Ning and Dingbang Xu. Learning attack strategies from intrusion alerts.
In ACM CCS, 2003.

[116] Ben Niu and Gang Tan. Modular control-flow integrity. In PLDI, 2014.

[117] Steven Noel, Eric Robertson, and Sushil Jajodia. Correlating intrusion events
and building attack scenarios through attack graph distances. In Annual Com-
puter Security Applications Conference, 2004.

[118] Chetan Parampalli, R Sekar, and Rob Johnson. A practical mimicry attack
against powerful system-call monitors. In Proceedings of the 2008 ACM sympo-
sium on Information, computer and communications security, pages 156–167.
ACM, 2008.

[119] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. Practical whole-system provenance capture.
In SoCC, 2017.

[120] Patil and Fischer. Low-cost, concurrent checking of pointer and array accesses
in C programs. Software — Practice & Experience, 1997.

[121] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhi-
wei Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. HERCULE: Attack story
reconstruction via community discovery on correlated log graph. In ACSAC,
2016.

[122] R. Pelizzi and R. Sekar. Protection, usability and improvements in reflected xss
filters. In ASIACCS, 2012.

[123] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. Hi-
Fi: Collecting high-fidelity whole-system provenance. In ACSAC, 2012.

[124] P. Porras and R. Kemmerer. Penetration state transition analysis: A rule
based intrusion detection approach. In Annual Computer Security Applications
Conference, 1992.

[125] Aravind Prakash, Xunchao Hu, and Heng Yin. vfguard: Strict protection for
virtual function calls in cots c++ binaries. In NDSS, 2015.

[126] Soumyakant Priyadarshan, Huan Nguyen, and R. Sekar. Practical fine-grained
binary code randomization. In Annual Computer Security Applications Confer-
ence (ACSAC), 2020.

117

[127] Rui Qiao, Mingwei Zhang, and R Sekar. A principled approach for rop defense.
In Annual Computer Security Applications Conference, 2015.

[128] Xinzhou Qin and Wenke Lee. Statistical causality analysis of infosec alert data.
In RAID, 2003.

[129] Douglas S Santry, Michael J Feeley, Norman C Hutchinson, Alistair C Veitch,
Ross W Carton, and Jacob Ofir. Deciding when to forget in the elephant file
system. In SOSP, 1999.

[130] Prateek Saxena, R Sekar, and Varun Puranik. Efficient fine-grained binary
instrumentationwith applications to taint-tracking. In Code generation and
optimization, 2008.

[131] R. Sekar. An efficient black-box technique for defeating web application attacks.
In Network and Distributed System Security Symposium, 2009.

[132] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast automaton-based
approach for detecting anomalous program behaviors. In IEEE Security and
Privacy, 2001.

[133] R. Sekar, Y. Cai, and M. Segal. A specification-based approach for building
survivable systems. In National Information Systems Security Conference, 1998.

[134] R. Sekar and P. Uppuluri. Synthesizing fast intrusion prevention/detection
systems from high-level specifications. In USENIX Security Symposium, 1999.

[135] Xiaokui Shu, Frederico Araujo, Douglas L Schales, Marc Ph Stoecklin, Jiyong
Jang, Heqing Huang, and Josyula R Rao. Threat intelligence computing. In
ACM CCS, 2018.

[136] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. Unearthing stealthy
program attacks buried in extremely long execution paths. In ACM CCS, 2015.

[137] Craig A Soules, Garth R Goodson, John D Strunk, and Gregory R Ganger.
Metadata efficiency in a comprehensive versioning file system. Technical report,
CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER
SCIENCE, 2002.

[138] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
Program Execution via Dynamic Information Flow Tracking. In ASPLOS, 2004.

[139] Weiqing Sun, R. Sekar, Zhenkai Liang, and V. N. Venkatakrishnan. Expanding
malware defense by securing software installations. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), 2008.

118

[140] Weiqing Sun, R. Sekar, Gaurav Poothia, and Tejas Karandikar. Practical Proac-
tive Integrity Preservation: A Basis for Malware Defense. In IEEE Security and
Privacy, 2008.

[141] Wai Kit Sze, Bhuvan Mital, and R Sekar. Towards more usable information
flow policies for contemporary operating systems. In ACM SACMAT, 2014.

[142] Wai-Kit Sze and R Sekar. A portable user-level approach for system-wide in-
tegrity protection. In ACSAC, 2013.

[143] Wai Kit Sze and R Sekar. Provenance-based integrity protection for windows.
In ACSAC, 2015.

[144] Laszlo Szekeres, Mathias Payer, Tao Wei, and R Sekar. Eternal war in memory.
S&P Magazine, 2014.

[145] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel. Efficient aggrega-
tion for graph summarization. In ACM SIGMOD, 2008.

[146] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. Enforcing forward-edge control-flow
integrity in gcc & llvm. In USENIX Security, 2014.

[147] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas
Moyer. Towards scalable cluster auditing through grammatical inference over
provenance graphs. In NDSS, 2018.

[148] Prem Uppuluri and R Sekar. Experiences with specification based intrusion
detection. In Recent Advances in Intrusion Detection, 2001.

[149] V. N. Venkatakrishnan, Peri Ram, and R. Sekar. Empowering mobile code
using expressive security policies. In New Security Paradigms Workshop, 2002.

[150] G. Vigna and R. Kemmerer. Netstat: A network-based intrusion detection
approach. In Computer Security Applications Conference, 1998.

[151] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-
Site Scripting Prevention with Dynamic Data Tainting and Static Analysis. In
NDSS, 2007.

[152] David Wagner and Drew Dean. Intrusion detection via static analysis. In IEEE
Security and Privacy, 2001.

[153] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detec-
tion systems. In ACM CCS, 2002.

119

[154] Wei Wang and Thomas E Daniels. A graph based approach toward network
forensics analysis. ACM Transactions on Information and System Security
(TISSEC), 2008.

[155] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In IEEE Security and
Privacy, 1999.

[156] Wikipedia. Ccleaner. https://en.wikipedia.org/wiki/CCleaner. Accessed:
2019-03-28.

[157] Yulai Xie, Dan Feng, Zhipeng Tan, Lei Chen, Kiran-Kumar Muniswamy-Reddy,
Yan Li, and Darrell D.E. Long. A hybrid approach for efficient provenance
storage. In CIKM, 2012.

[158] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Transparent runtime
randomization for security. Florence, Italy, October 2003.

[159] Wei Xu, Sandeep Bhatkar, and R. Sekar. Practical dynamic taint analysis
for countering input validation attacks on web applications. Technical Re-
port SECLAB-05-04, Department of Computer Science, Stony Brook Univer-
sity, May 2005.

[160] Wei Xu, Sandeep Bhatkar, and R Sekar. Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks. In USENIX Security,
2006.

[161] Wei Xu, Daniel C. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of C programs. In Foun-
dations of software engineering, 2004.

[162] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. High fidelity data re-
duction for big data security dependency analyses. In ACM CCS, 2016.

[163] Yves Younan, Pieter Philippaerts, Lorenzo Cavallaro, R. Sekar, Frank Piessens,
and Wouter Joosen. PAriCheck: an efficient pointer arithmetic checker for C
programs. In ASIACCS, 2010.

[164] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making Information Flow Explicit in HiStar. In OSDI. USENIX, 2006.

[165] Yan Zhai, Peng Ning, and Jun Xu. Integrating ids alert correlation and os-level
dependency tracking. In International Conference on Intelligence and Security
Informatics, 2006.

120

https://en.wikipedia.org/wiki/CCleaner

[166] Chao Zhang, Chengyu Song, Z. Kevin Chen, Zhaofeng Chen, and Dawn Song.
VTint: Protecting virtual function tables’ integrity. In NDSS, 2015.

[167] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. Practical control flow integrity and
randomization for binary executables. In IEEE Security and Privacy, 2013.

[168] Mingwei Zhang and R Sekar. Control flow integrity for cots binaries. In USENIX
Security, 2013.

[169] Mingwei Zhang and R Sekar. Control flow and code integrity for cots binaries:
An effective defense against real-world rop attacks. In ACSAC, 2015.

[170] Ningning Zhu and Tzi-cker Chiueh. Design, implementation, and evaluation of
repairable file service. In Dependable Systems and Networks, 2003.

121

	Introduction
	Thesis Statement
	Summary of Contribution
	Organization of the Thesis

	Background and Related Work
	Log Collection
	System Calls
	Provenance Graph
	Log Reduction
	File Versioning
	Graph Compression and Summarization

	Attack Detection
	Alarm Clustering

	Forensic Analysis and Dependence Explosion
	Coarse-grained Tracking
	Fine-grained Tracking

	Information Flow Control (IFC)
	Threat Hunting

	Techniques for Space-Efficient Representation of Provenance Graphs
	Versioned Graph
	Dependence Preserving Reductions
	Reachability in time-stamped dependence graphs
	Naive Versioned Dependence Graphs
	Optimized Versioning
	Dependency-Preserving Reductions

	Compact Representation of Reduced Logs
	Compact Main Memory Representation
	Evaluation
	Data Sets
	Log Size Reduction
	Dependence Graph Size

	Real-Time Attack Scenario Reconstruction From COTS Audit Data
	Approach Overview and Contributions
	Tags and Attack Detection
	Tag Design
	Tag-based Attack Detection

	Policy Framework
	Tag-Based Bi-Directional Analysis
	Backward Analysis
	Forward Analysis
	Reconstruction and Presentation

	Experimental Evaluation
	Implementation
	Data Sets
	Engagement Setup
	Selected Reconstruction Results
	Overall Effectiveness
	False Alarms in a Benign Environment
	Runtime and Memory Use
	Benefit of split tags for code and data
	Analysis Selectivity
	Discussion of Additional Attacks

	Combating Dependence Explosion in Forensic Analysis Using Alternative Tag Propagation Semantics
	Approach Overview and Summary of Contributions
	Motivating Attack Scenario
	Tags and Propagation
	Provenance-Based Attack Detection
	Attack Scenario Reconstruction
	Entry Point Identification
	Forward Analysis

	Putting it All Together: Analysis of CCleaner
	Experimental Evaluation
	Dataset
	Effectiveness of Tag Attenuation and Decay
	Runtime Performance
	Analysis of Evasion Attacks
	Detection Details and Scenario Graphs

	Probabilistic Confidentiality Tag
	Motivating Attack Scenario
	Approach Description
	Probabilistic Confidentiality Tags
	Confidentiality Tag Assignment
	Update and Propagation of Tags
	Attack Detection
	Entry Point Identification and Attack Scenario Reconstruction

	Evaluation
	Dataset
	Analysis of the Confidentiality Tag Inferred during Training
	Threshold Selection
	Evaluation of Inferred Confidentiality Tag and Confidentiality Accumulation
	False Positive Analysis

	Conclusion and Future Work

