
1

Combating Dependence Explosion in Forensic Analysis
Using Alternative Tag Propagation Semantics

Md Nahid Hossain Sanaz Sheikhi R. Sekar
{mdnhossain,ssheikhi,sekar}@cs.stonybrook.edu

Stony Brook University, Stony Brook, NY, USA.

Abstract—We are witnessing a rapid escalation in targeted cyber-
attacks called Advanced and Persistent Threats (APTs). Carried out
by skilled adversaries, these attacks take place over extended time
periods, and remain undetected for months. A common approach for
retracing the attacker’s steps is to start with one or more suspicious
events from system logs, and perform a dependence analysis to
uncover the rest of attacker’s actions. The accuracy of this analysis
suffers from the dependence explosion problem, which causes a very
large number of benign events to be flagged as part of the attack.
In this paper, we propose two novel techniques, tag attenuation and
tag decay, to mitigate dependence explosion. Our techniques take
advantage of common behaviors of benign processes, while providing
a conservative treatment of processes and data with suspicious
provenance. Our system, called MORSE, is able to construct a compact
scenario graph that summarizes attacker activity by sifting through
millions of system events in a matter of seconds. Our experimental
evaluation, carried out using data from two government-agency
sponsored red team exercises, demonstrates that our techniques
are (a) effective in identifying stealthy attack campaigns, (b) reduce
the false alarm rates by more than an order of magnitude, and (c)
yield compact scenario graphs that capture the vast majority of the
attacks, while leaving out benign background activity.

I. Introduction

There has been a spate of targeted high-profile attacks on many
large enterprises, including Target [13], Equifax [1], Deloitte [11]
and the US Office of Personnel Management (OPM) [9]. Often
called “Advanced and Persistent Threats” (APTs) [2], these are
sophisticated attack campaigns carried out by skilled attackers.
For instance, the OPM breach lasted more than 8 months, and
leaked highly sensitive information used in security clearance of
21.5M individuals [9]. The Equifax breach went undetected for
2.5 months, and compromised sensitive information such as social
security numbers of over 140M users.

Unlike traditional malware attacks that are indiscriminate, APTs
choose their targets deliberately, e.g., high-value data such as
intellectual property and financial, account or health information.
They are able to bypass existing defenses using a combination of
social engineering and advanced exploit techniques. Consequently,
intrusion detection systems (IDS), often called Security Information
and Event Management (SIEM) systems (e.g., IBM QRadar [5]),
are the first to flag signs of these attacks. Unfortunately, today’s
IDS face many challenges against sophisticated APTs:

• Needle-in-a-haystack: Today’s systems employ a wide range of
IOCs (“indicators of compromise”) that capture isolated indi-
cators such as malware signatures, abnormal traffic volume, or
modification of specific Windows registry keys. Unfortunately,
many of these IOCs may be triggered by benign activities

This work was supported primarily by DARPA (contract FA8650-15-C-7561),
and in part by grants from NSF (CNS-1918667) and ONR (N00014-17-1-2891).

as well. Since attacks constitute relatively rare events among
billions of benign background events, a flood of false positives
results, making it extremely difficult to identify real attacks.
• Connecting the dots: Although existing systems can identify in-

dividual events that trigger IOCs, they don’t provide much help
in understanding the “big picture.” To respond to sophisticated
APTs in real-time, techniques are needed to connect seemingly
disparate low-level events to uncover an overall campaign.
• Scaling and performance: Even a relatively small enterprise

with hundreds of hosts can generate terabytes of audit and
security event logs every day [89], [31]. Many detection and
analysis tasks require graph searches that can be very expensive
when operating on such large datasets.

Consequently, human analysts today find it very difficult to
understand the progression of APT campaigns, causing them to
remain undetected for months [13], [59], [1], [11], [9].

Provenance-based Detection and Forensics

Researchers have proposed the use of provenance to overcome
some of the difficulties summarized above. For attack detection,
provenance provides additional context to prune away false
positives that result when events are considered in isolation. For
instance, it is common for processes to execute scripts or load
binary code during normal operation, but the very same actions may
be used in attacks. Using provenance, also called taintedness in this
line of research, it is possible to distinguish between benign behavior
and attacks such as control-flow hijack, SQL injection and cross-site
scripting [75], [62], [63], [86], [71], or malware execution [30].

For forensic analysis, Backtracker [36] used coarse-grained
provenance from system-call logs to construct a dependence
graph of system events. Given a system event corresponding to an
attacker action, a backward graph search can be used to identify
the potential entry point (e.g., IP address) of this attack. Then, a
forward search from the entry point can be used to understand the
totality of attacker’s actions. These backward and forward analyses
serve to connect together all of the attacker’s steps, thus presenting
the overall attack scenario to a cyber analyst.

Dependence Explosion

Most forensic analysis techniques [36], [26], [30], [51], [57]
operate on the basis of coarse-grained provenance. In particular,
if a subject (i.e., a process) reads from a network source, then
all subsequent writes by the subject are treated as (potentially)
dependent on the network source. This leads to a dependence
explosion, as every output of a process becomes dependent on
every earlier input operation. The impact of this explosion is severe
for long-running processes such as web browsers, email readers,
and network servers. Unfortunately, such long-running processes
generate the bulk of the activities on today’s systems. Dependence



2

explosions can also occur due to files that are read and written
by numerous processes, e.g., .bash history. Coarse-grained
provenance causes all readers of this file (i.e., all instances of bash
shell processes) to be dependent on all writers (i.e., all previous
bash processes). Consequently, a straight-forward application of
forward analysis can result in a graph with millions of nodes, a size
far too large to be understood by an analyst.

Fine-grained Provenance

Fine-grained information flow tracking [62], [87], [14], [35] can
trace back specific output bytes of a process to specific input bytes
consumed by it. As a result, a single output can often be associated
with a single input, thereby avoiding the massive precision loss
incurred by coarse-grained tracking.

A major challenge faced by fine-grained tracking techniques is
their high performance overhead, ranging from 2x to 10x. But an
even bigger problem is the need for extensive instrumentation of ap-
plications and/or OS code [62], [87], [14], [35], [53], [52], [32], [33].
Consequently, enterprises cannot rely on fine-grained provenance
unless vendors ship their applications with such instrumentation.
There is no indication that such a measure is under consideration by
any vendor, so enterprises are limited to coarse-grained dependence
for the foreseeable future. Indeed, coarse-grained provenance track-
ing is already built into today’s OSes such as Linux (Linux auditing
system) and Windows (ETW — Event Tracing for Windows).

Previous Mitigation Techniques and Limitations

Recognizing the difficulties of obtaining fine-grained provenance
data, researchers have begun to develop alternative techniques to
mitigate dependence explosion in COTS audit data. SLEUTH [30]
associates a cost measure with each edge in the dependence graph,
and prunes away higher-cost paths to arrive at compact scenario
graphs summarizing attacker activity. While this approach is effec-
tive on fast moving attacks, we find that for long-running attacks,
it can produce graphs with numerous benign nodes. HOLMES [57]
exploits the multi-stage structure of typical APTs to generate a com-
pact high-level scenario graph (HSG). However, it faces challenges
on APTs that lack this structure, e.g., ransomware attacks.

PRIOTRACKER [51] prioritizes edges that represent anomalous
dependencies (i.e., dependencies rarely been witnessed before) in
order to speed up forensic investigations. NODOZE [29] generalizes
the approach to target anomalous paths rather than individual edges.
An important drawback of anomaly based approaches is the need
for representative training data. Problems with training data can
lead to false positives, false negatives, or both.

Even more important, both PRIOTRACKER and NODOZE
aim to identify attacker activities that are usually performed by
attacker-provided malware. They assume that these activities
will be anomalous, and differ from benign background activity.
Unfortunately, attackers have a great deal of control over the
behavior of their malware, and can hence intentionally avoid
unusual dependencies that trigger these systems.

We therefore propose a new approach that:
• avoids optimistic assumptions about malware behavior,
• avoids the need for any training data,
• significantly reduces dependence explosion, and
• yields compact scenario graphs, even for stealthy campaigns.

We have implemented our approach into a tool called MORSE.

A. Approach Overview and Summary of Contributions

We begin with a motivating example in Section II that illustrates the
challenges in detecting and summarizing stealthy attack campaigns.
We then introduce our techniques for mitigating dependence
explosion in Section III. As is common with information flow
techniques, we associate tags with data items, and propagate these
tags along with the data. We identify two types of tags:

• data tags that capture the integrity and confidentiality aspects
of a data item, and
• subject tags that are associated only with subjects, and indicate

our level of suspicion that a particular subject is malicious.

The core idea behind our approach is to modulate tag propagation
using subject tags. In particular, our tag propagation rules are
lenient on benign subjects, and take advantage of their typical
behaviors in order to reduce dependence explosion. At the same
time, we use conservative tag propagation rules for suspicious
subjects that may be under the direct control of attackers.

We introduce two key concepts, tag attenuation and tag decay
that mitigate dependence explosion through benign processes. Tag
decay captures the intuition that a benign subject, if it is subverted
and becomes malicious, will do so soon after consuming suspicious
input that contains an exploit. For this reason, we allow the data
tags of benign subjects to decay gradually and become benign over
time, unless they exhibit suspicious behavior. This feature breaks
the dependency between suspicious inputs and outputs of a benign
subject after a certain threshold of time.

Tag attenuation captures the intuition that objects serve as
imperfect intermediaries for propagating malicious behavior
through benign subjects. In particular, each such propagation
requires the intermediary object to contain an exploit that
compromises the subject that consumes it. To capture the difficulty
of creating a series of such exploits, we attenuate data tags of a
benign subject before propagating it to the object that it writes into.

In Section IV, we present a policy-based attack detection
approach that takes advantage of tag attenuation and decay to
significantly reduce false positives. Our techniques for attack
campaign reconstruction are described in Section V.

The implementation of MORSE is sketched in Section VI. We
use the motivating example from Section II to illustrate its operation
in Section VII. Our experimental evaluation (Section VIII) shows
that MORSE is effective in detecting a range of stealthy APT-style
campaigns, where some of the critical steps are invisible in the data.
For instance, our system was able to detect campaigns that relied on:

• previously stolen credentials,
• in-memory (rather than file-based) malware, and
• preexisting malware on the target system, including instances

of rootkits, Trojan ssh servers and kernel malware.

Our tag attenuation and decay techniques decreased false positives
by an order of magnitude, while reducing scenario graph sizes by
35x, all without missing any significant attacker activity. Evasion
attacks and lateral movement are also discussed in Section VIII,
followed by related work and conclusions in Sections IX and X.

II. Motivating Attack Scenario

In this section, we illustrate the problem of dependency explosion
using an attack scenario from a recent red team engagement that was
carried out as part of a research program organized by a government



3

40 files

bash 

load

Attack Activities

...  ... 

load
~bob/ccleaner

~bob/.ssh/known_hosts

/usr/local/bin/ssh

/usr/bin/scp

Pipe

~bob/aa.txt ~bob/zz.txt ~bob/aa.tkn ~bob/zz.tkn

x.x.x.x scp -t
./ccleaner ./ccleaner 

fork+exec

sshd sshd 

dbus-launch 

dbus-daemon 

fork+exec 

sshd sshd 

sshd

scp -r ~bob/*   
bob@bkupsrv:work/ 

fork+exec ssh bob@bkupsrv 
scp -r -d -t ./work/

load
128.55.12.117 

/usr/local/etc/ssh_config

fork+exec
fork+exec

Benign Activities

... ...

Fig. 1: Motivating example: CCleaner ransomware. Rectangles denote subjects (processes), while oval-shaped nodes denote files and diamonds denote network objects.
Edges denote events, and are oriented in the direction of information flow. Edges without a specific event label denote reads and writes.

agency. The red team’s goal was to organize a highly stealthy
ransomware attack, with the following stealth and evasive elements:

• Stolen credentials. The red team assumed that the login
credentials of the victim user had already been stolen by the
attacker. This enabled the attacker to gain access to the victim
machine without raising any suspicion.
• Use of malware matching a benign application. The red team

made use of malware named ccleaner that was crafted to
evade virus signatures. Note that ccleaner [85] is a widely used
application that analyzes all files and removes unneeded and
unwanted files. This behavior blends in perfectly with that of
ransomware that reads/encrypts/removes many files.
• Extensive interaction with benign background activity. A

benign backup task periodically copied over all user files to a
backup server, including files created by the attacker’s malware.
Moreover, malware execution made use of benign supporting
processes such as dbus-launch.

Fig. 1 shows a fragment of the dependence graph (also known
as provenance graph) relating to this attack, constructed from the
audit log produced by the Linux auditd daemon. Rectangles in
this graph are subjects (processes), while objects are depicted as
ovals (files) and diamonds (network connections). Edges in the
graph correspond to system events such as read, write, load,
fork, execve, and so on. Edges are oriented in the direction of
information flow, and annotated with event names. To reduce
clutter, we omit annotations on read and write edges.

Logically, the attack begins with the theft of login credentials
for the user Bob, but this step is assumed to have taken place
“out-of-band” and is not visible in the audit data. Using these
credentials, the attacker Trudy logs into Bob’s machine B using
ssh. There are numerous logins into B, as shown at the left end
of Fig. 1. Some of these are by Bob and others may be by Trudy.
To reduce clutter, we elide the details of these ssh sessions, except
the one corresponding to the attack.

In the ssh session corresponding to the attack, Trudy downloads
ccleaner malware using scp, and then executes it. This malware
analyzes the files in Bob’s home directory. It selects several files to
hold as ransom. Each of these files are replaced with their encrypted
versions, which are indicated with a .tkn suffix in the figure.
When ccleaner starts up, it also executes dbus-launch, a behavior
associated with some of the libraries and toolkits used by it.

In a parallel ssh session, Bob logs into B and initiates a backup
of the files in his home directory to a second host A. This activity
is shown at the left bottom of Fig. 1, and happens to take place
immediately after the ransomware attack.

Note that benign activities surrounding the attack far exceed
the attack activity. To reduce clutter, we have elided many of

these benign activities, including: many ssh sessions for Bob, the
details of all the files that were backed up, subsequent activities
of dbus-launch, and so on. If those details were included, then
the picture will be at least 10 times larger.

Challenges: This attack poses many challenges for detection
and forensic analysis tools. By using stolen credentials, Trudy
enters the system without triggering any alarms related to typical
break-in activities, e.g., scanning for and exploiting known
vulnerabilities, or clicking on email attachments. By using novel
malware with a disguised name, Trudy avoids triggering most code
signature and file-name based malware detectors. By blending with
the behavior of legitimate ccleaner program, Trudy can also evade
behavior-based and anomaly-based attack detectors. In contrast,
we present effective detection techniques using provenance tags,
and in particular, a prioritized approach for tag propagation. Our
technique is not only accurate on ccleaner, but also other stealthy
attacks, including those that use in-memory payloads, browser
extensions, and in one instance, kernel-resident malware.

The challenges faced in scenario reconstruction are even more
formidable. Because of intermixing of benign and attack activities,
a forward analysis starting at the ccleaner process yields a
graph with tens of thousands of nodes, illustrating the effect of
dependence explosion. Existing forensic analysis techniques that
rely on coarse-grained provenance are ill-equipped to deal with
this explosion. Specifically, SLEUTH’s [30] approach of cost-based
pruning of forward paths is helpful, but the resulting graph still
contains over 3000 nodes. This is at least an order of magnitude
larger than what can be visualized and understood by an analyst.

HOLMES [57] copes with dependence explosion by looking
for and linking together the steps in a typical APT life-cycle,
including initial compromise, privilege escalation, internal recon,
lateral movement, exfiltration and clean-up. Although HOLMES can
cope with a few missing phases, ccleaner poses a stiff challenge,
as it exercises just a single APT stage (initial compromise).

NODOZE [29] prioritizes anomalous information flows to reduce
the size of the graph generated by forward analysis. Unfortunately,
the flows manifested by malicious ccleaner program are similar to
those of benign ccleaner. This can make it difficult to ensure that
malware activities are faithfully captured in the output. Moreover,
flows created by the backup process share similarities with the
malware, making it difficult to prune out this benign background
activity. PRIOTRACKER’s [51] isn’t directly aimed at constructing
a compact scenario graph, but instead, it aims to include as much of
attack activity as possible within a given amount of analysis time.
Their use of event rareness can prioritize edges from ccleaner
malware, but because many of the files read by the backup process
are also new, those benign reads have to be prioritized as well.



4

Event Tag to New tag value for different subject types
update benign suspect suspect environment

create(s, x) x.dtag s.dtag

read(s, x) s.dtag min(s.dtag, x.dtag)

write(s, x) x.dtag min(s.dtag+ ab, x.dtag) min(s.dtag, x.dtag) min(s.dtag+ ae, x.dtag)

periodically: s.dtag max(s.dtag, db∗s.dtag+(1− db)∗Tqb) no change max(s.dtag, de∗s.dtag+(1− de)∗Tqe)

Table I: Propagation rules for operations on data. Here, dtag refers to the data tag. Tqb and Tqe stand for quiescent tag values for benign and suspect environment processes,
set respectively to 〈0.75,0.75〉 and 〈0.45,0.45〉 in our implementation. Attenuation (ab and ae) and decay rate (db and de) settings are discussed in Section VIII.

Since NODOZE and PRIOTRACKER rely on anomalous (“rare”)
events and/or anomalous information flows, sophisticated attackers
can evade them by designing their malware to match the behaviors
of benign applications. Moreover, these techniques require an exter-
nal attack detector to initiate the analysis. In contrast, we present a
tag prioritization method that automates both attack detection and
scenario graph construction, and moreover, operates in real-time.

III. Tags and Propagation

Provenance graphs faithfully capture all possible dependencies, and
hence do nothing to address dependence explosion. The core of
our approach is to develop a system of tags and propagation rules
that prioritize a subset of dependencies for attack investigation.
Our prioritization takes advantage of behaviors common to benign
applications in order to prune away dependency chains unlikely
to play a role in attacks. At the same time, it is conservative (i.e.,
assumes the worst-case behavior) in its reasoning about malicious
subjects, thus making it evasion-resistant. Key to this approach is
our method for tagging subjects as benign or malicious, a topic
covered in Table II, Sections V.B and VII. Here, we begin by
defining the subject tags used to differentiate these groups:

• suspicious code: This value indicates that the subject’s code is
suspect, i.e., it could be malware.
• suspicious environment: This value, abbreviated as susp env,

indicates that the subject’s code is benign, but its execution was
started by a suspicious subject, which controlled the command-
line parameters and environment variables.
• benign: This tag value indicates that both the code and running

environment of a subject are benign. Benign subjects may
contain exploitable vulnerabilities, so they may be compromised
by malicious inputs.
• trusted: This tag indicates that the subject is capable of

protecting itself from malicious inputs.

Unlike subject tags that are associated only with subjects, data
tags are associated with objects as well as subjects, as both contain
stored data. A data tag is a tuple 〈c, i〉, where:

• c is the confidentiality tag that captures data sensitivity, and
• i the integrity tag that captures data trustworthiness.

Highly confidential data needs protection from unauthorized
disclosure. Logically, we distinguish between high and low values
for confidentiality. However, since it is easier to express tag prop-
agation rules as real-valued functions, we use real values for data
tags. Note that by convention, lower numerical values correspond
to higher levels of confidentiality. Thus, secret data such as private
keys and password files should be assigned a confidentiality tag
of zero, while public information should be assigned a tag of 1.0.
Values in the range [0.0,0.5) are considered high confidentiality,
while the range [0.5,1.0] corresponds to low confidentiality.

High integrity data is safe to consume, i.e., it won’t compromise
the subject, or otherwise enable an attacker to control its behavior.
In contrast, low integrity data may compromise a subject that
executes it. For this reason, we refer to high integrity data
(specifically, the range [0.5,1.0]) as benign and low integrity
data (specifically, the range [0.0,0.5)) as suspicious. Note the
convention that higher numerical values correspond to higher
levels of integrity. Thus, highly trusted data is given an integrity tag
of 1.0, while highly suspicious data will have an integrity tag close
to zero. In some contexts, it is helpful to define suspiciousness tag,
which is obtained by subtracting the integrity tag value from 1.0.

The flow of data tags within the dependence graph is modulated
by subject tags in our framework. To express these modulation rules
concisely, we extend standard arithmetic operations to data tags
as follows, where op is one of +,−,∗ or / operators. Operations
such as min and average can be extended similarly.

〈c1, i1〉 op k = 〈c1 op k, i1 op k〉
〈c1, i1〉 op 〈c2, i2〉 = 〈c1 op c2, i1 op i2〉

Tag Propagation Rules

Events cause data tags to propagate in the direction of information
flow. Unchecked propagation leads to a dependence explosion, so
our core idea is to use subject tags to modulate data tags flowing
through a subject. The guiding principles behind our design are:

• tag propagation should be conservative for suspect subjects,
but can be lenient for benign subjects.
• tag propagation should prioritize data flows that an attacker

can control, while de-emphasizing other data flows.
• only benign subjects can have benign data integrity; for other

subjects, data integrity is forced to be low, say, 0.45.1

Tables I and II consider the main operations that propagate tags.
Note that fork implicitly copies the parent’s tags to the child. Other
system calls such as chmod, unlink, and mprotect are security-
relevant but do not change provenance. As a result, we are left with
just the operations listed in the first column of Tables I and II. These
operations typically take two arguments s and x that represent the
subject performing the operation and the object being operated on.

The second column in the table identifies the tag that will need
to be updated as a result of the operation in the first column. The
next three columns specify, respectively, the new tag values of this
tag for benign, suspicious and suspect environment processes.

Propagation Rules for Operations on Data
The first row in Table I corresponds to object creation. The object
simply inherits the subject’s data tag in all cases. Note, however

1Suspect subjects may be malicious and hence can generate low-integrity output
even if they only consume benign input. Suspect environment subjects are spawned
by suspect subjects, so they may already hold low integrity data in their memory
(as command-line arguments, environment variables, etc.) and can output this data
even before consuming input from low-integrity objects.



5

Event Tag to New tag value for different subject types
update benign suspect suspect environment

load(s, x) s.stag min(s.stag, x.itag)

s.dtag min(s.dtag, x.dtag)

exec(s, x) s.stag x.itag min(x.itag, susp env) x.itag

s.dtag 〈1.0,1.0〉 min(s.dtag, x.dtag) min(s.dtag, x.dtag)

inject(s, s′) s′.stag min(s′.stag, s.itag)

s′.dtag min(s.dtag, s′.dtag)

Table II: Propagation rules for code operations. Here, stag and dtag denote subject and data tags. The integrity component of dtag is referenced using itag.

that an empty file contains no confidential or malicious content.
Hence, for benign subjects, we delay this propagation of subject’s
tag until the first write operation. We avoid this lenient treatment
for suspicious and suspect environment subjects, so that objects
created by them will have low integrity from the very beginning.

The second row concerns a read operation. Note that if a process
reads highly confidential (or low integrity) data, this immediately
leads to the process memory holding highly confidential (or low
integrity) data. For this reason, we update the subject’s data tag to
be the minimum of its current value and the tag of the data just read.

The next row concerns the write operation, which propagates the
subject’s tag to the object being written. For suspicious processes,
this propagation is immediate, i.e., we assume that (a) the most
confidential data within process memory may be output at this
point, and (b) lowest integrity data within the process memory may
be written. This conservative treatment ensures that all outputs of
a malicious process will be treated with suspicion.

Tag attenuation for benign subjects. Note that even if a benign
subject previously read highly confidential (or low integrity) data,
an attacker cannot control whether a write operation will output such
data. To factor this, we attenuate the confidentiality and integrity
tags of a benign subject before propagating them to the object.
Recall that smaller confidentiality (or suspiciousness) corresponds
to larger tag value, so we can achieve attenuation by multiplying
by a factor f > 1. However, a multiplicative factor will have no
effect if the original tag value is zero. So, we prefer an additive
factor. We use different additive factors ab and ae for benign and
suspect environment subjects. Since an attacker is likely to have
more control over suspect environment subjects, ae < ab.

For updating the data tags of objects being written, we take
the min operation, so that the object’s tag indicates the most
confidential (and the lowest integrity) data contained within.

Tag decay for benign subjects. If a benign process is compromised
by suspicious input, then this compromise will happen soon after
input consumption. Otherwise, it is likely that the input, even though
it was deemed suspicious at first, is really benign. So capture this
intuition, we gradually lift the integrity tag to its quiescent value
by applying a decay operator. Decay is not applied to higher tag
values, thus leaving them untouched.

Tag decay is meaningful for confidentiality as well. Long-
running benign applications that use highly sensitive data, e.g.,
passwords or keys, are designed to use them quickly, and then erase
them from memory, or at least prevent them from being emitted
in their output. For simplicity, we have used the same decay rate
and quiescent value for both confidentiality and integrity tags.

As is common in modeling decays, we have used an exponential
decay function. If the decay operation is applied once for each
period t, then a tag with an initial value v0 < Tqb will change to vn
after n periods, as given by the following equation. Since db < 1.0,

vn converges to Tqb for large n.

vn = v0 ∗ dnb + (1− dnb ) ∗ Tqb

This rationale for decay does not apply to suspicious processes,
so no decay operator is applied to them. For benign processes
running within a suspect environment, a decay operator can be
applied, but the rate parameter de should be larger than db, reflecting
a greater level of skepticism about their behavior in comparison
with benign processes. For the same reason, Tqe should be smaller
than Tqb. In our implementation, we have used Tqe = 〈0.45,0.45〉.

Propagation Rules for Operations on Code
Table II specifies propagation rules for code-related operations.
In general, loading causes the integrity tag of loaded object to
propagate to the subject. (This is the primary means of determining
subject tags, a topic further discussed in Section VII.) For this
propagation, we treat data integrity in the range of [0.5.1.0] as
benign, while the range [0.0,0.5) is treated as suspicious. In
addition, recall that the maximum data integrity of a subject is
bounded by its subject tag. For this reason, all operations that load
code into a subject s propagate the data integrity of the code object
to the data integrity of s. In particular, we take the min of the data
integrity of s and the code object.

Consider the load operation that is typically used to load a
library into a subject’s memory. When a benign process loads an
object, its subject tag is downgraded to suspicious if the object
has a low integrity tag; otherwise, the subject tag is left unchanged.
This behavior is captured by the min operation used to update the
subject tag of benign subjects on a load operation. The same logic
applies to suspicious as well as suspect environment subjects.

Although exec is similar to load in terms of loading new code
for execution, there are several important differences as well. In
particular, exec causes the code memory to be cleared, so we
simply overwrite the subject tag for benign code with the integrity
of the new code. Moreover, since exec causes data memory to
be cleared, we set the data tag to 〈1.0,1.0〉 to indicate the absence
of confidential data, and to reset its data integrity tag to be high.
(Recall the condition that data integrity tags can never exceed the
subject tag, so, the value of the integrity tag will automatically be
reduced to that of the object just loaded.)

The above logic for updating subject tag on exec operations
applies to subjects with a suspect environment as well. In addition,
we no longer consider the process to be running in a suspect
environment since the process performing the exec isn’t suspicious.
But we do not reset the subject’s data tags, as our level of trust on
these processes are strictly less than that of benign subjects.

For exec’s by suspicious processes, the above argument for re-
placing their subject tag with that of the executable continues to hold.
However, note that since the process is starting out to be suspicious,



6

Name Description Operation(s) Data integrity Other
condition conditions

MemExec Prepare binary code for execution mmap(s, p),mprotect(s, p) s.itag < 0.5 incl exec(p)

FileExec Execute file-based malware exec(s, o), load(s, o) o.itag < 0.5 s.stag is benign
Inject Process injection inject(s, s′) s.itag < 0.5 s′.stag is benign
ChPerm Prepare malware file for execution chmod(s, o, p) o.itag < 0.5 incl exec(p)

Corrupt Corrupt files write(s, o),mv(s, o), rm(s, o) s.itag < 0.5 ≤ o.itag

Escalate Privilege escalation any(s) s.itag < 0.5 changed userid
DataLeak Confidential data leak write(s, o) s.itag < 0.5 s.ctag < 0.5 ≤ o.ctag, socket(o)

Table III: Provenance-based policies for attack detection. Here, socket(o) holds when o refers to a socket, while incl exec(p) holds if p includes the execute permission.

the process after exec must be considered, at a minimum, to be in a
suspect environment, and hence we take aminwith susp env. For
data tag value, we apply the min operator as in the case of load.

Finally, we turn our attention to the inject operation, which
loosely corresponds to one subject modifying the code of another.
There may be no single system event that corresponds to inject, so
it may be necessary to piece together a set of related operations. For
instance, on Windows, an inject may correspond to a combination
of operations made by a process s to open the memory of another
process s′, write to it, and then create a remote thread. On Linux,
it may correspond to a combination of ptrace system call made by
s to attach to another process s′, followed by operations to modify
the memory of s′. Regardless of when an inject is recognized, its
behavior is similar to code loading. So, the rules for updating the
tag are similar to those for the load operation.

IV. Provenance-Based Attack Detection
Provenance-based attack detection using system audit logs has been
proposed before in the SLEUTH system [30], and its overall effec-
tiveness demonstrated. Our key contribution in this paper is to show
that naive tag propagation can lead to a large number of false pos-
itives, while our tag prioritization achieves a dramatic reduction in
this number. Secondly, our policies are more refined, enabling them
to detect stealthy attacks based on in-memory malware. According
to a recent report [6], a majority of threat actors (57%) avoided file-
resident malware in 2018, choosing to go with in-memory malware,
as it can evade most existing threat detectors (which are based on the
presence or execution of file-resident malware). As further evidence
of novelty in these policies, our approach was able to detect attacks
that made use of preexisting rootkits and kernel-resident malware.

Table III summarizes the attack detection policies used in our sys-
tem. These policies have the same general structure: they all concern
a system call (e.g., writing an object), with conditions imposed on (a)
the data integrity tags of the subject and/or objects involved, and (b)
other information associated with the call, such as permissions and
userids. The policies in Table III abstract some of the essential steps
of APT attacks [8], [2], [57], including the initial exploit, foothold
establishment, privilege escalation, and exfiltration of sensitive data.

The first row of Table III aims to capture the execution of in-
memory malware. This may either represent a memory corruption
exploit used in the initial exploit stage, or an advanced in-memory
payload used for attacker’s foothold establishment or expansion.
In order to trigger this policy, a subject’s data must have suspicious
provenance (signified by an integrity tag less than 0.5), and some of
this data should be readied for execution, which requires the use of
mmap or mprotect system calls with execute permission enabled.
(Note that mmap and mprotect also occur during library loading
operations. Our system maps these operations into a load, thus
preventing this policy from being triggered by file loads.)

The second row is aimed at file-based malware execution. It
is triggered by the load or execution of a file with suspicious
provenance. The third row is similar, except that instead of a subject
voluntarily loading suspicious code, malware is injected into its
address space by another subject.

The fourth row detects a step in preparing file-based malware
for execution by making the file executable. It requires the object’s
data to have suspicious provenance.

The fifth row detects overwriting of important system files (or
registry entries), a step that is typically used to establish a (more per-
manent) foothold on a host. It is triggered by an attempt by a subject
with suspicious provenance to overwrite a higher integrity object.

The sixth row recognizes a privilege escalation attack. This policy
is triggered by any system call by a subject with suspicious prove-
nance, provided the userid before and after the call are different.

Finally, the last row captures data exfiltration: an alarm is
triggered when a subject with suspicious provenance writes sensitive
data to a network socket that is not authorized for confidential data.

V. Attack Scenario Reconstruction

The central goal of this paper is to connect various attack steps to
provide a high-level summary of an ongoing attack campaign. To
achieve this, we first develop a dependence-based analysis to iden-
tify the initial attack step, also called the entry point. We then per-
form a tag-based forward dependency analysis to construct a graph
that summarizes the campaign. We describe these two steps below.

A. Entry Point Identification

Attack campaigns consist of many steps. Some of these steps lead
to numerous alerts, e.g., file corruption and data leak policies can
easily raise thousands of alerts. It is infeasible for an analyst to
track down each alert individually, so we have developed an alert
aggregation and prioritization technique further described below.

Given an alarm, we first associate it with a subject or object
originating it. For alarms raised on an input event, we consider the
object to be the originating node. For all other events, the subject
is considered the originator. We also assume that each alarm has
an associated weight, which is a real number between 0 and 1 that
reflects our confidence level in the alarm.

Given an alarm originating at node n, we perform a backward
search in the dependence graph for the closest node n′ that also
triggered an alarm. If we don’t find such an n′, then we call this
a primary alarm, and set precursor(n) to null, and weight(n) to
be the weight of the alarm. Otherwise, the new alarm is classified
as secondary; we set precursor(n) to precursor(n′), and add the
weight of the alarm to the weight of precursor(n′). Note that pri-
mary alarms have the combined weight of all the alarms ever raised.



7

For simplicity, our implementation follows only subject to subject
edges while searching for n′, and ignores edges between subjects
and objects. (For alarms originating on objects, the first hop uses
an object-to-subject edge, but the rest are subject-to-subject edges.)

An analyst can now pick the top few primary alarms with the
highest weight, and investigate them further. We designate the least
common ancestor of the selected primary alarm nodes as the entry
point. In cases where the top-ranked primary alarms have a much
higher weight than the rest, this entry point discovery does not
require human assistance, and can be fully automated.

B. Forward Analysis

If the entry point or any of the primary alarm nodes are processes
with benign subject tags, then their subject tag is modified to
suspicious. Tag propagation rules are rerun on these processes,
as well any descendants whose tag has changed as a result of this.

Next, a depth-first search of the dependence graph is initiated at
the entry point node. This search does not visit nodes whose data
integrity tag is above a set threshold (which defaults to 0.5, but may
be changed by the analyst). This search identifies the nodes that
will be included in the scenario graph. Next, we add all the edges
incident on these nodes. We then add all the nodes attached to these
newly added edges. As a final step, we combine multiple edges
between two nodes if they have the same name, e.g., multiple reads.

VI. Implementation

As shown in Fig. 2, our system consists of three layers that
implement its core functionality, together with an UI for an analyst.
The lowest layer consists of data consumers that process input from
COTS auditing systems. We used two consumers in our evaluation,
one for Linux auditd and another for FreeBSD DTrace [4] data.
These systems have the ability to log important system events,
including most system calls. There are two variants of the Linux
consumer. The first one directly inputs Linux audit logs, while
the second version inputs roughly the same information, but in
the Apache Avro format used by DARPA Transparent Computing
dataset [3]. FreeBSD consumer supports only the second format.
These consumers are written in C++ and consist of about 6KLoC.
They translate OS-specific events into a platform-neutral set of
operations provided by the middle layer. This platform-neutral
representation can be stored on disk, in a format we call Common
Semantic Representation (CSR) [31].

The middle layer can either operate from CSR files, or interface
directly to the data consumers. It is responsible for constructing and
traversing the dependence graph, and is implemented in 11 KLoC
of C++. It builds on our earlier SLEUTH system, incorporating
many further optimizations and refinements, including our
dependency-preserving graph compaction technique [31]. Another
major new feature of MORSE is its runtime environment, which
exposes platform-neutral events to extension modules. These
extensions are written in E∗, our domain-specific language for
event monitoring and manipulation. All of the tag initialization,
tag propagation and alarm policies are implemented in E∗. Tag
propagation (Tables I and II) was realized using 103 lines of E∗,
while the alarm rules (Table III) required 37 lines. The compiler and
runtime environment for E∗ consist of about 8KLoC of C++. Due
to space constraints, we have omitted a detailed description of E∗.

The third layer consists of a user interface for analysts to monitor
alarms, run queries on the graph, construct scenario graphs, etc.

Linux audit data
consumer

Audit
Stream

Audit
Stream

Graph Query & Search API

E* extensions

FreeBSD DTrace
data consumer

Analyst UI

Dependence Graph
 Construction  &

Search

...

E* runtime

Common Semantic 
Representation (CSR)

Fig. 2: Implementation Architecture

VII. Putting it All Together: Analysis of CCleaner

We now illustrate how the techniques described so far come together
to analyze the ccleaner attack from Section II. The resulting graph,
as seen by the analyst, is shown in Fig. 3. Note that the graph gen-
eration is fully automated, and involves no manual post-processing.
Data Tag Initialization. Newly created objects and subjects inherit
their tags from the subjects that create them, as described in Tables I
and II. But we need a separate mechanism for assigning tags to
pre-existing entities such as (a) processes and files existing before
the start of data collection, and (b) network endpoints.

Tag initialization can be based on an organization’s host configu-
ration practices and policies. Alternatively, they may be learned by
observing the use of files during a training period. Neither of these
options were available to us in our experiments. The dataset we
used did not come with any documentation of host configuration
practices. Moreover, although some training data was included, the
behavior observed on the days of attacks differed significantly from
the training data, thus ruling out the training option as well. For
this reason, we relied on the following minimalist approach in our
evaluation: we designated /etc/passwd, /etc/shadow and the
/var/log/ directory as confidential. All files originally present on
the system were assigned high integrity. Finally, network addresses
were assigned low integrity and confidentiality. This tag initializa-
tion is consistent with our threat model (Section VIII) and sufficient
for our evaluation. Our tag initialization code, used in the analysis
of all the attacks in our evaluation, consists of 14 lines in E∗.
Subject Tag Initialization. Similar to our treatment of pre-existing
files, all processes that were running at the start of data collection
(e.g., servers such as sshd) were marked benign.

Subject tags of benign processes change to suspicious if they
exhibit suspect behavior, e.g., loading or executing low-integrity
code, or being injected by a lower integrity subject (Table II).
Additionally, when a number of alarms can be traced back to a
subject, that subject is marked suspicious (Section V.A).
Attack Detection. Note that the initial login by Trudy does not
trigger any alarms. She is using stolen credentials, but our system
has no information about this theft. Her IP address is unremarkable
as well. When she downloads ccleaner, it is given a low integrity
since it is being downloaded from an unknown internet site. When
this file is executed, it triggers the FileExec alarm from Table III.
The ccleaner process is also marked as a suspect subject by the
exec rule in Table II. As a result, its file overwrite (or remove)
operations trigger the Corrupt alarm as well.

While the policies shown in Table III have been sufficient in our
experimental evaluation, note that additional attack detectors can
easily be incorporated in our system, and used to (a) identify and
tag suspicious subjects, and (b) trigger scenario graph generation.
Entry Point Identification. The entry-point identification technique
described in Section V traces back the above FileExec and



8

S:scp -t ./ccleaner

O:~/ccleaner

CRTWR

S:./ccleaner

LDEXE

S:scp -r /home/admin/*
 admin@128.55.12.118:./backup/

RD

SUCLN

O:~/8675309
O:~/883929418855.tmp

CRT WR RM

O:~/9006492568
O:~/883929418855.tkn

O:~/024543832898
O:~/2124894608

CRT WR

S:dbus-launch --autolaunch
 67c5ab56bd0c88de0302473d5bb380e2

 --binary-syntax --close-stderr

CLN

O:~/8675309.tkn

WRCRT RD

RD

O:/var/lib/dbus/machine-id

RD

O:Pipe

RD

RD WR

SUCLN

S://bin/dbus-daemon 
--fork --print-pid 5

 --print-address 7 --session

CLN

O:/sys/devices/system/cpu/online

RD

O:/etc/drirc

RD

O:/home/admin/*

RD

O:/usr/bin/dbus-launch

EXE

RD

O:/etc/passwd

RD

O:Pipe

RD

WR

SU

O:/bin/dbus-daemon

EXE

O:/usr/share/dbus-1/services/org.xfce.FileManager.service

RD

Fig. 3: Scenario Graph constructed by MORSE for CCleaner Ransomware

Corrupt alarms to Trudy’s scp process. It is now given a subject
tag of suspicious, and the tag propagation rules are rerun.

Forward Analysis. Since the scp and ccleaner processes have
suspicious subject tags, no tag attenuation or decay is applicable to
them. Hence, every file written by these subjects is assigned a low
integrity tag, and their child processes continue to be suspicious.

When ccleaner’s child executes dbus-launch, a benign file, it
is marked as suspect environment, as per the execve rule in Table II
(middle column). As a suspect environment process, when it exe-
cutes another benign file, dbus-daemon, this execve rule (see the
right-most column) causes it to be marked benign. Note that dbus-
daemon still has low data integrity, but due to attenuation and decay,
its child processes end up having benign subject and data tags.

Recall that our forward analysis starts at the entry point node
and traverses forward through all nodes (objects or subjects) with
data integrity≤ 0.5. The resulting graph is shown in Fig. 3.

Refinement and Rerun. Analysts can refine and rerun this analysis
in order to convince themselves that some components of the attack
haven’t been missed. Since our forward analysis typically takes a
small fraction of a second, analysts can explore refinements rapidly.

Some of the possible refinement actions include: (a) marking
additional subjects as suspicious, (b) trying alternative attenuation
and decay values, (c) changing the tag value threshold for including
a node in the scenario graph, or (d) extending the graph forward at
selected nodes. For this attack, there were no obvious candidates for
(a). We tried (b) through (d), but found no more malicious activity.

VIII. Experimental Evaluation

Platform. The system under attack consisted of multiple hosts
running recent versions of Ubuntu Linux and FreeBSD. Our
analysis was performed on an Ubuntu 18.04 Linux laptop with
an Intel 2.7GHz i7-7500U CPU and 16GB memory.
Threat Model. Similar to previous research on attack reconstruction
from audit logs [36], [30], [51], [57], [29], we assume that attackers
cannot compromise audit record collection or the log itself. Best
results are obtained if (a) victim systems start off in a benign
state, i.e., without any pre-existing malicious software, and (b)
all security-relevant system calls and arguments are included in the
audit log. However, real-world systems may not always satisfy these
conditions. Indeed, several of the attacks in our dataset relied on
pre-existing malware. The logs were also incomplete due to missing

system-call arguments and/or provenance in some cases. Despite
these factors, MORSE was able to produce very good results.

A. Dataset

Many previous works [36], [46], [53], [51], [29] have based their
evaluation on attack datasets created by the authors themselves.
This choice is not optimal, as it can introduce a bias in attack
selection that favors the authors. Yet, it is unavoidable in the
absence of third-party datasets. We have therefore chosen to
evaluate our system using attacks carried out by an independent red
team, as part of the DARPA Transparent Computing (TC) program.

DARPA organized five red team engagements between 2016 and
2019. The scale and sophistication of these engagements increased
significantly after the first two engagements, so we focused our eval-
uation on the third and fourth engagements. (The fifth engagement
had not taken place by the time this work was carried out in early
2019.) Note that the third engagement data has already been publicly
released [3] by DARPA, while the rest may be available on request.

In its choice of attacks, the red team was guided by what they
considered were emerging stealthy APT techniques. But they were
less concerned about data completeness. For instance, audit data
collection typically began long after many background services
had been started. As a result, they were unable to track provenance
through such services. Moreover, some of the red team attacks
relied on rootkits or malicious kernel modules that had been present
on the victim system prior to audit data collection. We believe that
similar gaps are unavoidable in real-world systems, and hence the
red team data enables a realistic evaluation that wouldn’t have been
possible, had we created the data on our own.

Data from DARPA TC Engagement 3
In our evaluation, we used the datasets from the TRACE and
CADETS teams in the DARPA TC program [3]. TRACE data,
henceforth called L-3 dataset, is derived from Linux audit data.
CADETS data, called F-3 dataset, is derived from FreeBSD DTrace
[4] data. More details about these datasets is shown in Table IV.

According to the ground truth provided, there were four attacks
that (mostly) succeeded in L-3, plus several failed attempts. There
were five attacks in F-3, of which four were repetitions of the same
attack. The last attack, which also appeared in L-3, is a web-site
password stealing attack that lures the user to a phishing web site.
There are no subsequent effects on the victim’s machine or network.
As a result, this attack is not visible in the system-call audit data,



9

Data- Duration # of Short attack
Attack name used in ground truth and short description of attack

set (hh:mm) events name

L-3 263:05 714 M

Firefox
backdoor

Firefox backdoor w/ Drakon in-memory: Firefox is exploited by a malicious web site to execute
an in-memory payload. This provides a remote console for the attacker (Fig. 7).

Browser
extension

Browser extension w/ Drakon dropper: Exploit the victim system using a preexisting malicious
Firefox browser extension, drop and execute a malicious file on disk (Fig. 12).

Executable
attachment

Phishing e-mail w/ executable attachment: A malicious executable file was sent as an email-
attachment, which, after opening, established a connection to the attacker’s machine.

F-3 263:28 21 M
Malicious

HTTP request
Nginx backdoor w/ Drakon in-memory (4 instances): Attacker exploits Nginx server using
a malicious HTTP request. Nginx then downloads and executes several malicious files (Fig. 8).

L-4
15:28 36.5 M

User-level
rootkit

Azazel: Using a preexisting user-level rootkit, the attacker connected to the system
using a remote shell and ran reconnaissance commands. (Fig. 13)

CCleaner
ransomware

VNC attack: Motivating example discussed in Section II (Fig. 3).

Recon w/
Metasploit

Metasploit: Malware was downloaded and executed using Metasploit, giving the attacker
remote access. Attacker ran various reconnaissance commands using this capability (Fig. 9).

Kernel
malware

Firefox Drakon: In-memory exploit works with a preexisting malicious kernel module for
privilege escalation. This allowed the attacker to compromise the sshd server (Fig. 10).

F-4 11:53 37.2 M

Dropbear
Trojan

Dropbear SSH: Using a pre-installed Trojan ssh server, the attacker logged into the victim,
ran multiple reconnaissance commands and exfiltrated the results.

Recon w/
Rootkit

Micro APT: The attacker uploaded two rootkits using scp to the target systems separately,
executed them, gained root privilege and ran multiple recon commands (Fig. 11).

Table IV: Attacks contained in our datasets. L-3 and F-3 are from the 3rd DARPA TC red team engagement, while L-4 and F-4 are from the 4th engagement.

Firefox
Backdoor

Browser
Extension

Executable
Attachment

User-Level
Rootkit

CCleaner
Ransomware

Recon w/
Metasploit

Kernel
Malware

Malicious
HTTP Req.

Dropbear
Trojan

Recon w/
Rootkit

101

102

103

104

105

11

13,100
6,500

21,700

3,100 2,300
3,600

470

59,967

334

11
24

44
95

39

14

315 288

1,988

15G
RA

PH
SI

ZE
(n

um
be

ro
fn

od
es

)

Naive forward propagation Using Tag Decay

Fig. 4: Reduction in scenario graph size achieved using tag attenuation and decay. The average size reduction is 35 times, and no relevant nodes were dropped.

which just shows the user visiting a web site — a perfectly normal
activity. So we have omitted this attack from our analysis, and
show only the remaining attacks in Table IV.

Data from DARPA TC Engagement 4
The L-4 and F-4 datasets shown in Table IV are from the 4th red
team engagements involving a pair of Ubuntu Linux and a pair of
FreeBSD systems that interact with each other. While the attacks
themselves were more stealthy than Engagement 3, and involved at-
tacks that spanned multiple hosts, the adversarial team chose to work
in a serial fashion, focusing on just a single operating system on
each day of the engagement. As a result, the datasets were shorter.

B. Effectiveness of Tag Attenuation and Decay

Parameter Selection. Our method is characterized by the rates of
attenuation and decay for benign and suspect environment subjects.
Values of these four parameters (ab, db, ae and de) can be chosen
based on a high-level understanding of how they affect alarms. For
instance, consider a benign subject s1 reads a file f1 with integrity
0.0 and writes to file f2, which is then read by another benign
subject s2 that then writes to f3, which, in turn, is read by a benign
s3 that then writes to f4. If we set ab = 0.2, then it is easy to see that
f2 and f3 will have low integrity (specifically, integrity of 0.2 and

0.4 respectively), but f4 will have a high integrity. In other words,
this choice of ab limits low integrity data from propagating beyond
two subject-to-object hops. This seems like a sensible choice: it is
extremely unlikely that one can craft malicious data f1 that will
first exploit a vulnerability in s1 to compromise it, and cause it
to produce another malicious file f2, which, in turn, exploits a
vulnerability in the second benign subject s2, causing it to produce
another malicious file f3 that in turn contains an exploit for s3. For
suspect environment subjects, we set ae = 0.1 to reflect the fact
that attackers have more control over suspect environment subjects.

We can use a similar process for choosing the decay rate
parameter db. When a benign subject consumes malicious input, it
usually takes a very short time for the exploit to succeed or fail, say,
50 to 200 milliseconds. Accordingly, we could set the half-life of db
to be a slightly above this threshold, at 0.25 seconds. Note that in this
context, half-life is the duration in which the difference between the
current data tag and its quiescent value will be halved. For instance,
if a benign subject starts with an integrity of 0.15, in 0.25 seconds
its integrity will increase to 0.45. (Recall that we use 0.75 as the qui-
escent data tag value for benign subjects.) For suspect environment
subjects, we use double this value, i.e., de = 0.5 seconds.

We validate the above analysis-driven selection of decay and
attenuation parameters using three sets of experiments below.



10

Dataset
FileExec MemExec ChPerm Corrupt CDL Escalate Total Alarms

Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

L-3 479 1.31x 1.45M 13.96x 9 1.41x 184K 10.53x 13.4K 40.36x 959 1.54x 1.65M 11.54x
L-4 53 18.33x 337K 16.73x 66 22.45x 32K 13.68x 1.88K 15.95x 211 1.92x 371K 16.45x
F-3 19 1x N/A N/A 1.81K 1.86x 6.4K 1.91x 41.03K 94.19x 113 21.98x 49.4K 11.32x
F-4 38 9.5x N/A N/A 1.82K 2.65x 166K 16.85x 53.90K 4.84x 243 4.52x 222K 7.85x

Average 3.89x 15.28x 3.53x 8.25x 23.28x 4.14x 11.40x

Table V: Alarm reduction due to tag attenuation and decay, with ab = 0.2, db = 0.25, ae = 0.1, de = 0.5. The last two columns show the reduction across all alarm
types, while the others break it down by alarm type. “Base” columns show the alarms generated by SLEUTH [30], while “Ours” show the reduction achieved by MORSE.

∞ 22 21 20 2−1 2−2 2−3 2−4 2−5

105

106

Decay half-life (seconds)

To
tal

Al
ar

m
s

TC Engagement 3 (L-3 and F-3)

a = 0
a = 0.10
a = 0.20
a = 0.30

0

100

200

300

400

500

Fa
lse

Ne
ga

tiv
es

∞ 22 21 20 2−1 2−2 2−3 2−4 2−5
104

104.5

105

105.5

Decay half-life (seconds)

To
tal

Al
ar

m
s

TC Engagement 4 (L-4 and F-4)

a = 0
a = 0.10
a = 0.20
a = 0.30

0

100

200

300

400

500

Fa
lse

Ne
ga

tiv
es

Fig. 5: Total number of alarms and false negatives on TC Engagement 3 and Engagement 4 datasets using different attenuation and decay rates. The scale for total number
of alarms is on the left, while the false negative scale is on the right. The total number of true positives are 126 and 425. The total number of alarms without attenuation
and decay are 1.69 million and 0.59 million respectively, and they reduce by 10x with tag attenuation and decay.

Scenario Graph Size Reduction
Figure 4 summarizes the reduction in scenario graph sizes achieved
using tag attenuation and decay. These graphs were generated as
described in Section V.B: starting from the primary alarm, and
retaining only nodes with data integrity below 0.5. The geometric
mean of the reduction achieved across all the attacks in our dataset
is about 35. No relevant nodes were missed.

Note that in some cases, the resulting graphs are still large,
especially in the case of Dropbear, with about 2K nodes. This is
because Dropbear is an SSH server that continues to be used for
the duration of the dataset, and any of its actions during this period
could actually be malicious. However, in realistic settings, the
analyst would want to construct the scenario graph soon after an
alarm is triggered. We observed that if the graph is generated within
10 minutes of the attack, our approach would indeed generate a
compact graph consisting of just 20 nodes.

SLEUTH [30], our previous work, also achieves alarm reduction
using two subject tags, called code- and data-trustworthiness tags.
By triggering only on code-trustworthiness, it reduced false alarms
by two orders of magnitude on TC Engagement 1 dataset. However,
this strategy causes it to miss half the attacks in Engagement 3
and 4, including the Firefox backdoor, user-level rootkit, kernel
malware, dropbear, and some of the malicious HTTP requests.

Alarm Reduction
To properly evaluate our approach of alarm reduction, we calculated
the alarm reduction achieved on an hourly basis, and computed
its geometric mean. This was done individually for each alarm
type, as well as the total number of alarms. These results are shown
in Table V. Across all datasets and all alarm types, our approach
achieved an average of 11.4x reduction in the number of alarms.

Note that MORSE’s FileExec, MemExec, ChPerm,
Corrupt and DataLeak policies match those of SLEUTH but for
the use of tag attenuation and decay. Consequently, SLEUTH’s alarm

counts correspond to the “Base” column in Table V. Thus, MORSE
generates an order of magnitude fewer alarms than SLEUTH.

False Negatives
High values for tag attenuation and/or decay can lead to false
negatives. To assess this potential, we plot the total alarm numbers
and the false negatives (based on the ground truth) in Fig. 5. Alarm
number curves are sloping down, with the y-scale shown on the
left of each chart. False negative curves slope upward, and their
scale is shown on the right side of the chart.

From the charts, it is clear that false negatives are generally absent
at attenuation rates of 0.2 or lower, but they increase afterwards.
At rates above 0.25, if low integrity data from the internet is written
to a file after passing through a pipe, the file will have high data
integrity (i.e.,≥ 0.5). This behavior, seen with some services such
as ssh, causes attacks to be missed. These results support our initial
choice of 0.2 for attenuation rate. If additional margin of safety is
desired, it can be reduced to 0.1. While this increases alarms, we
found that the scenario graph sizes are unchanged from Fig. 4.

At our chosen attenuation rate, false negatives due to decay don’t
increase significantly until we reach decay rates at least 4x faster
than the 250ms we suggested earlier. These results hold for both
datasets we have used in our evaluation. Although not shown here
due to space limitations, this observation holds even if we separate
the datasets further based on the OS.

Summary of Effectiveness
For the attenuation and decay rate selected at the beginning of
this section, we achieve an 11.4x reduction in alarms without
experiencing false negatives. We also achieve a 35x reduction in
scenario graph size without false negatives. The decay rate could be
increased by a further 4x before experiencing false negatives, while
the attenuation rate could be decreased by 2x without changing
scenario graph sizes, thus providing significant margins of safety.



11

Data
set

Size on
disk (GB)

Number of
attacks

Graph generation
time/attack (sec.)

L-3 23.79 3 0.043
L-4 2.27 4 0.053

F-3 1.18 4 0.030
F-4 1.26 2 0.220

Table VI: Runtime for scenario graph generation.

Data
set

Total
events

File size
on disk (GB)

Memory
Usage (GB)

L-3 714 M 23.79 0.49
L-4 36.5 M 2.27 0.11

F-3 21 M 1.18 0.19
F-4 37.2 M 1.26 0.11

Total 808.7 M 28.5 0.90

Table VII: Main memory size of dependence graphs.

C. Runtime Performance

Table VI shows performance related to scenario graph
reconstruction. The second column shows on-disk sizes of data sets
in compressed Apache Avro binary format. The third column shows
the number of attacks in each dataset, while the fourth shows the
average time to generate the scenario graphs for these attacks. Even
though the data set sizes range from a few to tens of GBs, scenario
graph generation is very fast, taking on average 69 milliseconds per
attack across the 13 attack instances in our dataset. The principal
source of this speed is the compact in-memory dependence graph
representation used in our implementation. Specifically, we have
developed (a) a versioned graph representation that is acyclic, and
(b) a notion of full dependence preservation [31] that eliminates
the need to store the vast majority of events, while guaranteeing
accurate forensic analysis results. Table VII shows the resulting
in-memory size of the dependence graph for each dataset. Memory
usage varies between 0.7 and 9 bytes per event across these datasets,
with the overall average of 1.12 bytes of memory per event.

Construction of the dependence graph from Apache Avro format
is fast, taking about a second per 100K events. This is 10x to 100x
faster than the rate of data generation, enabling MORSE to operate
in real-time. Consumption from our CSR format is even faster,
operating at about 1M events per second.

D. Analysis of Evasion Attacks
A natural question is whether attackers can evade detection by
abusing our mechanisms for mitigating dependence explosion. Tag
decay can be abused by artificially introducing delays between the
time a subject reads input and the time it writes it. Tag attenuation
can be abused by making many intermediate copies of data. Both
abuses are easy if performed by an attacker-controlled process.
However, our system is designed to tag such processes with a suspi-
cious subject tag. Since tag decay and attenuation are not applied to
suspect subjects, no evasion is possible for such subjects. To success-
fully abuse our tag explosion mitigation techniques, attackers need
to control or co-opt processes with benign or susp env subject tags.
Controlling benign processes. The primary means for attackers to
control a process is by having it execute their code. This requires
the use of a load, exec or inject operation shown in Table II. Since
these operations change the subject to be suspicious,, they don’t
serve the goal of controlling a process with benign subject tag.

Command interpreters such as python and bash can use read
operations to load scripts, and this may provide an evasion path

Naive
Propagation

Without Using
env Tag

Using
env Tag

104

105
111,082

3,593 2,833

To
ta

lN
um

be
ro

fN
od

es

Fig. 6: Size of the scenario graph withou decay or attenuation, without using env tag
(i.e., no decay or attenuation for suspect environment subjects) and using env tag.

for an attacker. Our system treats read operations as loads for
command interpreters, thereby closing off this option. (The list of
command interpreters is specified in E∗.)

Another evasion strategy is to use in-memory code. By monitor-
ing the mmap/mprotect operations required for this, ourMemExec
policy can detect such attacks (and did so in our evaluation).

Finally, attackers may use stolen credentials to access an
interactive command shell. We rely on additional suspicious
activities to detect such attacks. In our experimental datasets,
attackers downloaded and executed malware, overwrote library
files outside of the normal software update/install mechanisms,
or exfiltrated sensitive information. Our entry point identification
traced these actions to the shell process. This process was assigned a
suspect subject tag, stopping it from abusing our tag optimizations.

Naturally, it is possible for attacks to go undetected. But since we
support additional external detectors, this possibility isn’t specific
to our system. Indeed, an analyst won’t even initiate a forensic
analysis without signs of an attack, so the tag values become moot.
Co-opt benign process. Attackers may try to have their data copied
over many times by benign processes. The tag of the final copy can
then surpass the low integrity (or high confidentiality) threshold
due to tag attenuation. But this isn’t as simple as using a benign
cp program to copy data. In particular, the attacker would have to
control command-line arguments to cp. This can be accomplished
if the attacker’s process created the cp process, but then, cp would
be a susp env subject (discussed further below) rather than a
benign one. So, attackers have to rely on pre-existing file-copying
workflows, e.g., the backup operation in the ccleaner example.
We believe it is hard enough to find a string of such benign
workflows, but if an attacker manages to do so, the mitigation
measures described below provide a way to cope with them.
Control susp env process. Techniques to induce susp env pro-
cesses to execute attacker’s code are the same as those for benign
processes. Thus, the detection/mitigation measures mentioned
above for benign processes will pose challenges for attacking
susp env processes,2 forcing them to look for other avenues, e.g., by
providing malicious arguments, or manipulating their input/output
channels. Reflecting the added opportunities provided by this
richer interface, we use a quiescent value of 〈0.45,0.45〉 for these
processes, i.e., their data integrity will never rise above 0.5, so they
will always be present in the scenario graph seen by the analyst.

Tag attenuation, however, can cause some outputs of susp env
processes to have data integrity above 0.5. To avoid missing attack
elements due to this, an analyst can disable the use of susp env
tag altogether, replacing it with suspicious tag. We found that this

2Just as command interpreters may use read operations for code loading, they
may accept code arguments on their command-line. To account for this, we suppress
the transition to susp env if a suspect subject executes a command interpreter.



12

S:firefox

MEM

MPR CRT

O:/dev/glx_alsa_675

WR

O:stdout

WR

O:IP:3d8245e8:80

WR

O:stderr

WR

O:IP:2e92135:80

WR

O:/home/admin/cache

CRT WR MOD RD RDRD

O:/etc/passwd

RD

S:cache

RD

O:/etc/hosts

RD

CRTMPR RM

SU

O:IP:b49c6b92:80

WR

O:/var/log/xtmp

CRT WR MOD

O:/etc/ld.so.cache

RD

RD

O:/proc/sys/vm/overcommit_memory

RD

/proc/<PID>/stat

RD

O:/etc/group

RD

Fig. 7: Firefox Backdoor. Firefox was first compromised by a malicious ad server, resulting in an in-memory payload. This generated multiple MemExec alarms. Next,
an Escalate alarm was triggered, as the attacker escalated privilege using a kernel implant. Installed prior to the engagement, this implant was accessed using the device
/dev/glx alsa 675. Subsequently, DataLeak alarms were raised when Firefox read and exfiltrated /etc/passwd. In the second part of the attack, a cache process displayed
many of the same behaviors (and raised the associated alarms) as the compromised Firefox, but the provenance of this process was missing in the data. As a result, two
distinct entry points were identified, namely, the Firefox and cache processes. A forward analysis from these entry points resulted in the above graph. Note that cache
removes a file (/home/admin/cache) downloaded by Firefox, indicating that the two attacks are related.

change had no effect on the scenario graphs for some attacks, but
affected others significantly. But when we examine the total size
of all scenario graphs in our dataset, it isn’t substantially larger
after this change. (See Fig. 6.) In our experience, we found that
for some attacks such as the ccleaner and kernel malware, use
of susp env led to substantial simplification of the graph that
made it easier to understand the attack initially. Starting with this
understanding, it was much easier to ascertain that the nodes added
by the elimination of susp env tag were unimportant.

Mitigation. In the discussion above, we showed that many of
the obvious approaches for abusing our tag optimization don’t
work. The remaining abuse mechanisms can be mitigated using the
“refinement and rerun” process described in Section VII: analysts
can retry scenario graph construction by varying (a) processes
assigned suspect subject tags, (b) attenuation/decay rates, (c) tag
threshold for inclusion in the scenario graph, etc. As our system
is driven by a small set of rules, the implementation is very fast,
enabling retrials to be completed in a fraction of a second (Table VI).

E. Detection Details and Scenario Graphs

For the attacks in our dataset, we discuss below their detection, entry-
point identification, forensic analysis and scenario graph generation.
Two attacks are omitted because the scenario graph was too large
(Dropbear Trojan), or uninteresting (Executable Attachment).

Attacks Within Single Hosts
• Firefox backdoor: This attack uses an in-memory payload. The

scenario graph for this attack is shown in Fig. 7.
• Browser extension: This attack exploited a vulnerable Firefox

extension. Its scenario graph is shown in Fig. 12.
• Malicious HTTP request: The attacker tried compromising the

sshd process on the FreeBSD system but failed. The scenario
graph shown in Fig. 8 captures one of the attack attempts that
includes downloading and executing a malicious file.
• CCleaner ransomware: Detection of this attack was described

in depth in Section VII.
• Recon with Metasploit: Similar to the ccleaner attack, the

attacker uploaded a malicious file /usr/local/bin/hc to the
system using stolen credentials. The file was later executed and
used for running recon as shown in Fig. 9.
• Kernel malware: This attack uses pre-installed kernel malware

for privilege escalation, and compromising an existing sshd
process, as described in Fig. 10.

Attacks With Lateral Movement
MORSE tracks lateral movement using cross-host tag propagation.
Specifically, if host A reads from host B within the same enterprise,

O:/tmp/vUgefal

S:/tmp/vUgefal BBBB

EXE

O:IP:8b7b0071:80

WR

O:/var/log/devc

MOD WR ATR

O:IP:3da72780:80

WR

O:/dev/null

WR

O:/dev/random

RD

RD

O:/etc/pw.vT9LD5.orig

RD

Fig. 8: Malicious HTTP Request. This figure shows one of the more successful
attempts of this attack, which began with an exploit of nginx. A malicious file
/tmp/vUgefal was then downloaded and executed, raising a FileExec alarm. The
attacker went on to write another file /var/log/devc, which was intended to be injected
into the sshd process, but this attempt failed. Our entry point identification identified
vUgefal process. A forward analysis from this process yielded the above graph.
We also performed a backward analysis to identify the network entry point and the
nginx process that downloaded /tmp/vUgefal, but these nodes are not shown above.

S:./hc SU

O:/tmp/ext96481.

CRT WR

S:/tmp/ext96481.

CLN

O:Pipe

WR

O:IP:80370cb9:443

WR

O:/usr/local/bin/hc

EXE

O:/proc/<PID>/*
O:/etc/hosts

O:/proc/net/*
O:/usr/bin/*

O:/bin/dbus-daemon
O:/usr/lib/*

RD

O:/etc/passwd

RD

RD

O:/etc/group

RD

O:/bin/bash

RD

EXE

SU

WR

RD

RD

RD

Fig. 9: Recon with Metasploit. This attack began with a malicious file hc that was
scp’d onto the victim host using previously stolen credentials. When this file was
executed, a FileExec alarm was triggered. This process, together with another
piece of downloaded malware /tmp/ext96481, probed and exfiltrated sensitive data
to a remote IP address. These actions raised DataLeak alarms. MORSE traced
these alarms back to hc. A forward analysis from this node results in the above
scenario graph. A backward analysis from hc revealed the scp process involved
and the network entrypoint, but these are not shown above.

we propagate the data tags from the sending subject on B to the
receiving subject on A. Subject tags are also propagated in the case
of remote access services. Hence, if a suspicious process on host B
launches an ssh session on A, the sshd process on A will also be
tagged suspicious. With this tracking, MORSE was able to detect
both attacks in our dataset that involved lateral movement:

• User-level rootkit: The attacker utilizes a pre-existing user-level
rootkit to log into a Linux host, and then moves laterally into
a second host. See Fig. 13 for additional details.
• Recon with rootkit: The F-4 attack in Fig. 11 is simpler,

consisting of two instances of the same attack on two machines.



13

S:firefox CLNSU

O:IP:56811fc9:80

WR

O:/tmp/libnet.so

WR CRT

O:/dev/glx_alsa_675

WR

MEM

MPRATR

O:IP:6242293d:80

WR

O:IP:80370c0a:53

WR

RD

S:/usr/sbin/sshd -D

RD

RD LD

WR

RM

CLN

O:Pipe[23-24]

CRTWR

O:Pipe[9-10]

CRT WR

S:/usr/sbin/sshd -D -R

CLN

MPR CRT

O:/home/admin/files/docs/audiobackup

MOD WR CRTATR

S:/home/admin/files/docs/audiobackup 25.7.74.53 80 3

CLN

RD RD

SUCLN

O:/proc/<PID>/oom_score_adj

WR

O:IP:80370c7a:<Ports>

WR

O:IP:80370c75:<Ports>:80370c76:22

WR WR

O:/proc/<PID>/loginuid

WR

O:/usr/sbin/sshd

EXE

O:/dev/urandom

RD

O:/etc/hosts.deny

RD

RDRD

O:/etc/localtime

RD

RD

LD EXE

SU

O:/dev/null

WR

O:/home/admin/work/hosts

RD

O:/home/admin/files/docs/passwd

RD

O:/home/admin/files/launchmyserver.sh

RD

Fig. 10: Kernel Malware. Firefox, compromised by a malicious website, executed an in-memory payload that triggered several MemExec alarms. Next, an Escalate
alarm was triggered, as the attacker escalated privilege using a kernel implant installed prior to the engagement. Firefox then downloaded a malicious file /tmp/libnet.so,
which was meant to be injected into an existing sshd process. However, in the data, there is no injection, but sshd did raise several MemExec alarms, as well as a FileExec
alarm due to loading /tmp/libnet.so. Next, sshd downloaded /home/admin/file/docs/audiobackup and made it executable, raising a ChPerm alarm. It also performed some
recon and exfiltrated the information, causing several DataLeak alarms. In total, more than 500 secondary alarms were raised, all tracing back to Firefox. A forward
analysis, performed about 10 minutes after the attack, yielded the above scenario graph.

O:/usr/home/Bill/./mt

S:./mt

EXE

O:/dev/tty

WR

O:IP:6cf7f069:80

WR

S:uname -a

CLN

O:/usr/home/Bill

REN

O:/usr/home/Bill/passwd

REN

O:/libexec/ld-elf.so.1

LD

LD

O:/etc/libmap.conf

RD

RD

O:/var/run/ld-elf.so.hints

RD

RD

RD

O:IP:6cf7f069:80O:pipe6-7

WR

RD

O:/usr/home/Bill/./passwd

RD

O:/usr/bin/uname

EXE

O:/usr/home/admin/./mt

S:./mt

EXE

O:/dev/tty

WR

WR

S:netstat -na

CLN

O:IP:80370c0a:53

WR

O:/libexec/ld-elf.so.1

LD

LD

O:/etc/libmap.conf

RD

RD

O:/var/run/ld-elf.so.hints

RD

RD

O:pipe6-7

RD RD

RD

O:/usr/bin/netstat

EXE

Fig. 11: Recon with Rootkit attack. This attack began with uploads of mt, a rootkit, to two FreeBSD hosts. When mt was executed, a FileExec alarm was triggered. As
mt gathered and exfiltrated sensitive information to an external IP address, DataLeak alarms were raised. These alarms were clustered independently on the two machines,
tracing back to the mt process. A forward analysis from this process yielded the above graph. Note that the two graphs are disconnected, except for the dotted line showing
the shared attacker site. A backward analysis from mt showed that the attacker logged in using scp, presumably using stolen credentials.

IX. Related Work

Fine-grained Taint-Tracking: Fine-grained taint tracking [62],
[87], [14], [35], [44], [32], [33] avoids dependence explosion by
accurately tracking the source of each output byte to a single input
operation (or a few). Although these techniques can be evaded
by malware [17], they are very effective in mitigating dependence
explosion that typically involves benign applications such as
browsers. However, they have a high performance cost, slowing
down programs by 2x to 10x or more. BEEP [46], PROTRACER [53]
and MPI [52] developed a novel and efficient mechanism called
execution-partitioning, targeting applications such as servers and
web browsers that are prone to dependence explosion. MCI [45] and
PROPATROL [55] perform fine-grained taint tracking using model-
based inference. Unfortunately, these techniques can require some
manual assistance, and moreover, make optimistic assumptions
about program behavior that may not hold under attacks.

The main drawback of all fine-grained tracking approaches is the
need for extensive instrumentation of applications. Since vendors
don’t ship their application with such instrumentation, fine-grained
taint tracking is not an option for enterprises.

Attack Detection: A number of research efforts on attack
detection/prevention focus on “inline” techniques that are

incorporated into the protected system, e.g., address space
randomization [54], [16], [48], control-flow integrity [12], [91],
memory safety [81], [88], [61], [28], [43], and so on. Unfortunately,
attackers have repeatedly bypassed these techniques using a
combination of social engineering and advanced exploit techniques.
Enterprises have to rely on intrusion detection systems to piece
together such attacks from system logs.

Intrusion detection techniques fall into three main categories:
(i) misuse detection [69], [42], [83], [39], which relies on patterns
of bad behaviors (“signatures”) associated with known attacks;
(ii) anomaly detection [20], [47], [72], [19], [21], [15], [41], [74],
which relies on learning a model of benign behavior and detecting
deviations from this behavior; and (iii) specification-based
detection [38], [82], which relies on specifications of expected
behaviors of applications.

Misuse-based techniques face challenges in detecting novel
attacks since their signatures, by definition, are not available.
Anomaly detection techniques can detect novel attacks, but they
experience significant false positive rates that have deterred
widespread deployment. Specification-based techniques have the
potential to detect novel attacks while holding down false positives,
but they require application-specific behavior specifications that
are time-consuming to develop.



14

O:/lib64/ld-linux-x86-64.so.2

S:/etc/firefox/native-messaging-hosts/pass_mgr /home/admin/.mozilla/native-messaging-hosts/pass_mgr.json

LD

O:IP:3d8245e8:80

WR

O:Pipe[114-115]

WRCRT

MEM

CRT MPRATR

S:/bin/sh -c 2E2F6774636163686520263E2F6465762F6E756C6C2026

CLN

O:/etc/firefox/native-messaging-hosts/gtcache

WRCRT

O:Pipe[86-113]

RD

RD

S:firefox

RD

SUCLN

S:./gtcache

CLN

S:/tmp/ztmp

WR

SU

O:IP:a242ef4b:80

WR

S:uname -a

CLN

LD EXE

O:/bin/sh

EXE

O:Pipe[26-27]

WR

CRTMPR ATR

CLN

SUCLN

O:IP:92994497:80

WR

O:IP:119200fc:80

WR

O:Pipe[116-117]

WR CRT

O:/tmp/ztmp

RM MODWR CRT

O:/lib/x86_64-linux-gnu/libc.so.6

LD

LD

O:/dev/urandom

RD

RD

RD

O:/etc/passwd

RD

EXE LD

RD

O:Pipe[305-306]

RD

WR CRT

SU

O:/bin/uname

EXE

O:Pipe[67-71]

RD

Fig. 12: Browser extension. The attack started when a vulnerable browser-plugin pass mgr got compromised while visiting a malicious website. This raised MemExec
alarms. Next, the compromised plug-in downloaded a program gtcache and executed it, resulting in a FileExec alarm. In turn, gtcache downloaded and executed ztmp.
Both programs performed recon to collect and exfiltrate sensitive information to the network, resulting in several DataLeak alarms. Tracing back from these alarms,
MORSE identified pass mgr as the entry point. A forward analysis from this node yielded the above scenario graph.

SLEUTH and MORSE policies can be thought of as specifications.
As a result, they can hold down false positives while detecting
unknown attacks, including those carried out during adversarial en-
gagements. At the same time, they avoid the per-application develop-
ment effort associated with previous specification-based techniques.
We accomplish this by developing application-independent policies
that exploit provenance. In particular, an audit event is analyzed to
determine if it advances an attacker’s high-level objectives, thereby
providing a motive for the attack; while the provenance derived
from the entire audit history is used to determine if the attacker
had the means to influence this event. This combination of means
(provenance) and motive (policies) has proved very successful in
other contexts as well, such as the detection of memory corruption
and injection attacks [86], [62], [71], securing untrusted code [50],
[76], and OS-wide integrity protection [77], [49], [79], [80].

Unfortunately, dependence explosion dilutes the value of
provenance in SLEUTH, resulting in numerous false positives on
our dataset. MORSE cuts down these by an order of magnitude
using tag attenuation and decay.

Alert Correlation: IDSs often produce numerous alerts. Alert
correlation techniques combine related alerts into one, thus helping
users deal with the deluge. The main approaches, often used
together, are clustering of similar alerts, prioritization, and statistical
correlation [18], [65], [70], [40], [34], [66], [84], [67]. Industry
tools also use similar techniques in building SIEMs [7], [5], [10]
for alert correlation and enforcement based on disparate logs.

These techniques exploit structural similarities between alerts
(e.g., common IP addresses, ports, etc.) and temporal proximity
for correlation. In addition, some techniques rely on manually
specified prerequisites and consequences of attack steps [64],
or models that capture typical progression of attacks [27]. For
multi-stage attacks, provenance provides a more principled (and
often, far more accurate) basis to correlate attack steps [36], [90].
For this reason, recent works have come to rely on provenance to

correlate attack steps [78], [30], [57], [51], [29]. We discuss these
techniques in more detail below.

Coarse-Grained Provenance Based Forensic Analysis: Back-
tracker [36] was the first to perform forensic intrusion investigation
using dependence analysis of system-call logs. Other works on
attack investigation [90], [26], [37] and provenance [60], [68], [24],
[25] capture information flow at the coarse granularity of system
calls. This invariably leads to the dependence explosion problem.

To mitigate dependence explosion, SLEUTH [30] uses split
integrity tags (called trustworthiness tags in their terminology).
Code trustworthiness tag captures the dependency of a subject’s
code (i.e., whether the code has a dependency on untrusted sources),
while data trustworthiness captures the dependency of its data.
By limiting its alarms and forensic analysis to follow subjects
with untrusted code tag, it achieved orders of magnitude reduction
in false alarms as well as scenario graph sizes on the simpler
attack scenarios contained in DARPA TC Engagement 1 dataset.
Unfortunately, the attacks in Engagements 3 and 4 were stealthier,
leading SLEUTH to miss most attacks.

MORSE’s subject tags are related to of SLEUTH’s code trustwor-
thiness tag. However, unlike SLEUTH, which simply forwards code
tags from inputs to outputs, MORSE’s subject tags can be thought
of as tag transformation functions. This more general view enabled
the development of tag attenuation and decay, and their selective
application to benign subjects.

Unlike MORSE, HOLMES [57] aims for a much higher level
summary of an APT campaign. Individual steps are recognized
using a hybrid approach that combines SLEUTH-style detection
policies with signatures based on MITRE’s Adversarial Tactics,
Techniques and Common Knowledge Base (ATT&CK) [58]. It
relies on information flow to link these steps and construct a
high-level scenario graph (HSG) that maps the attacker’s actions
to the APT kill-chain [8]. To mitigate dependence explosion,
HOLMES discards paths with a path factor greater than 3. Path



15

S:socat TCP4-LISTEN:4444,reuseaddr,fork EXEC:cat CLN

S:/bin/bash -l

CLN

S:cat

CLN SUCLN

CLN

S:ps -aux

CLN

S:uname -a

CLN

S:cat /etc/hosts

CLN

S:cat /etc/shadow

CLN

S:/usr/bin/clear_console -q

CLN

S:groups

CLN

S:ls /etc/bash_completion.d

CLN

S:cargo --list

CLN

S:tail -n +2

CLN

S:sudo chsh -s /bin/bash -P

SU

SU SU SU SU

SU

SU

SU

SU SU SUSUCLN

S:chsh -s /bin/bash -P

SU

SU

S:sh -c /bin/bash

CLN

SU

S:/bin/bash

CLN

CLN CLN

SUCLN

S:ifconfig

CLN

S:tcpdump -i eth1 -n icmp

CLN

S:tcpdump -i em2.128 -n icmp

CLN

S:tcpdump -i em2.128

CLN

S:ssh -C admin@128.55.12.79

CLN

S:ssh -C admin@128.55.12.118

CLN

S:ps aux

CLN

S:/bin/sh /usr/bin/lesspipe

CLN

S:dircolors -b

CLN

SU SUSU SU SU SU

S:/usr/sbin/sshd -D -R

SU SUCLN

S:basename /usr/bin/lesspipe

CLN

S:dirname /usr/bin/lesspipe

CLN

SUSU

SU

CLN

S:-bash

SU

SUCLN

S:wall

CLN

S:wall -P

CLN S:/usr/bin/clear_console -q

CLN

S:ls /etc/bash_completion.d

CLN

S:cargo --list

CLN

S:tail -n +2

CLN

S:/bin/sh /usr/bin/lesspipe

CLN

S:dircolors -b

CLN

S:sudo echo greetings

SU

S:sudo wall -P

SU

SU

SU

S:sh -c /bin/bash

CLN

SU

SU SU SUSUCLN

S:basename /usr/bin/lesspipe

CLN

S:dirname /usr/bin/lesspipe

CLN

SU SU

SU

SUCLN

S:echo greetings

SU

SU

SU

S:/bin/bash

CLN

CLN CLN CLNCLN CLN

SUCLN

S:cat /etc/hosts

CLN

S:uname -a

CLN

S:ls --color=auto

CLN

S:ls --color=auto work

CLN

S:cat /home/admin/work/hosts

CLN

SU

SUCLN

SUSU SU SU SU

Fig. 13: User-level rootkit. This attack takes advantage of a user-level rootkit, in the form of a shared library libselinux.so, which had been installed on the victim host
prior to the start of the engagement. During the engagement, the attacker accessed this rootkit to exfiltrate /etc/shadow to a remote IP address, raising a DataLeak alarm.
This was the sole indication of unusual behavior in the audit data, thus making this the most stealthy attack in our dataset. The attacker, possibly after using password
cracking on this shadow file, obtains access to a second machine via ssh. Since the sole alarm was generated by a bash process, we marked it suspicious, and performed
a forward analysis from there. Since the resulting graph was large, we refined the forward analysis to follow only process creation and execution edges to yield the above
graph. Note that the attacker ran several commands to collect sensitive data, such as tcpdump, ifconfig, and ps. Other notable commands include clear console and chsh.
On the second machine, since a suspect process from the first machine connected to it, the target process (sshd) was marked as a suspect subject by MORSE. The scenario
graph originating from this sshd process has been shown together with the scenario graph generated on the first host, with the network connection indicated with a dashed line.

factor is more sophisticated than MORSE’s attenuation, but shares
the same rationale, i.e., objects serve as imperfect intermediaries
for propagating malicious behavior. At the same time, there is no
equivalent of MORSE’s decay in HOLMES. Since the goals, the
outputs, and datasets used differ across HOLMES and MORSE, a
direct comaprison of their results is not meaningful.

PRIOTRACKER [51] speeds up forward analysis by using a
prioritized graph exploration that assigns higher priority to edges
representing unusual events. NODOZE [29] improves on it by
prioritizing entire paths based on rareness, rather than individual
events. Only such rare paths are presented to the analyst, together
with the alerts raised on those paths. The main drawback of both
approaches is their assumption that processes involved in attacks,
including those that may be running attacker’s own malware, will
exhibit unusual behavior. However, as discussed before, attackers
have a great deal of control over their malware, and can alter
their behavior to blend in with benign background activity, as was
the case with the CCleaner ransomware example. In contrast, we
showed in Section VIII.D how MORSE resists such evasion.

Threat Hunting: The techniques described above are geared at
automating forensic analysis of APT campaigns without requiring
prior knowledge about them. It is to be expected that fully automated
approaches may fail at times, so organizations have to rely on
human experts as their second line of defense. These experts need
to “hunt down” attacks, based on their past experience, reports on

recent vulnerabilities and exploits, the configuration of the victim’s
network, and most importantly, the alerts emitted by dectectors
deployed in the organization. Researchers have begun to build tools
and frameworks to assist such threat hunting efforts. Gao et al.
[22], [23] present query languages for threat hunters, and a system
for processing their queries. Shu et al. [73] model threat hunting
as a graph computation problem, and present a domain-specific
language that simplifies the development of custom graph searches.

Instead of a manual approach, POIROT [56] aims to automate
searches for attacks that have been seen before, e.g., in threat
intelligence reports. These known attacks are described using
query graphs. They develop efficient approximate graph matching
algorithms to match query graphs against the data from audit logs.

X. Conclusions

In this paper, we presented a new approach for fast and accurate
reconstruction of APT campaigns. It relied on two new techniques,
tag attenuation and tag decay, to mitigate the dependence explosion
problem. Our experimental evaluation demonstrates that our
approach is highly effective in automatic detection of stealthy APT-
style campaigns in real-time. Our techniques cut down false alarms
by over an order of magnitude, while yielding compact scenario
graphs that were smaller by a factor of 35x on average. Starting
from logs containing many millions of events, these graphs pick
out just a few dozen events representing an attacker’s activities.



16

References
[1] Actions Taken by Equifax and Federal Agencies in Response to the 2017

Breach. https://www.gao.gov/assets/700/694158.pdf.
[2] APT Notes. https://github.com/kbandla/APTnotes. Accessed: 2016-11-10.
[3] DARPA transparent computing engagement 3 data release. https://github.

com/darpa-i2o/Transparent-Computing/. Accessed: 2019-1-14.
[4] FreeBSD DTrace. https://wiki.freebsd.org/DTrace/. Accessed: 2019-5-1.
[5] IBM QRadar SIEM. https://www.ibm.com/us-en/marketplace/

ibm-qradar-siem.
[6] IBM X-Force Threat Intelligence Index. https://www.ibm.com/security/

data-breach/threat-intelligence. Accessed: 2019-3-7.
[7] Logrhythm, the security intelligence company. https://logrhythm.com/.
[8] MANDIANT: Exposing One of China’s Cyber Espionage Units.

https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/
mandiant-apt1-report.pdf. Accessed: 2016-11-10.

[9] The opm data breach: How the government jeopardized our national
security for more than a generation. https://oversight.house.gov/report/
opm-data-breach-government-jeopardized-national-security-generation/.

[10] SIEM, AIOps, Application Management, Log Management, Mach ine
Learning, and Compliance. https://www.splunk.com/.

[11] Source: Deloitte Breach Affected All Company Email,
Admin Accounts. https://krebsonsecurity.com/2017/09/
source-deloitte-breach-affected-all-company-email-admin-accounts/.

[12] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions
on Information and System Security (TISSEC), 2009.

[13] Chloe Albanesius. Target Ignored Data Breach Warning Signs.
http://www.pcmag.com/article2/0,2817,2454977,00.asp, 2014. [Online;
accessed 16-February-2017].

[14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps. SIGPLAN Not., 2014.

[15] Sandeep Bhatkar, Abhishek Chaturvedi, and R. Sekar. Dataflow anomaly
detection. In IEEE Security and Privacy, 2006.

[16] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation:
an efficient approach to combat a board range of memory error exploits. In
USENIX Security Symposium, 2003.

[17] Lorenzo Cavallaro, Prateek Saxena, and R Sekar. Anti-taint-analysis:
Practical evasion techniques against information flow based malware defense.
Technical report, Secure Systems Lab at Stony Brook University, 2007.

[18] Hervé Debar and Andreas Wespi. Aggregation and correlation of
intrusion-detection alerts. In RAID. Springer, 2001.

[19] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad Fogla, Wenke Lee, and
Weibo Gong. Anomaly detection using call stack information. In IEEE
Security and Privacy, 2003.

[20] Stephanie Forrest, Steven Hofmeyr, Anil Somayaji, and Thomas Longstaff.
A sense of self for unix processes. In IEEE Security and Privacy, 1996.

[21] Debin Gao, Michael K Reiter, and Dawn Song. Gray-box extraction of
execution graphs for anomaly detection. In ACM CCS, 2004.

[22] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu
Wu, Chung Hwan Kim, Sanjeev R Kulkarni, and Prateek Mittal. SAQL: A
stream-based query system for real-time abnormal system behavior detection.
In USENIX Security Symposium, 2018.

[23] Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu, Sanjeev R Kulkarni,
and Prateek Mittal. AIQL: Enabling efficient attack investigation from
system monitoring data. In USENIX ATC, 2018.

[24] Ashish Gehani and Dawood Tariq. Spade: support for provenance auditing
in distributed environments. In International Middleware Conference, 2012.

[25] Ashvin Goel, W-C Feng, David Maier, and Jonathan Walpole. Forensix: A
robust, high-performance reconstruction system. In 25th IEEE International
Conference on Distributed computing systems workshops, 2005.

[26] Ashvin Goel, Kenneth Po, Kamran Farhadi, Zheng Li, and Eyal de Lara. The
Taser intrusion recovery system. In SOSP, 2005.

[27] Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and
Wenke Lee. Bothunter: Detecting malware infection through ids-driven
dialog correlation. In USENIX Security Symposium, 2007.

[28] N. Hasabnis, A. Misra, and R. Sekar. Light-weight bounds checking. In
Code Generation and Optimization, 2012.

[29] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook
Jee, Zhichun Li, and Adam Bates. Nodoze: Combatting threat alert fatigue
with automated provenance triage. In NDSS, 2019.

[30] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R. Sekar, Scott Stoller, and V.N. Venkatakrishnan. SLEUTH:
Real-time attack scenario reconstruction from COTS audit data. In USENIX
Security, 2017.

[31] Md Nahid Hossain, Junao Wang, R Sekar, and Scott D Stoller. Dependence
preserving data compaction for scalable forensic analysis. In USENIX
Security, 2018.

[32] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Fazzini Mattia, Taesoo
Kim, Alessandro Orso, and Wenke Lee. Rain: Refinable attack investigation
with on-demand inter-process information flow tracking. In ACM CCS, 2017.

[33] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo
Kim, Alessandro Orso, and Wenke Lee. Enabling refinable cross-host attack
investigation with efficient data flow tagging and tracking. In USENIX
Security, 2018.

[34] Klaus Julisch. Clustering intrusion detection alarms to support root cause
analysis. Transactions on Information and System Security (TISSEC), 2003.

[35] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. Libdft: Practical Dynamic Data Flow Tracking for Commodity
Systems. SIGPLAN Not., 2012.

[36] Samuel T. King and Peter M. Chen. Backtracking intrusions. In SOSP, 2003.
[37] Samuel T. King, Zhuoqing Morley Mao, Dominic G. Lucchetti, and Peter M.

Chen. Enriching intrusion alerts through multi-host causality. In NDSS, 2005.
[38] Calvin Ko, Manfred Ruschitzka, and Karl Levitt. Execution monitoring

of security-critical programs in distributed systems: A specification-based
approach. In IEEE Security and Privacy, 1997.

[39] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin
Kirda, Xiao-yong Zhou, and XiaoFeng Wang. Effective and efficient
malware detection at the end host. In USENIX Security, 2009.

[40] Christopher Kruegel, Fredrik Valeur, and Giovanni Vigna. Intrusion detection
and correlation: challenges and solutions. Springer Science & Business
Media, 2005.

[41] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based
attacks. In ACM CCS, 2003.

[42] S. Kumar and E. Spafford. A pattern-matching model for intrusion detection.
In National Computer Security Conference, 1994.

[43] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
R Sekar, and Dawn Song. Code-pointer integrity. In Operating Systems
Design and Implementation, 2014.

[44] Yonghwi Kwon, Dohyeong Kim, William Nick Sumner, Kyungtae Kim,
Brendan Saltaformaggio, Xiangyu Zhang, and Dongyan Xu. Ldx: Causality
inference by lightweight dual execution. ASPLOS, 2016.

[45] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan
Lee, Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela
Ciocarlie, Ashish Gehani, and Vinod Yegneswaran. Mci: Modeling-based
causality inference in audit logging for attack investigation. In NDSS, 2018.

[46] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. High accuracy attack
provenance via binary-based execution partition. In NDSS, 2013.

[47] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A data mining framework
for building intrusion detection models. In IEEE Security and Privacy, 1999.

[48] Lixin Li, Jim Just, and R. Sekar. Address-space randomization for windows
systems. In Annual Computer Security Applications Conference (ACSAC),
2006.

[49] Ninghui Li, Ziqing Mao, and Hong Chen. Usable Mandatory Integrity
Protection for Operating Systems . In S&P. IEEE, 2007.

[50] Zhenkai Liang, Weiqing Sun, V. N. Venkatakrishnan, and R. Sekar. Alcatraz:
An Isolated Environment for Experimenting with Untrusted Software. In
ACM TISSEC, 2009.

[51] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu,
Junghwan Rhee, and Prateek Mittal. Towards a timely causality analysis
for enterprise security. In NDSS, 2018.

[52] Shiqing Ma, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and
Dongyan Xu. MPI: Multiple perspective attack investigation with semantic
aware execution partitioning. In USENIX Security, 2017.

https://www.gao.gov/assets/700/694158.pdf
https://github.com/kbandla/APTnotes
https://github.com/darpa-i2o/Transparent-Computing/
https://github.com/darpa-i2o/Transparent-Computing/
https://wiki.freebsd.org/DTrace/
https://www.ibm.com/us-en/marketplace/ibm-qradar-siem
https://www.ibm.com/us-en/marketplace/ibm-qradar-siem
https://www.ibm.com/security/data-breach/threat-intelligence
https://www.ibm.com/security/data-breach/threat-intelligence
https://logrhythm.com/
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://oversight.house.gov/report/opm-data-breach-govern ment-jeopardized-national-security-generation/
https://oversight.house.gov/report/opm-data-breach-govern ment-jeopardized-national-security-generation/
https://www.splunk.com/
https://krebsonsecurity.com/2017/09/source-deloitte-breach- affected-all-company-email-admin-accounts/
https://krebsonsecurity.com/2017/09/source-deloitte-breach- affected-all-company-email-admin-accounts/
http://www.pcmag.com/article2/0,2817,2454977,00.asp


17

[53] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. ProTracer: Towards practical
provenance tracing by alternating between logging and tainting. In NDSS,
2016.

[54] the PaX team. Address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt, 2001.

[55] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakr-
ishnan. Propatrol: Attack investigation via extracted high-level tasks. In In
International Conference on Information Systems Security, Springer, 2018.

[56] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and
VN Venkatakrishnan. Poirot: Aligning attack behavior with kernel
audit records for cyber threat hunting. In ACM CCS, 2019.

[57] Sadegh M. Milajerdi, Rigel Gjomemo, Birhanu Eshete, R. Sekar, and V.N.
Venkatakrishnan. HOLMES: Real-time APT Detection through Correlation
of Suspicious Information Flows. In IEEE Security and Privacy, 2019.

[58] MITRE Corporation. Adversary Tactics and Techniques Knowledge Base
(ATT&CK). https://attack.mitre.org/. Accessed: 2019-03-04.

[59] Stephanie Mlot. Neiman Marcus Hackers Set Off Nearly 60K Alarms.
http://www.pcmag.com/article2/0,2817,2453873,00.asp, 2014. [Online;
accessed 16-February-2017].

[60] Kiran-Kumar Muniswamy-Reddy, David A Holland, Uri Braun, and Margo I
Seltzer. Provenance-aware storage systems. In USENIX ATC, 2006.

[61] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. Softbound: highly compatible and complete spatial memory
safety for c. SIGPLAN Not., 2009.

[62] James Newsome and Dawn Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In NDSS, 2005.

[63] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and
David Evans. Automatically hardening web applications using precise
tainting. In 20th IFIP International Information Security Conference, 2005.

[64] Peng Ning, Yun Cui, and Douglas S Reeves. Constructing attack scenarios
through correlation of intrusion alerts. In ACM CCS, 2002.

[65] Peng Ning and Dingbang Xu. Learning attack strategies from intrusion alerts.
In ACM CCS, 2003.

[66] Steven Noel, Eric Robertson, and Sushil Jajodia. Correlating intrusion events
and building attack scenarios through attack graph distances. In Annual
Computer Security Applications Conference, 2004.

[67] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang,
Zhiwei Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. HERCULE:
Attack story reconstruction via community discovery on correlated log graph.
In ACSAC, 2016.

[68] Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler.
Hi-Fi: Collecting high-fidelity whole-system provenance. In ACSAC, 2012.

[69] P. Porras and R. Kemmerer. Penetration state transition analysis: A rule based
intrusion detection approach. In Annual Computer Security Applications
Conference, 1992.

[70] Xinzhou Qin and Wenke Lee. Statistical causality analysis of infosec alert
data. In RAID, 2003.

[71] R. Sekar. An efficient black-box technique for defeating web application
attacks. In Network and Distributed System Security Symposium, 2009.

[72] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast automaton-based
approach for detecting anomalous program behaviors. In IEEE Security and
Privacy, 2001.

[73] Xiaokui Shu, Frederico Araujo, Douglas L Schales, Marc Ph Stoecklin,
Jiyong Jang, Heqing Huang, and Josyula R Rao. Threat intelligence
computing. In ACM CCS, 2018.

[74] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. Unearthing stealthy
program attacks buried in extremely long execution paths. In ACM CCS, 2015.

[75] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure
program execution via dynamic information flow tracking. In ASPLOS, 2004.

[76] Weiqing Sun, R. Sekar, Zhenkai Liang, and V. N. Venkatakrishnan.
Expanding malware defense by securing software installations. In Detection
of Intrusions and Malware, and Vulnerability Assessment (DIMVA), 2008.

[77] Weiqing Sun, R. Sekar, Gaurav Poothia, and Tejas Karandikar. Practical
Proactive Integrity Preservation: A Basis for Malware Defense. In IEEE
Security and Privacy, 2008.

[78] Xiaoyan Sun, Jun Dai, Peng Liu, Anoop Singhal, and John Yen. Using
bayesian networks for probabilistic identification of zero-day attack paths.
IEEE Transactions on Information Forensics and Security, 2018.

[79] Wai-Kit Sze and R Sekar. A portable user-level approach for system-wide
integrity protection. In ACSAC, 2013.

[80] Wai Kit Sze and R Sekar. Provenance-based integrity protection for windows.
In ACSAC, 2015.

[81] Laszlo Szekeres, Mathias Payer, Tao Wei, and R Sekar. Eternal war in
memory. S&P Magazine, 2014.

[82] Prem Uppuluri and R Sekar. Experiences with specification based intrusion
detection. In Recent Advances in Intrusion Detection, 2001.

[83] G. Vigna and R. Kemmerer. Netstat: A network-based intrusion detection
approach. In Computer Security Applications Conference, 1998.

[84] Wei Wang and Thomas E Daniels. A graph based approach toward network
forensics analysis. ACM Transactions on Information and System Security
(TISSEC), 2008.

[85] Wikipedia. Ccleaner. https://en.wikipedia.org/wiki/CCleaner. Accessed:
2019-03-28.

[86] Wei Xu, Sandeep Bhatkar, and R. Sekar. Practical dynamic taint analysis
for countering input validation attacks on web applications. Technical Report
SECLAB-05-04, Department of Computer Science, Stony Brook University,
May 2005.

[87] Wei Xu, Sandeep Bhatkar, and R Sekar. Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks. In USENIX Security,
2006.

[88] Wei Xu, Daniel C. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of C programs. In
Foundations of software engineering, 2004.

[89] Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee,
Xusheng Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. High fidelity
data reduction for big data security dependency analyses. In ACM CCS, 2016.

[90] Yan Zhai, Peng Ning, and Jun Xu. Integrating ids alert correlation and
os-level dependency tracking. In International Conference on Intelligence
and Security Informatics, 2006.

[91] Mingwei Zhang and R Sekar. Control flow integrity for cots binaries. In
USENIX Security, 2013.

https://attack.mitre.org/
http://www.pcmag.com/article2/0,2817,2453873,00.asp
https://en.wikipedia.org/wiki/CCleaner

	I Introduction
	I.A Approach Overview and Summary of Contributions

	II Motivating Attack Scenario
	III Tags and Propagation
	IV Provenance-Based Attack Detection
	V Attack Scenario Reconstruction
	V.A Entry Point Identification
	V.B Forward Analysis

	VI Implementation
	VII Putting it All Together: Analysis of CCleaner
	VIII Experimental Evaluation
	VIII.A Dataset
	VIII.B Effectiveness of Tag Attenuation and Decay
	VIII.C Runtime Performance
	VIII.D Analysis of Evasion Attacks
	VIII.E Detection Details and Scenario Graphs

	IX Related Work
	X Conclusions
	References

