Inferring Higher Level Policies from Firewall Rules *

Alok Tongaonkar, Niranjan Inamdar, and R. Sekar
Department of Computer Science, Stony Brook University.
{alok, ninamdar, sekar} @cs.sunysb.edu

June 5, 2008

Abstract

Packet filtering firewall is one of the most important mechanisms used by corporations to enforce their security
policy. Recent years have seen a lot of research in the area of firewall management. Typically, firewalls use a large
number of low-level filtering rules which are configured using vendor-specific tools. System administrators start off
by writing rules which implement the security policy of the organization. They add/delete/change order of rules as
the requirements change. For example, when a new machine is added to the network, new rules might be added to the
firewall to enable certain services to/from that machine. Making such changes to the low-level rules is complicated
by the fact that the effect of a rule is dependent on its priority (usually determined by the position of the rule in the
rule set). As the size and complexity of a rule set increase, it becomes difficult to understand the impact of a rule
on the rule set. This makes management of rule sets more error prone. This is a very serious problem as errors in
firewall configuration mean that the desired security policy is not enforced.

Previous research in this area has focused on either building tools that generate low-level firewall rules from a
given security policy or finding anomalies in the rules, i.e., verifying that the rules implement the given security pol-
icy correctly. We propose a technique that aims to infer the high-level security policy from low-level representation.
The first step in our approach is that of generating flattened rules, i.e., rules without priorities, which are equivalent
to the given firewall rule set. Removal of priorities from a rule set enables us to merge a number of rules that have a
similar effect. Our rule merging algorithm reduces the size and complexity of the rule set significantly by grouping
the services, hosts, and protocols present in these rules into various (possibly overlapping) classes. We have built
a prototype implementation of our approach for iptables firewall rules. Our preliminary experiments indicate that
the technique infers security policy that is at a sufficiently high level of abstraction to make it understandable and
debuggable.

1 Introduction

Firewalls are the first line of defense for protecting corporate networks. System administrators use packet
filtering firewalls as one of the mechanisms to implement the security policy of an enterprise. These firewalls
are configured using rules that specify matching criteria, and the action to be performed when a packet matches
each rule. These rules are matched sequentially against all packets passing through the firewall. These rules can
be conflicting, i.e, multiple rules with different actions can match a packet. In such a case, the priority of the
rules in the rule set determines the action to be performed. Typically, firewalls use a first match policy, i.e., the
action corresponding to the first matched rule is taken irrespective of the other rules that can match the packet.
Thus the order of rules in a firewall rule set defines a priority relation over the rules. Understanding the effect
of firewall rules on network traffic is complicated by this priority relation between the rules.

System administrators initially configure the firewalls with rules that implement the security policy of the
organization. As the requirements of the enterprise change, new rules are added or deleted from the rule set
without refactoring. Over time, the rule set contains many rules which are very similar and the mapping be-
tween the security policy and the rules becomes unclear. Managing such large rule sets becomes increasingly
difficult leading to configuration errors which are a serious security concern [12]. Hence, firewall management

*This research is supported by NSF grants 0205376, 0208877, and 0627687, and ONR grant N00014-07-1-0928.

tools become necessary to help system administrators. Many tools for firewall management (e.g., Firmato [2],
Firestarter [3], Shorewall [4]) focus on generating low-level rules from high-level policy language (or GUI).
Recent years have seen many works [7, 15, 1] which try to discover configuration errors in the firewalls. But
tools which aid in understanding existing firewall rule sets are missing from the arsenal of system administra-
tors. Some tools (e.g., ITVal [10, 11], Fang [9]) provide a way of querying whether certain packets will be
allowed through the firewall. The problem with such tools is that the administrator has to know what to query
for. Tools like Lumeta Firewall Analyzer [14] try to avoid this problem by automating the task of querying the
firewalls. Lumeta Firewall Analyzer queries the firewall for all possible packets that are allowed to pass. For
medium to large rule sets this results in a large amount of data being generated. Analyzing such large amounts
of data presents another challenge to the system administrator.

We present a novel way to address this problem in this paper. Our approach of inferring the high-level
policy from low-level packet filtering rules presents the information to the user in a compact format. Figure
1 shows 24 iptables rules taken from a larger firewall rule set (65 rules) being used for a network within our
department! . It is quite difficult to understand what kind of traffic is allowed through the firewall looking at the
script. A new system administrator who is assigned to manage a firewall rule set like this needs to understand
the security policy so that she may answer questions such as: what services are allowed on each host? which
hosts are allowed to communicate with each other? what protocol is valid between communicating hosts?
Figure 2 shows the 10 rule policy generated by our technique for the same rule set?. Clearly it is easier for a
system administrator to understand this policy than the rule set in the Figure 1. Moreover, the high-level policy
can reveal opportunities for refactoring the low-level rules.

System administrators have an intuitive notion of whether a policy is “complicated” or “simple”. The
complexity of a policy depends not just on the number of rules in the policy but also on how complicated those
rules are. In this work, we define a metric for the complexity of a rule set/policy that captures this notion. This
allows us to compare different representations of the same rule sets. Our technique infers policies with low
complexity and hence these policies are easier to understand.

Our objective was to develop a technique to infer firewall policies that would help the system administrators
to work at a higher level of abstraction. Our technique can be combined with existing techniques to form
a comprehensive firewall management toolkit. The benefits of such a toolkit are clear from the following
scenario: a system administrator who needs to modify some existing legacy firewall rule set can extract the
security policy from the rule set using our technique. She can then make changes to the high-level policy
and use an automated tool to generate the low-level rules. Since our technique uses decision tree like graphs
(explained in Section3) to represent the firewall rules, it is easy to enhance our system to provide querying
facility. Moreover, our system automatically removes redundant rules from the policy. Hence, it is a trivial task
to identify such redundant rules in the input rule set using our technique.

We present an overview of our approach in Section 2. Sections 3 and 4 provide the details of the components
in our system. Section 5 discusses related work, followed by concluding remarks in Section 6.

2 Approach Overview

Our approach for inferring policy consists of two phases. First, in priority elimination phase, we convert the
low-level rule set that contains rules with priorities to an equivalent rule set that contains rules with no priority
relation defined over them. We call the generated rules as flattened rules. The flattened rule set does not contain
any overlapping rules i.e there is one and only one flattened rule that can match a given packet. This simplifies
the process of inferring policies from rule sets. Unlike the original rules, flattened rules can be arbitrarily
reordered without modifying their overall effect. This enables us to reorder and merge similar rules together,
thereby reducing the size and complexity of the generated policy.

"'We have modified the IP addresses due to privacy concerns
?Rules in flattened rule set and high-level policy are labeled with alphabets to emphasize the fact that these rules do not have any
priority relation defined over them

IPTABLES -A FORWARD -p tcp -d 192.168.1.250 —dport domain -j ACCEPT

IPTABLES -A FORWARD -p tcp -d 192.168.1.251 —dport smtp -j ACCEPT

IPTABLES -A FORWARD -p tcp -d 192.168.1.251 —dport smtps -j ACCEPT

IPTABLES -A FORWARD -p tcp -d 192.168.1.251 —dport imaps -j ACCEPT

IPTABLES -A FORWARD -p tcp -d 192.168.1.251 —dport pop3s -j ACCEPT

IPTABLES -A FORWARD -p tcp -d 192.168.1.252 —dport www -j ACCEPT

IPTABLES -A FORWARD -p tcp -d 192.168.1.126/25 —dport auth -j ACCEPT

IPTABLES -A FORWARD -s 192.168.1.126/25 -p tcp -d 192.168.1.13 —dport ssh -j ACCEPT
IPTABLES -A FORWARD -s 192.168.1.126/25 -p tcp -d 192.168.1.14 —dport ssh -j ACCEPT
IPTABLES -A FORWARD -s 192.168.1.126/25 -p tcp -d 192.168.1.15 —dport ssh -j ACCEPT
IPTABLES -A FORWARD -s 192.168.1.126/25 -p tcp -d 192.168.1.20 —dport ssh -j ACCEPT
IPTABLES -A FORWARD -p tcp -d 192.168.1.252 —dport https -j ACCEPT

IPTABLES -A FORWARD -s 192.168.1.254/28 -d 192.168.1.11 -p tcp —dport sunrpc -j ACCEPT
IPTABLES -A FORWARD -s 192.168.1.236 -p tcp -d 192.168.1.35 —dport ipp -j ACCEPT
IPTABLES -A FORWARD -s 192.168.1.254/28 -d 192.168.1.11 -p udp —dport nfs -j ACCEPT
IPTABLES -A FORWARD -s 192.168.1.254/28 -d 192.168.1.11 -p udp —dport 4000:4002 -j ACCEPT
IPTABLES -A FORWARD -p udp -d 192.168.1.251 —dport smtp -j ACCEPT

IPTABLES -A FORWARD -p udp -d 192.168.1.250 —dport domain -j ACCEPT

IPTABLES -A FORWARD -s 192.168.1.254/28 -d 192.168.1.11 -p udp —dport sunrpc -j ACCEPT
IPTABLES -A FORWARD -s 192.168.1.236 -p udp -d 192.168.1.35 —dport ipp -j ACCEPT
IPTABLES -A FORWARD -d 192.168.1.126/25 -p icmp —icmp-type destination-unreachable -j ACCEPT
IPTABLES -A FORWARD -d 192.168.1.126/25 -p icmp —icmp-type parameter-problem -j ACCEPT
IPTABLES -A FORWARD -d 192.168.1.126/25 -p icmp —icmp-type source-quench -j ACCEPT
IPTABLES -A FORWARD -j REJECT

P NN R W=

PR NN — — s s e e s s\
PR =O0VO NN R LN = O

Figure 1: Sample iptables script

Allow only the following packets:

tep, udp FROM 192.168.1.254/28 TO 192.168.1.11 FOR sunrpc

udp FROM 192.168.1.254/28 TO 192.168.1.11 FOR nfs, ports [4000-4002]
tcp FROM 192.168.1.126/25 TO [192.168.1.13 - 15] , 192.168.1.20 FOR ssh
tep, udp FROM 192.168.1.236 TO 192.168.1.35 FOR ipp

tcp TO 192.168.1.126/25 FOR auth

icmp TO 192.168.1.126/25 OF TYPES destination-unreachable, parameter-problem, source-quench
tep, udp TO 192.168.1.250 FOR domain

tep, udp TO 192.168.1.251 FOR smtp

tep TO 192.168.1.251 FOR smtps, imaps, pop3s

tep TO 192.168.1.252 FOR www, https

TP e a0 g

Figure 2: Higher level policy for rules in Figure 1

The problem with priority elimination is that it generates a large number of rules. In the policy inference
phase, we reduce the number of rules by grouping hosts, services, and protocols into (possibly overlapping)
classes and merging rules containing same class of objects. It is not sufficient to produce rule sets with small
number of rules as the complexity of the generated rules also affects the complexity of the entire rule set.
Arbitrary merging of rules can lead to rule sets which are very complicated. So this phase tries to merge the
rules such that the complexity of the inferred policy is minimized. Finally, the inferred policy is presented to
the user.

2.1 Background

For concreteness, we describe the details of iptables. Almost every packet filtering firewall relies on the type
of rules used in iptables. Iptables [16] is the user space command line program used to configure the rule set in
the netfilter framework in Linux 2.4.x and 2.6.x. Netfilter framework enables packet filtering, network address
(and port) translation (NA[P]T) and other packet mangling. Iptables can be used to configure three independent
tables - filter, nat, and mangle, within the kernel. The filter table is used to set up rules that are used for filtering
packets, while the nat table is consulted when a packet that creates a new connection is encountered and the

1. IPTABLES -A FORWARD -s 192.168.1.0/24 -d 120.240.18.1 —dport 25 -j ACCEPT
2. IPTABLES -A FORWARD -s 120.240.18.1 -d 120.240.20.0/24 —dport 25 -j ACCEPT
3. IPTABLES -A FORWARD -j REJECT

Figure 3: iptables rule set 1

mangle for specialized packet alteration.

In this paper, we are concerned only with the filter table which is used as a packet filtering firewall. The
filter table consists of ordered lists of rules that are called chains. The order of rules in a chain determines their
priority. There are three built-in chains in the filter table. INPUT chain is used to filter packets that are destined
for the host on which the firewall is running. OUTPUT chain is used to filter packets generated by the firewall
host. FORWARD chain is used to filter packets forwarded by the firewall host to other hosts in the network.
One powerful feature of iptables is that it allows the user to define new chains in addition to the built-in ones.
This allows the administrators to group rules which together provide certain high-level function like protecting
a subnet.

An iptables rule consists of matching criteria and the target. Target specifies the action to be taken when
a packet satisfies the matching criterion. Matching criteria is specified in terms of tests on the packet header
fields like destination IP address (dhost), source IP address (shost), destination port (dport), source port
(sport), protocol (proto). Target can be any of the following: ACCEPT, QUEUE, REJECT, DROP, LOG
or name of an user defined chain. Target ACCEPT means that the packet is to be allowed to pass through the
firewall. QUEUE passes the packets on to the user space. For our purposes, semantically QUEUE is similar
to ACCEPT as the packet is allowed to reach its destination. So we treat QUEUE just like ACCEPT and omit
it from our discussion. DROP and REJECT mean the packet is to be denied. REJECT returns an icmp error
packet to the sender while DROP denies the packet without giving any error indication. Target LOG on the
other hand just makes an entry to the log file when a matching packet arrives. By specifying user defined chains
as targets, conditional call/return semantics can be added to the firewall rule set.

Figure 3 shows a sample iptables rule set. All the rules considered are for the FORWARD chain with
a default policy of REJECT. Rule 1 specifies that all hosts from the network 192.168.1.0/24 are allowed to
connect to the host 120.240.18.1 using SMTP. Rule 2 and 3 specify that host 120.240.18.1 can connect to the
network 120.240.20.0/24 using SMTP. This can be a real world scenario where 192.168.1.0/24 is an internal
network of an organization, 120.240.20.0/24 is external network and 120.240.18.1 is the SMTP server for that
organization. The rule set says that SMTP server can send SMTP traffic to external network and internal hosts
can send SMTP traffic to SMTP server but not to the external network.

We represent the iptables rules in tabular format for ease of understanding. Figure 4 is the tabular represen-
tation of the rules in Figure 3. We list all rules in a table in the order of their priority. The columns indicate the
packet fields being tested. A rule is represented as a row with values for the packet fields being tested filled in
the respective columns. If a rule does not contain any test on a particular field, then that column has a wild-card
character “*”. A “*” for a field indicates that any value of the field will match this rule. The action associated
with a rule is shown in the last column. Note that we omit many fields like icmp-type from examples to
avoid clutter.

Even though our technique can be applied to chains with default ACCEPT policy, all examples and discus-
sions assume that the chains have default REJECT policy. Note that the chain name is shown above the rules
in the tabular format to make the tables more understandable. In practice, we generate different rule sets for
different built-in chains.

3 Priority Elimination Phase

In this phase we take the rule set with priorities and generate flattened rule set. Flattened rule set contains rules
which have no priority relation so they can be arbitrarily reordered and merged to generate a compact policy.

| shost | sport | dhost | dport | target
FORWARD (Default: Reject)
1| 192.168.1.0/24 * 120.240.18.1 25 ACCEPT
2 120.240.18.1 * 120.240.20.0/24 25 ACCEPT

Figure 4: iptables rules in Figure 3 represented in tabular format

\ >
—F "751""'\\\‘

Figure 6: Pruned graph for graph
in Figure 5

Figure 5: Initial graph for network in the department

The idea behind flattening of rules is simple. Consider a rule set R.S with rules R; such that priority of R; is
higher than the priority of 12, iff 7 < j. The semantics of such a prioritized rule set are that a packet is matched
by a rule R; iff it satisfies the matching criteria of R; and doesn’t satisfy the matching criteria of any of the
rules R; such that 7 < j. In other words, a packet can a rule only if it is not matched any higher priority rule.
For example, R3 can match a packet only if Ry and Ry do not match it. Thus a prioritized rule set can be

converted to a flattened rule set by replacing R; by (/\5;11 ﬂR,-> A Rj,2 < j < n,where n is the total number

of rules in the set. In our example, 2; will not be modified while o will be replaced by - R; A Ry and R3 by
-Ri1 AN =Ry N\ Rs.

The problem with the naive way of generating flattened rules is that it can lead to exponential number
of rules. In [13], we developed a way of creating a directed acyclic graph (DAG) called packet classification
automaton that avoids this exponential blowup. We use the packet classification automaton to generate flattened
rule set. Here we describe the characteristics of the automaton without going into the details of the construction
algorithm; which can be found in [13].

e cach node (except the final nodes) is annotated with a packet header field. This denotes that the node performs
a test on that field.

e the leaf nodes correspond to the action to be performed when a packet is matched by a rule. For example,
for iptables the leaf nodes correspond to the higher level actions allow and deny. We map targets like
ACCEPT, QUEUE, and LOG to allow and REJECT and DROP to deny. A path from the root to a leaf
represents the tests to be performed on a packet to match it against the rule set and the action to be taken on
the packet.

e at each node the outgoing edges are labeled with the different values specified for the packet header field
specified on the node.

e at each node there is an additional outgoing edge called as “e1se” edge. This edge is taken when a packet
has a field value different from any of the values listed in the other outgoing edges from that node.

e nodes at the same height in different subgraphs can have tests for different fields.

This automaton has the following interesting properties.

Property 1 Packet classification automaton is equivalent to the prioritized rule set i.e. any packet that is
allowed/denied by the rule set has a path from root to allow/deny node in the automaton and vice versa.

Property 2 If the input rule set is comprehensive i.e. for every packet there is a rule in the rule set that matches
it, then the automaton has a path from root to a leaf for every packet. Moreover, the path from root to leaf is
unique.

We generate flattened rule set by considering all paths from root to the leaves in the graph. Each path
corresponds to a rule in the flattened rule set. Consider a iptables script with the following three rules for
FORWARD chain

-d 192.168.1.1 -s 192.168.1.3 —--dport 22 -j ACCEPT
-d 192.168.1.2 -s 192.168.1.4 —--dport 22 -j ACCEPT
-j REJECT
Figure 7 shows the packet classification automaton for this sample rule set. Here each node is labeled with
the packet field being tested at that node.

3.1 Pruning

Figure 5 shows the packet classification automaton for a firewall rule set with 65 rules for a small network
within our department. The bottom row has two leaf nodes corresponding to the actions: allow and deny.
We can see that even for small sized rule set, there are a large number of paths in the graph.

We prune this graph to reduce the number of paths that we have to consider. The following are the steps
that we perform for pruning this graph.

1. We remove deny node and all incoming edges to it. If this results in an intermediate node becoming leaf
node, then we remove that node and its incoming edges. We recursively do this for all ancestors of deny
except the root node. Figure 8 shows the graph after deny node has been removed from the graph in
Figure 7. Now the graph contains only paths from root to allow. This means that the flattened rule set that
we generate from this graph is no longer comprehensive. But this problem can be easily solved by having a
default reject policy for the flattened rules i.e. packets that are not matched by any rule in the flattened rule
set are discarded.

2. We do a bottom-up traversal of the graph and merge equivalent states. We consider two states r and s as
equivalent if they have transitions to the same state ¢; on label /; for all outgoing edges. For the graph in
Figure 8, both the dport nodes have an edge to allow for value 22. These nodes are merged to get a
graph as shown in Figure 9.

3. The previous two steps create new opportunities for reducing the number of paths though the graph. We
can now merge multiple edges which connect the same nodes. In the case where the edge merging involves
else edge, the merged edge is labeled with else. A special case of this is when all outgoing edges from
a node can be merged with el se edge. In this case the node with the merged outgoing edges is removed
as the merged edge indicates that this transition is taken irrespective of the value of the field in the removed
node. This edge merging is also done in a bottom up fashion.

Figure 6 shows the pruned graph corresponding to the graph in Figure 5. We can read off all the paths from
the root to accept to get flattened rule set.

4 Policy Inference Phase
As the main goal of our research was to come up with a compact representation of the rules, we asked ourselves
the following questions:
e how can we compare two representations of the same rule set?
e how can we reduce the complexity of the flattened rules?
In this section we present our answers to these questions.

192.168.1.1\192.168.1.2
192.168.1.1(192.168.1.2

else

Figure 7: Unpruned graph for sample rules Figure 8: Graph with deny node removed from the
graph in Figure 7

192.168.1.1\192.168.1.2

192.168.1.3 /192.168.1.4

Figure 9: dport node merged from graph in Figure

8

4.1 Complexity

We call a particular representation of rules as policy. Intuitively, a policy that requires a bigger description is
more complex. For example, consider an organization which has 192.168.1.0/24 as the internal network. It
has rules that allow auth packets to all hosts in the network and ssh packets only to the hosts 192.168.1.5,
192.168.1.6, and 192.168.1.7. These rules can be represented as Policy 1

Accept packets

a.
b.

TO [192.168.1.0 - 4], [192.168.1.8 - 255] FOR auth
TO [192.168.1.5 - 7] FOR auth, ssh

A more compact way of representing these rules (Policy 2) is

Accept packets

a.
b.

TO 192.168.1.0/24 FOR auth
TO [192.168.1.5 - 7] FOR ssh

We capture this notion of how complicated a policy is by the following definition:

Definition 3 Complexity of a policy

e Data item is any value that is used in a rule.

o Complexity of a rule is the number of data items present in the rule.

o Complexity of a policy is the sum of the complexity of all rules in the policy.

Data items refer to the different values of packet fields present in the policy. For example, in the policy
given above, the data items are 192.168.1.0/24, [192.168.1.5 - 7], auth, and ssh. For the
earlier policy the data items are [192.168.1.0 - 4],[192.168.1.8 — 255],[192.168.1.5 —
71, auth, and ssh. The complexity of rules in Policy I is 3 for rule a and 3 for rule b. We note that ranges
suchas [192.168.1.5 — 7] are treated as a single data item and hence contribute 1 to the complexity of
a rule. Even though our examples contain * for certain fields, they are there just to increase readability. Our
final policy (as shown in Figure2) does not contain any “*”. Therefore, “*” doesn’t contribute anything to the
complexity of a rule. Similarly, in Policy 2 the complexity of rules a and b are 2 each. The complexity of
Policy 2 is 4. This is less than that of Policy I which is 6. Hence we can say that Policy 2 is a more compact
representation than Policy 1.

4.2 Problem Statement

We describe the problem statement in this section. At the end of priority elimination phase we have a large
number of rules. We want to merge the rules in such a way that the complexity of the generated rule set is
minimum. We can merge rules which have the same values for all but one field by performing a union operation
over the field which has differing values in the rules. The main issue with merging rules is that different subsets
of rules can be merged on different fields. So we need to select the subsets in such a way that merging them
leads to minimum complexity of the entire rule set. This problem can be illustrated by considering the rule set
shown in Figure 10. We can merge rules b and ¢ on dport to get a new rule {bc}. Note that we label a merged
rule by concatenating the labels of the original rules. We enclose the new label in braces to indicate how the
rules merged®. We can then merge {bc} with a to get rule {a{bc}}. This gives the following policy (Policy 3)
which has a complexity of 12.

Accept packets

{a{bc}}. 192.168.1.1, 192.168.1.10 TO 192.168.2.1 FOR http, smtp (5)
d. 192.168.1.10 TO 192.168.2.2 FOR smtp (3)
e. 192.168.1.10 TO 192.168.2.1, 192.168.2.2 FOR ssh (4)

The complexity of each rule is written in parenthesis besides the rules. Since all the rules in the flattened
rule set have the same action, we can even generate overlapping rules to get a more compact policy. We can
merge rules a, b, and ¢ as before to get rule {a{bc}}, and also merge ¢ and d on dhost followed by {cd} with
e on dport. Following is the policy (Policy 4), with complexity 10, that is obtained by merging the rules in
this way.

Accept packets

{a{bc}}. 192.168.1.1, 192.168.1.10 TO 192.168.2.1 FOR http, smtp (5)
{{cd}e}. 192.168.1.10 TO 192.168.2.1, 192.168.2.2 FOR smtp, ssh (5)

Definition 3 is tied to the way the rules are represented. Thus, the interesting question is given a rule set, can
we find an equivalent representation which enforces the same security policy but has lower complexity? Our
goal is to find a representation of the rule set that implements the same policy and has minimum complexity.
A natural way to select the policy with minimum complexity is to assign weights based on the complexity to
all subsets of the flattened rule set and select a minimum weight set cover. The problem of determining the
minimum weight set cover is NP-complete. However, we have found that fairly simple methods, based on
exploiting the structure of the flattened rules, yield good results for finding a policy with low complexity.

3The notation {bc} is different from {b, c} which means a set containing the rules b and c

shost dhost dport target

a | 192.168.1.1, 192.168.1.10 192.168.2.1 80 ACCEPT
b 192.168.1.1 192.168.2.1 25 ACCEPT
c 192.168.1.10 192.168.2.1 25 ACCEPT
d 192.168.1.10 192.168.2.2 25 ACCEPT
e 192.168.1.10 192.168.2.1, 192.168.2.2 22 ACCEPT

Figure 10: Sample flattened rule set

4.3 Computing Weight of Subsets of Rules

Computing the complexity of all subsets of a rule set is also very hard. To see this, consider that we have a set
of n rules. We want to find a policy with minimum complexity for this rule set. To find the complexity of a set
containing n — 1 of these rules is similar to the original problem.

In practice, we can avoid this problem as we do not need to generate all subsets of rules in the original rule
set. To understand this consider original rule set {a, b, ¢} such that rules a and b can be merged on certain field.
Now the weight of {a,b} is the complexity of the merged rule {ab}. But the weight of {b,c} is the sum of
the complexities of b and c. So we do not need to consider the weight of {b, c} if we have the weights for {b}
and {c}. This leads us to conclude that we need to consider only the subsets of the original set in which each
rule merges with some other rule or with a new merged rule. We maintain the subsets of rules that we need to
consider in a working set.

1. procedure GenerateWorkingSet(R) {

2. W=¢

3 fori =1to|R|do/*R = {ri,rs,....rn} *

4, W =W U {r;} /* add all flattened rules to the working set */
5. fori=1to |W|do

6 for j = 1to |W|do

7 S = MergeRules(w;, wj) /* wi,w; € W */

8

9

ifS#£ ¢
. W =W US /* add the new merged rule to the working set */
10. endif
11. end
12. end
13. return W
14.}

Figure 11: Algorithm for Constructing Working Set

Here we describe the algorithm shown in Figure 11 to generate the working set. Initially we have a set
R of flattened rules {ry,rs,...,7,}. We want to generate a set ¥ that contains the subsets of R that we
need to consider for the minimum weight set cover problem. We start by putting all singleton subsets of R
in W. For example in Figure 10, W = {{a} : 4,{b} : 3,{c} : 3,{d} : 3,{e} : 4}. Note that the value
after “:” is the weight of the corresponding set. For singleton sets, the weight is the same as the complexity
of the rule. Now we compare each element in V¥V with the other elements in V. If the two elements under
consideration can be merged, then we merge them and add the new merged rule to the working set. Now,
W = {{a} : 4,{b} : 3,{c} : 3,{d} : 3,{e} : 4,{bc} : 4,{cd} : 4}. We continue this process of merging
and adding new rules till no more rules can be added to Y. In our example, {bc} can be merged with {a} and
{cd} with {e}. After this no more merging is possible. So the final setis W = {{a} : 4,{b} : 3,{c} : 3,{d} :

3,{e} : 4,{bc} : 4,{cd} : 4,{a{be}} : 5,{{cd}e} : 5}.

{a{bc}} {{cd}e}

{bc} \ /
/ \ {be} {cd}
l \« / l
(a) {b) e} {d)
e} {

{e}

{a} {b} d} {e}

Figure 12: Merge graph after adding {bc} Figure 13: Final metge graph

Merge Graphs Comparing each element in ¥ with all the other elements is computationally expensive. We
overcome this problem by generating a graph, which we call as merge graph, that allows us to avoid many
comparisons. Merge graph is an acyclic graph which initially contains nodes corresponding to the flattened
rules and no edges. As we merge rules, we add nodes corresponding to the merged rules and edges from the new
node to the constituent rule nodes. For example, after we add {bc} to VW, we can represent WV as a merge graph
as shown in Figure 12. The merge graph may contain disconnected subgraphs. For each node in the graph, we
compare it with only the nodes in other disconnected components. This way we avoid redundant comparisons.
In Figure 12, we compare the rule {bc} with {a}, {d}, and {e}. This avoids redundant comparisons with {b}
and {c}. For large rule sets with multiple rules that merge, this optimization proves very useful. Figure 13
shows the final merge graph for our example.

4.4 Solving Minimum Weight Set Cover

Now that we have the working set we can find the minimum weight set cover to get a policy with low complexity.
Conceptually we can think of each element of JV as a set containing the rules that have been merged to form
that element. For the example in the previous section, W = {{a} : 4,{b} : 3,{c} : 3,{d} : 3,{e} :
4,{b,c} : 4,{c,d} : 4,{a,b,c} : 5,{c,d,e} : 5}. Our target is to find a set cover C = {cq,ca,...,cx} i.e.
CCWA Ulec,- = R such that Zleweight(ci) is minimum.

Figure 14 shows our algorithm based on greedy heuristics to solve the problem. We use a set, A, to keep
track of the rules that are covered as the set cover C is built. For each set in W, we define,

weight(w;)

cost(w;) = i /A

cost(w;) represents the cost incurred (in terms of weight) per new rule that will be covered by including a set
w; in the set cover. In each iteration, we pick a set w; that has the lowest cost (step 6 in our algorithm). In
our example, initially the cost is 4/1 = 4 for {a}, 4/2 = 2 for {b,c}, 5/3 = 1.67 for {a, b, c} and so on. In
case of a tie, we pick the set with higher cardinality. This algorithm returns C = {{a,b,c}},{c,d,e}} as the
minimum weight set cover. We know that these sets correspond to merged rules {a{bc}} and {{cd}e}. So we
can represent the rules in the example as Policy 4 as shown in the previous section.

5 Related Work

There are many tools (e.g., Firmato [2], Shorewall [4], Firestarter [3]) that are available for generating low-
level firewall rules from high-level policy. Our technique can be used in conjunction with these tools to help
refactoring. These tools can be used to generate firewall rules from scratch. If our technique is combined with
these tools then we can use these tools to make changes to existing low level rules.

Fang [9] and ITVal [10] are tools that provide querying facility. But it puts the onus on the system admin-
istrator to figure out what queries to perform. Lumeta Firewall Analyzer [14] solves this problem by querying
the the system for all packets that can be accepted. The problem with this approach is that this results in a large

10

1. procedure MinimumW eightSetCover(R, W) {
2 A = ¢ /¥ A C R is the set of covered elements */

3 C = ¢ I* C C W is the solution set */

4 while A # R do /* A is not a set cover */

5. fori = 1to |W)|

6 compute cost(w;)

7 end

8 choose w; with minimal cost(w;)

9. A = A U w; /* rules in w; are covered */

10. cC=CU {wl} /* add w; to solution set */

11. W = W /{w; }/* remove w; from working set */
12. end

13. returnC

14.}

Figure 14: Algorithm for Minimum Weight Set Cover

amount of data being presented to the user. In contrast, we try to present the result of our analysis in a compact
fashion to the administrator. Moreover, it is easy to provide querying capability using our technique.

Yuan et al. [15], Gouda et al. [7], Al-Shaer et al. [1] have looked at the problem of identifying configuration
errors in the firewall rules. The problem with these approaches is that the administrator has to decide whether
the alert generated by these tools are due to rules that are put in intentionally or unintentionally. Our technique
can help in solving this problem by providing a high level view of the security policy.

Marmorstein et al. [10] generate policy by grouping similar hosts. Our work is more general in the sense
that we can group together arbitrary things to generate more compact representation. Golnabi et al. [6] have
looked at the problem of generating high level policy. But their approach is based on data mining of firewall
logs while we try to extract the policy from the rules itself.

6 Conclusions

In this paper, we presented a new technique for extracting high-level security policy from low-level rules. Unlike
previous techniques, our technique generates policy which is compact. This will help system administrators to
understand the existing low level rule sets and encourage them to refactor the low-level rules instead of making
small changes to the rules set when requirements change. This will make the rule sets more manageable and will
likely result in reducing the errors in configuration of firewalls. We also presented a way for comparing whether
one policy representation is better than another. In our preliminary experiments, we obtained 50 flattened rules
with 197 data items after the priority elimination phase from a 65 rule firewall. The final inferred policy on the
other hand had just 21 rules with 129 data items. These results indicate that we can generate high level policy
which is easier to understand and manage.

Acknowledgments

We would like to thank Mayur Mahajan for his help in developing the graph library used for generating the
flattened rules and for his work on pruning the graphs. We would like to thank Weiqing Sun, Lorenzo Cavallaro,
and the anonymous reviewers for their insightful comments.

This material is based upon work supported by the NSF grants 0205376, 0627687, and 0208877, and ONR
grant N00014-07-1-0928. The views and conclusions contained here are those of the authors and should not be

interpreted as necessarily representing the official policies or endorsements, either expressed or implied of NSF
or ONR.

11

References
[1] Al-Shaer, Ehab and Hazem Hamed. “Discovery of Policy Anomalies in Distributed Firewalls” IEEE
INFOCOM, 2004.
[2] Bartal, Yair, et al., “Firmato: A Novel Firewall Management Toolkit”, IEEE Security and Policy, 1999.
[3] Firestarter, http://www.fs-security.com.
[4] Shorewall Firewall, http://www.shorewall.net.

[5] Fulp, Errin and Stephen Tarsa. “Trie-Based Policy Representations for Network Firewalls”, IEEE Inter-
national Symposium on Computer Communications, 2005.
[6] Golnabi, Korosh, et al., “Analysis of Firewall Policy Rule using Data Mining Techniques”, IEEE/IFIP
Network Operations and Management Symposium, 2006.
[71 Gouda, Mohamed G. and Alex X.Liu. “Firewall Design:Consistency, Completeness, and Compactness”
International Conference on Distributed Computing Systems, 2004.
[8] Hazelhurst, Scott, et al., “Binary Decision Diagram Representations of Firewall and Router Access Lists”
Technical Report TR-Wits-CS-1998-3 University of the Witwatersrand, Johannesburg, South Africa, 1998.
[9] Mayer, Alain, et al., “Fang: A Firewall Analysis Engine” IEEE Symposium on Security and Privacy,
2000.
[10] Marmorstein, Robert and PhilKearns, “Firewall Analysis with Policy-Based Host Classification”, 20th
Large Installation Systems Administration, 2006.
[11] Marmorstein, Robert and Phil Kearns, “A Tool for Automated Iptables Firewall Analysis”, Freenix Track,
USENIX Annual Technical Conference, 2005.
[12] Rubin, Aviel, Dan Geer, and Marcus Ranum, Web Security Sourcebook, Wiley Computer Publishing,
1997.
[13] Tongaonkar, Alok . “Fast Pattern-Matching Techniques for Packet Filtering” Master’s Thesis Report,
Stony Brook University, 2004, http://www.seclab.cs.sunysb.edu/seclab/pubs/theses/alok.pdf.
[14] Avishai Wool. “Architecting the Lumeta Firewall Analyzer”, 10th USENIX Security Symposium, 2001.
[15] Yuan, Lihua, et al., “Fireman: A Toolkit for Firewall Modeling and Analysis” IEEE Symposium on
Security and Privacy, 2006.
[16] Eychenne, Herve, iptables Man Page, March, 2002.

12

