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Abstract
Jump tables are a common source of indirect jumps in binary code.

Resolving these indirect jumps is critical for constructing a complete

control-flow graph, which is an essential first step for most appli-

cations involving binaries, including binary hardening and instru-

mentation, binary analysis and fuzzing for vulnerability discovery,

malware analysis and reverse engineering. Existing techniques for

jump table analysis generally prioritize performance over soundness.

While lack of soundness may be acceptable for applications such as

decompilation, it can cause unpredictable runtime failures in binary

instrumentation applications.We therefore present SJA, a new jump

table analysis technique in this paper that is sound and scalable. Our
analysis uses a novel abstract domain to systematically track the

“structure” of computed code pointers without relying on syntactic

pattern-matching that is common in previous works. In addition,

we present a bounds analysis that efficiently and losslessly reasons

about equality and inequality relations that arise in the context of

jump tables. As a result, our system reducesmiss rate by 35× over the

next best technique.When evaluated on error rate based on F1-score,

our technique outperforms the best previous techniques by 3×.

CCS Concepts
• Theory of computation→ Program analysis; • Software and
its engineering→ Software reverse engineering.
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1 Introduction
Static analysis of binary code plays a central role in software security

[14, 24, 33, 34, 38, 41], performance optimization [21, 28], software
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reliability [17], binary instrumentation [5, 11, 25, 30, 35, 37, 40], as

well as reverse engineering [1, 2, 7, 8, 10, 27].

Binary analysis tools face a daunting set of challenges, including

the large size and complexity of instruction sets such as the x86, and

the low-level nature of instruction semantics, with numerous side

effects. Compounding this further, many analyses need to be per-

formed even before disassembly is finalized and/or the control-flow

graph is constructed. In particular, many key analyses such as jump

tableanalysis and functionentry identification result in thediscovery

of new code or data [18, 23]. Such analyses need to be repeated on the

updated control-flow graph many times until the graph converges.

To cope with these challenges, binary analysis tools (e.g., Dyninst

[11, 18], angr [32], Ghidra [30] and Datalog Disassembly [10], as

well as many other systems based on them [5, 14, 16, 28, 35]), have

been driven by pragmatic considerations such as precision and per-

formance on real-world binaries. Soundness and applicability to all

programs emphasized in static analysis research and compilers, have

not been as much of a priority in these tools. Indeed, for applications

such as decompilation or bug-finding, practical effectiveness is more

important than the loss of soundness in some cases. However, the

calculus is very different in binary instrumentation applications such

as binary hardening and software debloating, where functionality

preservation and applicability to all programs are paramount.

Jump table analysis, a crucial component in many existing tools

[1, 2, 4, 5, 8, 10, 11, 14, 18, 21, 23, 24, 26–28, 30, 32–35, 37, 39–41, 41], is

a prime example of where these differencesmanifest. Note that jump

tables result typically from the translation of high-level language

constructs such as the switch statements in C/C++. The result is

an indirect jumpwhose target is obtained by indexing into a table

stored within the read-only data of a binary. The index value itself

is an expression.

A sound jump table analysis ensures that all possible targets of

an indirect jump are identified. This will ensure that the control-

flow graph (CFG) is complete, without any missing edges. Complete

CFGs are desirable in most binary analysis applications. Without

a complete CFG, some of the code in a binary won’t be recognized,

leading to incomplete code discovery, incomplete instrumentation,

and unsound inferences about code behavior. Note that for indi-

rect calls, accurately reasoning about their possible targets is very
challenging. However, they can be handled conservatively because

all valid function pointer values appear within the code or in the

read-only data section. By scanning for these constants, we can ob-

tain a superset of the targets [41]. In contrast, jump table pointers

are the result of computation, so their values cannot be determined

unless the analysis is able to identify the exact logic involved in the

computation. This make jump table analysis challenging.

Most jump table analyses first compute a backward slice [36] of

the code with respect to the variable (register) used in the indirect

jump. Then, this slice is analyzed to uncover the base of the jump
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table, its size, and the width of each entry. In addition, the analysis

needs to determine the precise expression used to derive the target

address from the jump table entries. This leads to four main sources

of unsoundness and/or precision loss:

• Limiting the length of backward slice: For efficiency and to reduce

precision loss, many techniques limit the length of the backward

slice, e.g., angr [32] restricts it to three basic blocks [23].

• Limiting the number of paths considered:Another common ap-

proach is to limit the number of paths analyzed. For instance,

Ghidra [30] assumes that jump table base and index can only be

derived from a single path [23].

• Pattern-driven analysis: Given that jump tables are typically

generated by compilers, patterns can often be identified in the

computation of the target address. These are often leveraged in

jump table analysis [1, 11, 18, 21, 37].However, such an approach

can make the analysis compiler-specific.

• Limited capacity to analyze jump table bounds: Underestimating

the bound will lead to missed targets, while overestimation

will degrade precision. As our results show, existing jump table

analyses do not seem to pay sufficient attention to this problem.

To overcome these drawbacks, we present SJA (Static Jump Table

Analysis), a new jump table analysis technique in this paper. In

contrast with previous approaches, our technique is based purely

on a forward analysis. Moreover, it considers all paths, and hence

does not compromise on soundness. At the same time, we achieve

performance that is better than most previous techniques. We also

show that our analysis scales to large binaries, with an analysis rate

of about 300 KB/s.
Our approach is basedonabstract interpretation [6].We introduce

a new abstract domain that can accurately capture the computations

used in jump tables, such as multiplying an index by a constant,

adding an offset, dereferencing memory contents, etc. These compu-

tations are capturedwithout relying onpatternmatching.As a result,

our approach is robust in the face of reordering or refactoring of oper-

ations. In contrast, such changes often cause pattern-matching to fail,

leading to a loss of accuracy.Wealso present an effective and efficient

bounds analysis for jump tables that leads to much better overall

accuracy. Specifically, our approach reduces false negatives by 35×
over previous techniques

1
. Based on F1-score, SJA’s error rate is 3×

lower than that of Dyninst, the leader in a recent comparison [23].

In summary, our main contributions are as follows:

• We devise a new abstract domain, together with appropriate

abstract operations, to capture the “structure” of a code pointer.

This approach avoids pattern-matching that is commonly used

in many previous works. Pattern-matching can be reliant on

1
A sound analysis should incur zero false negatives, but this applies only if the analysis

is invoked on all code. On complex binaries, contemporary disassembly techniques can

miss a small fraction of the code [23], with the result that our analysis is not even run on

this code. This is the primary source of false negatives (i.e., missed jump table targets).

In addition, we observe a handful of cases where our analysis reports⊤ as the value of a

code pointer — indicating that nothing is known about its value. In conventional static

analyses, this would count as a false positive, with possible targets consisting of every

instruction in the current function. However, previous works in jump table analysis

report it as a false negative — all of them can discover the indirect jump instructions,

but when they have no information about the destination, they report zero indirect

targets [23], and hence treat it as an instance of false negatives. Thus, for consistency,

we report these cases as false negatives as well.

switch(x) {
case 0:
return y+3;

case 1:
return 2*y;

...
case 7:
return y-4;

default:
return 0;

}

L1 : mov $6000,%r8
mov $8000,%r9
mov %r11,(%r10)
cmp (%r10),$7
ja L3

L2 : mov %r11,%r12
shl $2,%r12
add %r9,%r12
mov (%r12),%r13
add %r8,%r13
jmp *%r13

L3 : . . .

L1 : 𝑅8=6000

𝑅9=8000

∗𝑅10=𝑅11
IF (∗𝑅10>𝑢 7)

JMP L3

L2 : 𝑅12=𝑅11

𝑅12=𝑅12≪ 2

𝑅12=𝑅9+𝑅12
𝑅13=∗𝑅12
𝑅13=𝑅8+𝑅13
JMP ∗𝑅13

L3 : . . .

Fig. 1: A C/C++ switch statement, its assembly code, and the
associated intermediate representation (IR)

compiler idioms and/or be sensitive to compilers or their ver-

sions. In contrast, a more systematic approach such as ours can

cope betterwith syntactic changes that preserve semantics, such

as reordering or refactoring of code pointer computation.

• We present a new bounds analysis technique that can handle

assignments and comparisons equally effectively. Its key benefit

is its ability to fully factor the bidirectional and transitive nature

of equalities, whereas previous approaches tended to propagate

constraints only in one direction, namely, from the right-hand

side to the left-hand side of an assignment. We present tech-

niques for representation and propagation of constraints that

achieve efficiency together with increased power.

• We present a detailed experimental evaluation of our approach,

comparing it with several existing systems, e.g., angr, Dyninst,

Ghidra, and Ddisasm.

– Our emphasis on soundness leads to a drastic 35× reduction

in miss rates as compared to the best previous techniques.

– Our false positive rate of 2% is better than all other systems

except Dyninst. Moreover, when we compare on the error

rate based on F1-score, our results are 3× better than the best

among previous work.

– Finally, we show that soundness is achieved without compro-

mising on performance. SJA runs in O(𝑛𝑚), where 𝑛 is the

number of instructions and𝑚 is the number of variables that

have equality relationshipswith another. As𝑚 tends to be very

small in practice, SJA’s runtime performance is comparable

and/or better than most previous systems.

2 Jump Table Overview and Approach Outline
A jump table consists of an array of code pointers/offsets used to

compute the final target of an indirect jump. It results from the com-

pilation of switch statements (or equivalent constructs) in high-level

languages. Jump tables are also frequently used in hand-coded as-

sembly. Fig. 1 illustrates a C/C++ switch statement and the jump

table code resulting from it. This code is shown first in x86 assembly,

and then in an intermediate language used in our analysis. This inter-

mediate language is a register-based language and is similar to those

used in compilers
2
. Jump table accesses fall into four major types:

• ∗(𝑇𝐵𝑎𝑠𝑒+𝑆𝑡𝑟𝑖𝑑𝑒×𝐼𝑛𝑑𝑒𝑥)
• 𝐵𝑎𝑠𝑒+∗(𝑇𝐵𝑎𝑠𝑒+𝑆𝑡𝑟𝑖𝑑𝑒×𝐼𝑛𝑑𝑒𝑥)

2
The specific IR we use comes from the Lisc [12] assembly-to-IR lifter that we use.
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Fig. 2: SJA’s Approach

• 𝐵𝑎𝑠𝑒+𝑆𝑡𝑟𝑖𝑑𝑒×𝐼𝑛𝑑𝑒𝑥
• ∗(𝑇𝐵𝑎𝑠𝑒2+𝑆𝑡𝑟𝑖𝑑𝑒2×∗(𝑇𝐵𝑎𝑠𝑒1+𝑆𝑡𝑟𝑖𝑑𝑒1×𝐼𝑛𝑑𝑒𝑥))

Here𝑇𝐵𝑎𝑠𝑒 refers to the base of the jump table,which is an array that

appears within read-only data, or in some cases, within code; and “∗”
denotes the memory dereferencing operator. In the first form, target

code addresses are directly stored in the jump table. This is possible

in position-dependent code. The second forms is most common

in position-independent code, where a code offset is stored in the

jump table. It is added to 𝐵𝑎𝑠𝑒 , a base address in the code region, in

order to obtain the final jump target. Our illustrative example (Fig. 1)

corresponds to this access type, with𝑇𝐵𝑎𝑠𝑒 =8000 and 𝐵𝑎𝑠𝑒 =6000.

(𝑇𝐵𝑎𝑠𝑒 and 𝐵𝑎𝑠𝑒 are stored in registers 𝑅8 and 𝑅9 respectively.)

We have found a few instances of the third form in hand-written

assembly. This form is possible only in the special case where code

sizes are identical across all the cases in the jump table. The fourth

form has been called a nested jump table in previous work [18, 37].
Specifically, it corresponds to a 2-level nested jump table where the

first table stores a value that serves as an index in the second level

table. More general cases are possible, i.e., 𝑛-level nesting for 𝑛>2.

Most previous works have formulated jump table resolution as

a backward analysis problem: starting from the indirect jump, these

methods follow program control-flow backward to determine how

the target was computed. Often, a pattern-matching approach is

used. Many techniques also restrict the length of backward traversal

in order to reduce the runtime. In contrast, we use a forward analysis

for the following reasons:

• Soundness requires all paths to be analyzed. A purely backward

approach cannot detect if there are incoming branches into a

backwardpathbeing explored, since it canbe an indirect transfer.

So, a subsequent forward phase would be needed.

• A forward analysis approach is more amenable to a simple im-

plementation in an abstract execution framework such as SJA.

This, in turn, enables us to focus on designing the right abstract

domain that can cope with the complexities of the jump tables

mentioned above.

Fig. 2 illustrates our jump table analysis. First, we gather a set of

definite function entries, e.g., program entry point, entries in the dy-

namic symbol table, and entries of default initialization and cleanup

functions. These are fed into an analysis that discovers all of the

function entry points in the binary. We rely on existing techniques,

specifically function interface analysis [27], in this phase. Note that

errors in function entry identification will cascade into errors in the

output of jump table analysis. Importantly, when function discov-

ery fails to report a legitimate function, that code is not analyzed

at all, which means that the jump tables present in such functions

won’t be identified. These false negatives will occur regardless of

the soundness of analysis techniques used. (As mentioned before,

this is the main source of false negatives in our method.)

For each function entry, we perform a forward intraprocedural

analysis to resolve indirect jump targets. The analysis consists of

two independent techniques: Jump table expression analysis and

Bounds analysis. For jump table expression analysis, we present

a new abstract domain that can handle all four jump table forms,

including multi-level nested jump tables.

Bounds analysis recovers the size of jump tables using control-

flow and dataflow information. Our novelty here is in terms of effi-

cient support for handling equality relations. Specifically, evenwhen

bounds checks are missing on the index variable, our analysis can

typically infer them from checks made on other variables whose

values are related to the index variable.

As our jump table analysis discovers indirect targets and adds

them to the CFG, new code becomes reachable. This new code needs

tobeanalyzed for additional jump tables. Ingeneral, an𝑛-levelnested

switch statement
3
will require 𝑛 iterations of our analysis. While

this may seem like a performance concern, such nesting is relatively

rare and hence we have not optimized this case further.

In the following sections, we describe our jump table expression

analysis (Sec. 3) and bounds analysis (Sec. 4). As these techniques

rely on abstract interpretation, we include a short overview of this

technique for the benefit of readers new to the topic.

Abstract interpretation [6]. One of the foundational techniques
in program analysis that has formed the basis of most static binary

analysis techniques [3, 7, 8, 27, 31, 32] is abstract interpretation. Dur-

ing normal execution, program variables take values over concrete
domains such as integers. In abstract interpretation, programs are

instead evaluated over abstract domains.
Abstract interpretation is frequently illustrated using the “rule of

signs” example, where each numeric variable is abstracted into the

domain {−ve, 0, +ve}. Here “−ve” stands for all 𝑛<0 and +ve for all
𝑛>0, and “0” for the number zero. Thus, each point in the abstract

domain corresponds to a subset of values in the concrete domain.

Based on this abstract domain definition, we can define the ab-

stract equivalents +𝑎 and ∗𝑎 of the concrete operations + and ∗. For
brevity, we omit cases where one of the operands is zero.

𝑥 𝑦 𝑥+𝑎𝑦 𝑥 ∗𝑎𝑦
+ve +ve +ve +ve
+ve −ve ⊤ −ve
−ve +ve ⊤ −ve
−ve −ve −ve +ve

Note how +𝑎 introduces approximations: when a positive and

negative number are added, one cannot predict the sign of the output.

(Multiplications don’t introduce approximations in this abstract

domain, but ifwemerged zero into+ve, thiswould no longer be true.)
Abstract interpretation can be understood as reevaluating a pro-

gramusing these abstract operations, while the variables themselves

assume values from the abstract domain. At conditional branches,

3
Note that a nested switch statement isn’t the same as a nested jump table [18, 37].

With nested switch statements, each nesting level can have its own indirect jump

statement. In contrast, a nested jump table uses a single indirect jump (but its target

may be computed frommultiple jump tables).
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Domain D ::= D∪ {⊤,⊥}
D ::= 𝐵 | 𝐵+𝑆×𝐼 where 𝐵,𝑆 ∈Z, 𝑆 ≠0, 𝐼 ∈ (V∪∗D),
V is the set of variables in the program

Expressions 𝑒 ::= 𝑐 | 𝑣 | 𝑒+𝑒 | 𝑒−𝑒 | 𝑒×𝑒 | 𝑒<<𝑐 | ∗𝑒
(𝑣 is a variable, 𝑐 is a constant)

Base cases

𝑐 𝑐

𝑣 0+1×𝑣

Recursive cases

𝑋 𝐵1+𝑆1×𝐼 𝐵1+𝑆1×𝐼
𝑌 𝐵2+𝑆2×𝐼 𝐵2

𝑋 +𝑌 (𝐵1+𝐵2)+(𝑆1+𝑆2)×𝐼 (𝐵1+𝐵2)+𝑆1×𝐼
𝑋−𝑌 (𝐵1−𝐵2)+(𝑆1−𝑆2)×𝐼 (𝐵1−𝐵2)+𝑆1×𝐼
𝑋×𝑌 ⊤ (𝐵1×𝐵2)+(𝑆1×𝐵2)×𝐼
𝑋<<𝑌 ⊤ (𝐵1×2𝐵2 )+(𝑆1×2𝐵2 )×𝐼
∗𝑌 0+1×∗(𝐵2+𝑆2×𝐼 ) 0+1×∗𝐵2

Fig. 3: Abstract domain for jump table analysis

there is typically not enough information to determine which side

will be followed, so the typical approach is to follow both branches

and then take the union of abstract values when control flowsmerge.

By ensuring that abstract domains are lattices, unions (as well as
intersections) of any two abstract values will yield another abstract

value. This also ensures that there is a maximum element⊤ (which

corresponds to every possible concrete value) and a minimum ele-

ment⊥ (which corresponds to the empty set).

An abstract interpretation is sound if the abstract value computed

for every variable corresponds to a superset of the concrete values

that this variable may have in any concrete execution. For instance,

an abstract interpretation that assigns⊤ to every variable is trivially

sound (but not very useful).

3 Jump Table Expression Analysis
Accurate analysis of jump tables is necessary, or else control-flow

graphswould be incomplete,which, in turn, can lead to unsoundness

of all static analyses that use the CFG. For pragmatic reasons, there is

a tendency in previous works to use pattern-matching on jump table

analysis. The downside of this approach is that irregular patterns

with similar semantics are not recognized. In fact, none of previous

works systematically evaluate the effectiveness of their techniques.

In this paper, we show that SJA can iteratively recognize manymore

jump tables using a principled static analysis.

Our abstract domain and its operations are shown in Fig. 3. The

domain is designed to infer a formula that relates the values of (any)

twovariables in theprogram. In this regard, a variable corresponds to

a definition of a register, i.e., multiple definitions of the same register

will be treated as distinct variables.

We are not trying to capture all possible relations, but just those

that arise in jump tables—specifically, the fourmajor types discussed

in the last section. For the third form, 𝐼 corresponds to the index

variable of the jump table. To support the other forms, we permit a

recursive domain, where 𝐼 is itself a formula. Multiple nesting levels

enable analysis of multi-level nested jump tables.

L1 : 𝑅8=6000

𝑅9=8000

∗𝑅10=𝑅11
IF (∗𝑅10>𝑢 7)

JMP L3

L2 : 𝑅12=𝑅11

𝑅12=𝑅12≪ 2

𝑅12=𝑅9+𝑅12
𝑅13=∗𝑅12
𝑅13=𝑅8+𝑅13
JMP ∗𝑅13

L3 : . . .

𝑅8=6000

𝑅9=8000

∗𝑅10=0+1×𝑅11
N/A

N/A

𝑅12=0+1×𝑅11
𝑅12=0+4×𝑅11
𝑅12=8000+4×𝑅11
𝑅13=0+1×∗(8000+4×𝑅11)
𝑅13=6000+1×∗(8000+4×

𝑅11)
N/A

N/A

B−1

B−1

B−2

B−2

R−4 . 2

R−1 . 2

R−5 . 1

R−1 . 2

Fig. 4: Illustration of rules in Fig. 3 on our example

Recursive abstract domains have the potential to cause nonter-

mination in the presence of loops. This happens because of fixpoint

iteration. However, since we limit fixpoint iteration to terminate

quickly (Sec. 5.4), recursion does not pose a serious problem.

The specific language subset relevant for this analysis is that of

expressions 𝑒 as shown in Fig. 3. The abstract interpretation for the

base cases is shown first. It covers the cases of constants (𝑐) and

variables (𝑣). Effectively, the abstraction of a constant or a variable

is itself. The recursive cases are shown next: they correspond to the

application of operators +, −, ×, << and ∗ (memory dereferencing).

The table does not show assignments because their semantics is

independent of the domain. (See Sec. 5.3.1 for the details.)

The first two rows of recursive cases table (i.e., the two header

rows) showdifferentcombinationsofabstractvalues for theoperands

𝑋 and 𝑌 . The table body shows the result of applying each of the

above-mentioned operators to 𝑋 and 𝑌 . For instance, when 𝑋 =

𝐵1 + 𝑆1 × 𝐼 and 𝑌 = 𝐵2 + 𝑆2 × 𝐼 , their addition results in a point

(𝐵1 +𝐵2) + (𝑆1 +𝑆2) × 𝐼 , as shown in the table. In other words, the

bases are added, as are the strides. Note that this is applicable only

when the index 𝐼 matches. Otherwise, the result will be⊤. To reduce
clutter, Fig. 3 generally omits operand combinations that result in⊤.

Fig. 4 illustrates these abstract operations on our running example

from Fig. 1. The first column shows the instructions in their IR form,

while the middle column shows the abstract value of the left-hand

side operand after the execution of the instruction. The third column

identifies the specific cell from Fig. 3 that is used to arrive at this

result. Base case rules are referenced as B-1 and B-2. Recursive cases

are referenced by a combination of row and column in the table body.

For instance, R-1.1 refers to the cell containing (𝐵1+𝐵2)+(𝑆1+𝑆2)×𝐼 .
At control-flowmerge points, we need to apply the union opera-

tion in the domain. This can result in a loss of precision. To mitigate

this, we extend the domain toD∗
, i.e., the abstract value can be a set

of points in the domainD shown in Fig. 3. At merge points, we can

define ⊔ as the union of value sets from preceeding branches. In an

implementation, the size of these sets can be capped at a small value,

say, 10, as we have done in our implementation. If a set exceeds the

size limit, its abstract value is set to⊤.
Based on this analysis, jump table targets can be identified as fol-

lows. At an indirect jump, we retrieve the abstract value associated

with the register that specifies the target. If it matches one of the

forms introduced at the beginning of this section, we check if the

table base and code base (if present) are within the read-only data or

code region. Because jump table consists of contiguous entries, we
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∗𝑅10=𝑅11
# ∗𝑅10=𝑅11
IF (∗R10 >𝑢 7) JMP L3

L2: ...

# 0≤ ∗𝑅10≤ 7, ∗𝑅10=𝑅11
L3: ...

# ∗𝑅10>7, ∗𝑅10=𝑅11

(a) Control-flow

# 0≤𝑅11≤ 7,𝑅9=8000

𝑅12=𝑅11

# 0≤𝑅11≤ 7,𝑅9=8000,𝑅12=𝑅11

𝑅12=𝑅12≪ 2

# 0≤𝑅11≤ 7,𝑅9=8000, 0≤𝑅12≤ 28

𝑅12=𝑅9+𝑅12
# 0≤𝑅11≤ 7,𝑅9=8000, 8000≤𝑅12≤ 8028

(b) Dataflow

Fig. 5: Illustration of bounds analysis on our example

iterate over possible concrete values of the index, retrieve the content
from the table, and compute the target. If the target is within the

code region, we add an edge to the CFG.

Without information on possible bounds, this iteration must con-

tinue untilwe encounter a jump table entry that fails the above check.

While this will help in terms of soundness, it can lead to considerable

false positives. To mitigate this, we describe a bounds analysis in

Sec. 4 that determines a range of concrete values of the index.

Advantages of abstract domainD. VSA [3] is perhaps the most

widely cited binary analysis technique based on abstract interpre-

tation. It was proposed to compute an over-approximation of the

set ofmemory addresses. Specifically, its abstract domain consists

of points of the form 𝑎 +𝑏 × [𝑐,𝑑], where 𝑎, 𝑏, 𝑐 and 𝑑 are integer

constants. While VSA’s domain has some similarity with SJA’s, this

is superficial: At its heart, jump table expression analysis is about

the relation between an index variable 𝐼 and the value of the jump

table target. Meanwhile, VSA is a value analysis to compute the set

of possible values possessed by the jump table target, but cannot

relate it to the contents of the index variable.

One consequence of VSA’s value-based approach is that it loses

a lot of information onmemory reads, often resulting in⊤. For in-
stance, consider the instruction 𝑅13=∗𝑅12 in our working example.

Assume that VSA had the accurate value of 𝑅12 as 8000+4× [0,7].
A sound approximation of the value of 𝑅13 would be the union of

contents frommemory locations {8000,8004,...,8028}. Even in the
optimistic scenario that the contents of all these locations is available

statically, the union operation cannot, in general, yield a better result

than⊤. In contrast, our abstract domainD keeps operating on the

relationships without reducing everything to a value, and hence do

not suffer this loss.

4 Bounds Analysis
Bounds analysis gathers constraints on variable values (i.e., contents
of memory and registers) that can be inferred on the basis of branch

directions at conditional branches (control-flow), or arithmetic oper-

ations (dataflow), as illustrated in Fig. 5. Bounds analysis has broader

uses, but in this paper, we primarily apply it for computing jump

table sizes.

rev.ng [8] andOSRA[7]obtain constraints at conditional branches

that follow comparisons with constants. These inequalities are prop-

agated after assignments. However, their techniques do not reason

about equality relationships between variable values and, as a result,

fail to discover some implicit constraints. For instance, in both of the

snippets shown below, the condition x < 5will never hold. While

these systems can infer this for the snippet on the left, they fail to

do so for the snippet on the right.

𝑈 : = 𝑍

𝑉 : = 3 ·𝑈 +4
𝑌 : = −𝑋 +4
𝑍 : = 3 ·𝑋 +2

Y
-1 4

U
1 0

V
3 4

I1 I2

X
1 0

Z
3 2

Fig. 6: Equality representation using equivalence class

if (y < 5) goto ...
x = y
if (x < 5) ...

x = y
if (y < 5) goto ...
if (x < 5) ...

In contrast, we propose an efficient technique to compute equality

relationships between variables (Sec. 4.1). In addition, we enhance

this technique to incorporate concrete constraints obtained from

relations between variables and constants (Sec. 4.2). Therefore, SJA

can handle both the snippets shown above.

4.1 Efficient Handling of Equality Relations
Affine relations [13] was perhaps the earliest studied analysis to infer
equality relationships between variable values. Affine relations are

of the form 𝑐0+𝑐1𝑋1+𝑐2𝑋2+···+𝑐𝑛𝑋𝑛 =0, where 𝑐𝑖 are constants and
𝑋𝑖 correspond to variable values. More recently, such abstractions

have been called symbolic abstractions [9, 29]. The key problem here

is to compute the (strongest) relation that holds at program location

𝐿, given the relations that hold at its predecessors. For affine relations,

this step is expensive in practice [19], and hence the analysis does

not scale. To avoid this complexity, we focus our analysis on the

simpler case of equality relationships involving just two variables:

𝑋𝑖 =𝑎 ·𝑋 𝑗 +𝑏

As confirmed by our experimental results, this form is sufficient to

handle the vast majority of cases that arise in jump tables. Variables

in this regard correspond to registers and memory locations. In

addition to memory locations whose addresses are known statically,

we provide some support for indirect memory accesses (i.e., cases

where the memory address is held in a register). Our memory model

captures the semantics that whatever is stored in a location 𝑥 will be

returned when 𝑥 is read back. (However, for soundness, if there is

an intervening write to a location𝑦, and no information is available

to prove that 𝑥 ≠𝑦, then a subsequent read of 𝑥 will return⊤.)
There are two sources of equality relations in programs: equality

comparisons and assignments. Of these two, assignments are the

more frequent source, but we support both. Our goal is to capture

the symmetric (also called bidirectional) nature of equality and allow
constraint information to propagate in all directions.

Recall that we focus on relations of the form𝑋𝑖 =𝑎 ·𝑋 𝑗 +𝑏 where
𝑎,𝑏 ∈ Q and 𝑎 ≠ 0. Since equality is bidirectional, such 𝑋𝑖 and 𝑋 𝑗

belong to the same equivalence class where the constraint on one

variable can be inferred from any other variable in the same class.

As a result, we can inject an extra variable, namely 𝐼𝑘 , into a class

and relate every variable in the class to 𝐼𝑘 . Fig. 6 illustrates two such

equivalence classes. The first class consists of variable𝑈 ,𝑉 and an

extra variable 𝐼1. Specifically, line 2 can be rewritten as𝑈 =1·𝐼1+0
and𝑉 =3·𝐼1+4. The relationships between𝑈 ,𝑉 and 𝐼1 are illustrated

in bubbles, each of which consists of a variable and its parameters.

Note that this representation has many key advantages:
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X
1 2

Y
2 2

Z
3 4

W
6 7

I1

X
2 5

Y
4 8

Z
9 2

W
18 3

I2

X
1 2

Y
2 2

Z
3 4

W
6 7

I3 I4

Fig. 7: An example ofmerging equivalence classes

Compact representation. Each variable can appear in at most one
equivalence class. In addition, there is no linear relationship between
variables in different classes.

Efficient handling of assignments. An important feature of this

representation is that new assignments to a variable can be pro-

cessed efficiently. For instance,𝑍 initially belongs to the same class

with𝑈 and 𝑉 (line 1). However, after the assignment (line 4), the

relationships between𝑍 and𝑈 ,𝑉 become invalid.
4

To invalidate the relations that involve 𝑍 , we simply remove 𝑍

fromtheclasswhere itbelongs to.Moreover, if𝑍 appearsasamemory

address in some class, this occurrence needs to be replaced by an

equivalentexpressiononanothervariable thatappears in theoriginal

class of𝑍 . Finally, we insert𝑍 into the appropriate class based on its

new value, e.g., the second class with𝑋 ,𝑌 and an extra variable 𝐼2.

Mitigating the impact of memory aliasing. Note that a memory lo-

cation𝑍 could be aliased to other memory locations. An assignment

to 𝑍 invalidates not only the relations involving 𝑍 , but also those

involving aliases of𝑍 . Without additional information, it is possible

that 𝑍 is aliased to all memory locations, and causes all relations
involving memory to be discarded. This scenario could be detrimen-

tal to precision especially since assignments occur very frequently.

However, it is feasible to rule out somememory aliasing for those ad-

dresses that can be expressed by equivalence class. In particular, sup-
pose that𝑅𝑖 and𝑅 𝑗 are registers in the same class, it is trivial to verify

if the memory location 𝑎 ·𝑅𝑖+𝑏 is not aliased to 𝑐 ·𝑅 𝑗 +𝑑 . However, if
𝑅𝑖 and𝑅 𝑗 belong to different classes, no linear relation between these

memory addresses is captured. In such cases, for soundness, SJA

assumes that these memory locations can be aliased to each other.

Efficient merge of paths. At branching statements, each branch

starts with a separate copy of the relations from its predecessor

and modifies its own relations while executing its instructions. At

control-flow merge points, we typically compute a disjunction of

possible equalities. However, since our goal is to find the relations
that hold in everymerging path, we instead compute a conjunction of
definite equalities. These equalities can be represented by the system
of equivalence classes.

4
Note that if a variable is assigned to a function of itself, e.g.,𝑍 =𝑎 ·𝑍 +𝑏, it can still

be inferred from other variables in the original class. In such cases, we do not invalidate

its relations, but rather adjust the parameters and retain the variable in the class.

Fig. 7 illustrates the merge of two branches. For simplicity, each

branch has only one equivalence class. For instance, the relations𝑌 =

2·𝑋−2 and𝑊 =2·𝑍−1 hold for both paths, and there is no common

relation between 𝑋 and 𝑍 in both paths. Therefore, the merging

output consists of two equivalence classes associated to the extra

variables 𝐼3 and 𝐼4.A typical approach toderive theoutput is to iterate

over each pair of variables: if there is a common relation between

them in both paths, these variables belong to the same equivalence
class; otherwise, they belong to different classes. This approach is
simple — the downside is that its time complexity is quadratic (over

the number of variables) for eachmerge. In contrast, SJAmerges two

paths at linear time complexity for each merge by leveraging the

relationships between extra variables, e.g., 𝐼1 and 𝐼2 in our examples.

Recall that𝑋 and𝑌 belong to the same class if∃𝑎,𝑏 ∈Q :𝑌 =𝑎 ·𝑋 +𝑏.{
2·𝐼1+2=𝑎 · (1·𝐼1+2)+𝑏
4·𝐼2+8=𝑎 · (2·𝐼2+5)+𝑏

It can be seen that𝑌 =𝑎 ·𝑋 +𝑏 is satisfied if 2 ·𝐼1+2=4 ·𝐼2+8 and
1·𝐼1+2=2·𝐼2+5 hold. It can be inferred that𝑋 and𝑌 are in the same

class because these equations are equivalent. In fact, both of them

can be reduced to the same relationship 𝐼1 = 2 · 𝐼2 +3. Meanwhile,

the relationship between 𝐼1 and 𝐼2 is different for 𝑍 , specifically,

𝐼1=3·𝐼2− 2

3
. Consequently,𝑋 and𝑍 do not belong to the same class.

The key advantage of our design is that we can compute the re-

lationship between 𝐼1 and 𝐼2 for each individual variable, thereby

achieving a linear time complexity for each merge. Variables with

equivalent relationship between 𝐼1 and 𝐼2 are classified to the same

equivalence class.

4.2 Embedding of Concrete Constraints
Most jump tables result from the translation of switch statements,

whose labels are required to be constants in most languages, in-

cluding C/C++. As jump tables consist of constant values known

at compile time, their bounds are also constants. In the code, these

bounds are typically expressed using comparisons with constants.

On x86-64 as well as AArch64 architectures, comparisons are

decoupled from conditional branches: comparisons set flags, with

branches depending only on these flag values. To identify the con-

straints associated with each branch direction, these two pieces of

information need to be combined
5
. For instance, on x86-64, when

the instruction flag = cmp(X, 3) is followed by a jle (jump if less

or equal) branch, the constraint𝑋 ≤3 is generated. SJA represents

such concrete constraint in a uniformway using ranges, e.g.,𝑋 ≤ 3

can be formulated as𝑋 ∈ [−∞,3].
Akey featurewithourapproach is that concrete constraints canbe

embedded to the system of equivalence classes losslessly. Specifically,
since all variables in sameclass canbederived from its corresponding

𝐼𝑘 , SJA stores the appropriate range constraint in each 𝐼𝑘 .

At merge points, we combine constraints from all predecessors

using disjunction. We consider the example in Fig. 7. Suppose that

𝐼1 ∈ [−2,5] and 𝐼2 ∈ [0,2], and our target is to compute 𝐼3. It can be

derived that𝑋 ∈ [0,7] (left branch) and𝑋 ∈ [5,9] (right branch), re-
spectively. Then, the constraint on 𝐼3 in each branch can be inferred

5
In x86_64 and AArch64, many instructions can affect the flags but in practice, only

a small subset of these instructions are involved in conditional branches, e.g., cmp,
sub, test for x86. We find that this is true even in hand-coded assembly. Therefore,

handling these instructions is sufficient to obtain jump table bounds.
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by replacing𝑋 with 1 ·𝐼3+2. In more detail, for the left branch, we

have 0 ≤ 1 · 𝐼3 +2 ≤ 7, which is equivalent to 𝐼3 ∈ [−2,5]. Similarly,

𝐼3 ∈ [3,7] can be derived for the right branch. Consequently, we can
compute 𝐼3 for the output class as follows:

𝐼3 ∈ [−2,5]⊔[3,7]⇔ 𝐼3 ∈ [−2,7]
At conditional branches, a new constraint is applied on top of the

current constraint using conjunction. For instance, suppose that the

above merging is followed by a branching statement with condition

𝑋 ≥ 5. As𝑋 ≥ 5 can be translated to 𝐼3 ∈ [3,∞], the new constraint is:

𝐼3 ∈ [−2,7]⊓[3,∞]⇔ 𝐼3 ∈ [3,7]

5 Implementation
In this section, we describe our analysis framework design and im-

plementation. The framework orchestrates and coordinates all of

the steps involved in program analysis using abstract interpretation.

It first lifts binary code into an architecture-neutral intermediate

format, and then constructs a control-flow graph. It maintains the

abstract store that captures the content of memory. Finally, it pro-

vides support fixpoint iteration, a technique needed to support loops

and recursion. We describe each of these steps in more detail below.

Our framework is modular and extensible, and provides an API for

adding new abstract domains and analyses.

5.1 Lifting to IR
Similar to many previous binary analyses [4, 11, 18, 30, 32, 37], we

first lift assembly instructions into an intermediate representation

(IR) before analysis. This step abstracts most of the architecture

specifics and complexities, thereby simplifying analysis implemen-

tation.We used the LISC system [12] for lifting assembly toGCC’s IR

calledRTL.Akey benefit of LISC is that it supports recent instruction

set extensions, thus allowing us to handle almost any binary.We per-

form a one-time lifting for all instructions found by a disassembler

of a target program.

5.2 Control FlowGraph (CFG) Construction
After lifting to IR, SJAconstructs a control-flowgraph for each “tenta-

tive” function. For stripped binaries, tentative functions start include

(i) definite function starts, including the binary entry point, functions
listed in the dynamic symbol table, and direct call targets; and (ii)

possible function starts, such as relocated pointers that target a valid
instruction, and “gaps” between other tentative functions thatmatch

function prologue signature.

At this point, indirect control flow targets are not resolved, so only

directly reachedbasic blocks appear inCFGs.OnceSJAresolvesmore

indirect control flows (Sec. 3), we traverse from their indirect targets

to constructmore reachable basic blocks in the subsequent iterations.

This process repeats until all code is identified and analyzed.

5.3 Abstract Store
Our “variables” can refer to either CPU registers or memory loca-

tions. The values of these variables are held in the abstract store.
Similar to previous proposals such as VSA [3], our store is organized

into multiple regions. In particular, our abstract store consists of

registers and stack. Support for heap and global memory are very

limited: the only semantics supported is that of ensuring that a read

of a memory location 𝑥 produces the same value that was written.

For soundness, we ensure that any intervening write to a location

𝑦 invalidates this value that was written to 𝑥 unless we can prove

𝑥 ≠𝑦. (More details on this handling of side-effects can be found in

Sec. 5.3.3.) Our limited support for heap and global memory is useful

in jump tables because the relevant code is often small in size and

does not make too many memory accesses.

Register handling is largely straightforward — the only complica-

tion is that of the semantics of accessing 8, 16, 32, and 64 bit versions

of the same register. This too is well understood, so the rest of this

section is mainly focused on the abstract stack.

5.3.1 Accurate Modeling of Stack Memory. Stack memory is typi-

cally accessed using constant offsets from the value of SP at func-

tion entry. We leverage the stack analysis technique of Saxena et
al. [31] in this regard. Specifically, their addresses have the value of

𝐵𝑎𝑠𝑒𝑆𝑃 +[𝑐,𝑐], where 𝑐 is a constant that is derived by our analysis.
Note that local variables are often accessed using an offset from the

base pointer (BP) register. As most of the stack memory accesses

refer to a single location in the abstract stack, this abstract domain

can typically determine the (exact) value of BP as 𝐵𝑎𝑠𝑒𝑆𝑃 − [𝑑,𝑑]
where 𝑑 is another constant.

At function start, SJA initializes the content of each register𝑅with

the abstract value 𝐵𝑎𝑠𝑒𝑅 . Stack locations above the current SP can

also be initialized this way — let us call them 𝐵𝑎𝑠𝑒𝑃1,. . . ,𝐵𝑎𝑠𝑒𝑃𝑛 , the

initial values of parameters 1 through𝑛. Stack locations below the SP

are initialized to⊤. In addition, since the stack frame is just being al-

located, valid references to these locations cannot appear anywhere

else inmemory or registers other than the SP.As a result, if amemory

location is written using an address stored in memory or registers

other than SP, it cannot target the current stack frame. This property

is captured by our abstract store implementation, thus providing

improved accuracy in reasoning about the stack contents. (This prop-

erty is lost if a stack-derived address is subsequently stored in mem-

ory —we revisit this issue under the topic of “weak updates” below.)

5.3.2 Efficient Handling of Large Abstract State. It may seem that

the memory needed for registers and the stack frame is relatively

small. However, note that the abstract state changes with each in-

struction and that we need to be able to access the abstract state at

any program location. As a result, it is necessary to replicate the

abstract store after each instruction in a function. This replication

is costly, so we take the following steps to increase efficiency.

First, we associate an abstract store with each basic block (BB)

rather than every single instruction. When a BB is processed, its

abstract state is updated after the abstract execution of each instruc-

tion in the BB. Second, each BB stores only the variables updated in

that BB. This minimizes the size of the abstract store associated with

that BB. For accessing a variable that wasn’t assigned in a basic block

𝐵, we fetch its value from 𝐵’s predecessors. We refer to this as lazy
loading. If there are multiple predecessors, the values from the pre-

decessor blocks aremerged using the union operation in the domain.

A lazy-loaded value is cached in 𝐵 so that future accesses will be fast.

5.3.3 Weak Updates. Aweak update occurs when static analysis

fails to capture the exact memory address used in a write operation,

e.g., we are updating a location 𝐵𝑎𝑠𝑒𝑆𝑃 +[𝑙,ℎ] with 𝑙 <ℎ. To handle
this correctly, the entire range of memory locations 𝑙 throughℎ on
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the stack will have to be updated. Moreover, since only one of these

locations will be updated at runtime, and all the other locations will

continue to have their old values, a weak update needs to store the

union of the original and new values in each of these locations. The

net effect is thatweak updates can have a significant negative impact

on analysis precision.

Weak updates arise due to threemain reasons. First is an update of

an element in an array that is allocatedon the stack. Inmany cases, an

analysis of the conditional branches preceding the access can yield

bounds for the access, thereby limiting the scope of the update to a

small region of the stack. A second reason is due to passing a pointer

to a stack location to a callee. In this case, without an analysis of the

callee, a static analysis would have to conservatively assume that the

entire stack framemay be clobbered. This loss of information can be

mitigated by analyzing the callee. A third case is when a stack loca-

tion is stored in global or heapmemory.When this happens, because

we maintain no information about these memory regions, future up-

dates involving any pointer stored in global memory can clobber the

entire stack frame.Tomitigate the impact of thisworst-case outcome,

we assume that if no stack-derived address below 𝐵𝑎𝑠𝑒𝑆𝑃 escapes to

untrackedmemory (e.g., global or heap), the stack frame is preserved

through calls. Moreover, we take the ABI as a specification and con-

clude that the callee-saved registers are also preserved through calls.

A second challenge posed by having weak updates is that it re-

quires multiple memory locations to be updated after processing

just a single instruction, and hence can impact the speed of static

analysis. Based on our stack memory modeling, a write to memory

address that is not derived from 𝑆𝑃 should not affect stack. However,

awrite tomemory address that is too imprecise can trigger the entire

stack frame to be clobbered. To bound this overhead, we maintain

clobber operations in a separate “layer” that is superimposed on the

main abstract store to derive the ultimate content of memory. This

allows clobbers to be recorded in constant time, at a slight increase

to the cost of all read operations on the abstract stack (due to the

need to check the clobber layer).

5.4 Fixpoint Iteration
To handle recursion and loops, fixpoint iteration is used. This is an
iterative equation solving technique that begins with⊥ as the initial

approximation for all variables. The 𝑛 + 1th approximation is ob-

tained by starting with the results of 𝑛th approximation. When the

abstract domains are finite (or more accurately, when there are no

infinite ascending chains), this iterative processwill terminate. How-

ever, it may take timewhich is exponential in the size of the program.

For infinite domains, it may not terminate at all. One way to avoid

this complexity explosion is to begin fixpoint iteration at⊤ instead

of⊥. Such an approach would compute the greatest fixpoint (i.e., the
largest solution). The key benefit of startingwith⊤ is that the results

are sound even before a fixpoint is reached, sowe can stop after𝑘 iter-

ations for some small constant𝑘 . As a result, we can limit the overall

analysis complexity to be linear, which is important for scalability.

Although starting from ⊤ entails some precision loss, accurate

handling of recursion is not essential for jump table analysis. This

is because jump table is generated by compilers statically, and thus

does not depend on runtime values computed inside loops. Conse-

quently, SJA defaults to starting fixpoint iteration from ⊤ unless

configured otherwise for a specific analysis.

6 Evaluation
Our experiments evaluate SJA in terms of accuracy and performance.

We compare SJA with 4 other tools: Dyninst, angr, Ghidra and Ddis-

asm.We did not include rev.ng in the evaluation because we were

unable to get it to compile and run.

6.1 Experimental Setup
Evaluation platforms. All experiments were carried out on a desk-

top running Ubuntu 20.04 on 12th generation Intel Core i7 processor

with 16 GBmain memory and 200 GB SSD.

Benchmarks. Our framework was evaluated with Pang et al.’s

benchmarks [23], which contain programs and libraries written in

C/C++ compiled using GCC-8.1.0 and LLVM-6.0.0 on 6 optimization

levels. Since SJA’s implementation is for x86_64 on Linux, we used

only the x86_64 ELF binaries in our evaluation.

Ground truth. Pang et al. extends the approach in CCR [15] to

customize both LLVM andGCC to generate jump table ground truth,

which includes details about jump tables (e.g., base, size and stride)

accessed by each indirect jump. We also reuse the scripts in this

work to generate control-flow graph constructed by angr, Dyninst

and Ghidra. Regarding Ddisasm, we customize an official example

cfg-paths.py to emit control-flow graph. Our custom python script

is very simple and contains only 7 LoCs.

6.2 Accuracy
In this section, we aim to answer the following questions:

• How accurate are CFGs?Howmanymissing edges and spurious

edges are being added based on jump table analysis? (Sec. 6.2.1)

• Suppose there are 𝑛 jump tables, what fraction of them are iden-

tified by jump table analysis? (Sec. 6.2.2)

6.2.1 Control-Flow Graph Accuracy. Jump table is generally a low-

level construct generated by compilers, so its size can be extracted

using the approach by CCR [15] and Pang et al. [23]. Note that multi-

ple indirect jumps can access the same jump table, with each indirect

jump referencing a different subset of entries in this table. However,

the ground truth does not provide these details on a per-indirect-

jump basis. Instead, it (a) lists the properties of jump tables, and (b)

associates a jump table to each indirect jump. Since all analysis tools

report CFG edges separately for each indirect jump, in order tomake

use of the available ground truth, we combine the indirect targets

reported by analysis tools across all uses of the same jump table, and

compare this union against the ground truth. We then evaluate CFG

missing edges and spurious edges through the jump table entries

identified by each analysis tool.

Specifically, for each jump table, we compare the set 𝐽𝑇 of edges

reported by an analysis tool against the set of valid edges 𝐽𝐺 reported

in the ground truth for that table. 𝐽𝐺 − 𝐽𝑇 denotes the set of edges

unrecognized by the tool, and hence are false negatives (FNs). Sim-

ilarly, 𝐽𝑇 − 𝐽𝐺 is the set of spurious edges reported by a tool that are

not present in the ground truth, so they are false positives (FPs).
6

Precision, Recall and F1-score can be derived from FPs, FNs and TPs

6
Pang et al. count false negatives only if the tool reports zero targets at an indirect

jump. This means that a tool that reports only incorrect targets will not incur false

negatives. It is also unclear if their false positives considers the number of spurious

jump targets reported, but may instead be scoring the indirect jump itself. As a result,

the numbers they report are somewhat different from ours. By counting the number

of correct targets, our results are a more accurate reflection of analysis accuracy.
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Fig. 8: Error rates in recognizing jump table entries. Blue and red bars are (1-Precision) and (1-Recall), respectively (%)

Table 1: Accuracy of jump table entries identification (%).

Dyninst angr Ghidra Ddisasm SJA

Precision 99.5 78.4 98.1 85.9 97.4

Recall 91.6 79.7 74.7 92.7 99.8

F1-score 95.4 79.0 84.8 89.2 98.6

(as 𝐽𝐺 in the ground truth). These measurements reflect the overall

accuracy of our overall techniques (Sec. 3 and Sec. 4) as compared

to other tools.

Note that missing edges, which affect the soundness of analysis

techniques, are reflected in recall rate. Tab. 1 shows that SJA achieves

a recall rate of 99.8%, which is translated to amiss rate of only 0.2% of

jump table entries. Compared to previous techniques, SJA’smiss rate

is at least ≈35× lower than others. Among SJA’s competitors, Ddis-

asm is comparablewithDyninst at≈ 7% to 8%miss rate,whileGhidra

misses more jump table entries than others, roughly 25.3% on aver-

age. In addition, Fig. 8 shows that Ghidra is also inconsistent across

different optimization levels, e.g., it reaches about 20%miss rate at

O2 optimization, but rises up to 32%miss rate at no optimization.

In terms of spurious edges, Tab. 1 shows that SJA achieves a pre-

cision rate of 97.4%. Compared to SJA, Dyninst and Ghidra seem to

reflect a somewhat biased choice with high precision in exchange

of low recall. For instance, Dyninst achieves 99.5% precision rate,

but suffers from a relatively low recall rate of just above 90%. On the

other hand, despite being slightly better than Dyninst at recall rate,

Ddisasm achieves a much lower precision rate, at 86%. Moreover,

Fig. 8 shows that SJA’s error rates are stable, e.g., they fall between 0%

to 4%across different optimization levels.Meanwhile, angrhas a very

poor precision rate of under 60% with binaries without optimization

(O0), which brings its overall precision rate down to 78%.

It is important to note that the reported precisions above reflect

our bounds analysis (Sec. 4). Without bounds information, the jump

table size can be overapproximated using the adjacency heuristics

[37], which assumes that jump table entries are placed sequentially.

In other words, we expand a jump table as long as all consecutive

entries target valid instructions with respect to the provided disas-

sembly. However, when applying this heuristics blindly, we found

a very poor precision rate of 20%. Unlike general cases where unifi-

cation often causes imprecision due to abstraction/relaxation of the

actual constraints implied by the code, our bounds analysis captures

true effect of satisfied (or unsatisfied) branches, so it doesn’t lead

to additional imprecision. As a result, our bounds analysis can ef-

fectively improve precision, e.g., increase from 20% to 98%, without

sacrificing our high recall rate.

In terms of F1-score, SJA achieves the highest score of 98.6%. Com-

pared to the other tools, SJA’s error rate is 3× to 15× lower. Among

the competitors, Dyninst achieves the highest F1-score of above 95%

due to its high precision rate. Meanwhile, angr receives the lowest

score of under 80%, where both precision and recall are equally low.

6.2.2 Jump Table Accuracy. Suppose that there are a few very large

jump tables andmany small jump tables, correct identification of the

large ones is sufficient to achieve good CFG accuracy. However, this

doesn’t truly reflect the ability to identifying jump tables. Therefore,

we compare analysis tools in terms of the number of jump tables

correctly identified.

Since most tools don’t record details of a jump table, direct com-

parison against ground truth is not possible. Therefore, we present a

metric to evaluate the technique indirectly. Recall that 𝐽𝐺 and 𝐽𝑇 are

the sets of targets reported in the ground truth and by an analysis

tool, respectively. When it fails to resolve an indirect jump, it can

either say (i) any address is a possible targets (FPs), or (ii) there is

no targets (FNs). Based on this observation, we derive a newmetric.

Specifically, an analysis tool is considered to be able to identify a

jump table if (a) 𝐽𝑇 contains at least 𝑎 × 𝐽𝐺 valid targets, and (b)

the number of entries reported is constrained below 𝑏 × |𝑆𝑔𝑡 |. In
other words, we select thresholds (𝑎,𝑏) and report the number of

jump table satisfy the mentioned conditions. To avoid biases against

FPs and FNs, we choose multiple different thresholds, specifically,

(𝑎=50%,𝑏=200%) and (𝑎=90%,𝑏=110%), to show the advantanges

of our techniques over the existing tools.
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Fig. 9 illustrates themiss rateofdifferent tools indetecting jump ta-

ble bases across different optimizations. It shows that SJA has consis-

tently lowmiss rates from 0.8% to 1.9% across different thresholds. In

comparison to other tools, we are up to 12× lowermiss rates. Among

other tools, onlyDyninstmisses about 10%of jump table bases,while

Ddisasm is second from 13% to 18%. Meanwhile, Ghidra and angr

miss more than a quarter of all jump table bases. Moreover, Ghidra

is very sensitive to the thresholds, and fluctuates from 30% to 47%.

Additionally, we observed that all the tools were affected by in-
creasing the lower threshold (50%-90%) and not the upper threshold

(200%-110%). This tells us that current systems tend to minimize FP

while sacrificing the FN rate
7
. In comparision, SJA achieves superior

FN rate while maintaining a comparable FP rate.

6.3 Ablation Evaluation
In this section, we evaluate the key aspects of our approach in Sec. 3

and Sec. 4 and compare with existing techniques below:

• VSA’s abstract domain: used in tracking jump table expressions

byangr andDyninst [23].Weevaluate the effectiveness of our ab-

stract domainD (Sec. 3) in improving recall rate (See Sec. 6.3.1).

• Unidirectional constraints: only propagate constraints in one

direction, that is from the right-hand side to the left-hand side of

an assignment, i.e., it doesn’t reason about equality relations in

general cases. We measure the effectiveness of bounds analysis

(Sec. 4) in improving precision rate (See Sec. 6.3.2).

6.3.1 Abstract DomainD. Tab. 2 breaks down the effectiveness of
our abstract domain (Sec. 3). As previously explained, VSA’s domain

is a value-based analysis, and hence it loses a lot of information on

memory reads, which is usually a part of jump table expressions. As

a result, analysis tools such as Dyninst and angr have to compensate

the limitation of VSAwith patternmatching and/or ad hoc rules [23].

Instead of incorporating heuristics, we reimplement VSA’s ab-

stract domain,which is capable of tracking regularmemory addresses.
Specifically, this domain is expressive enough to track the 1st and 3rd

type of jump table access in Sec. 2. We then combine VSA’s abstract

domain with existing bounds technique. Our experiment shows that

this approach misses about 21.4% of jump table entries. Specifically,

we notice that VSAmisses all the jump tables in libc-2.27.so com-

piled by gcc in O2 optimization since it only contains the jump tables

of 2nd type in Sec. 2.

In contrast, SJA doesn’t rely on incomplete patterns or limit the

scope analysis: it only misses about 0.2% asD, which is about 100×

7
Some of these tools implemented ad hoc rules that exclude jump tables whose size

is beyond certain limit [23].

Table 2: Accuracy of our techniques and previous techniques

VSA’s domain DomainD DomainD
Unidirectional Unidirectional Bidirectional

Precision 80.4 79.9 97.4

Recall 78.6 99.8 99.8

lower than the miss rates using VSA’s domain. This highlights the

significance of our abstract domainD in improving recall rate.

6.3.2 BidirectionalBoundsAnalysis. Similar tosomepreviousworks

[7, 8, 11, 18, 37],Unidirectional constraints supports control-flow and

dataflow inequality constraints, and also supports unidirectional

propagation of constraints through assignments, e.g., from right-

hand side to left-hand side [7, 8].Meanwhile,Bidirectional constraints
supports inferences from equality relations in both directions of as-

signments aswell as equality comparisons.Note that for bothbounds

analysis techniques, if certain bounds cannot be derived, we fall back

on adhering the adjacency rule [37] for soundness at the cost of low

precision. Despite that, our experiments highlight that full support

for equality relations doesn’t necessarily mean significant precision

loss. In fact, bidirectional propagation of constraints achieves 97.4%

precision rate, as compared to just 80% as in unidirectional prop-

agation of constraints, i.e., the error reduction rate is 8×. Unlike
Dyninst and Ghidra, SJA can achieve this level of precision while

still maintaining a miss rate that is at least 35× lower than that by

any existing tool.

6.4 Scalability
In this section,we aim to break down the evaluation of SJA’s runtime

performance into two different aspects:

• HowscalableSJAis incomparisonwith theother tools? (Sec. 6.4.1)

• An in-depth examination of the runtime performance of the

static analysis engine (Sec. 6.4.2)

6.4.1 Evaluation of Total Runtime. To get an idea if SJA’s complex

analysis will scale to large binaries, we measure the total runtime

performance of jump table identification with respect to code size

and compare it with that of other contemporary works. Fig. 10 sum-

marizes the result. Except for Ghidra, the remaining tools appear to

scale linearly with respect to binary size at different slopes. SJA also

exhibits a linear relation with binary size, e.g., SJA is able to analyze

binaries of size close to 36MB in approximately 3 minutes.

We break down the performance into different code size range.

Note that Ddisasm performs better than SJA for binaries of size less

than 100KB. Fig.10 shows that SJA’s runtime performance is con-

stant (≈ 2 seconds) across these group of binaries. This is mainly

because SJA’s binary lifter consumes this constant time, regardless

the amount of code to be lifted. While SJA performance continues to

be linear in terms of binary size, Ddisasm’s analysis time increases

significantly for binaries of size greater than 100 KB, partly because

their relational analysis that maintains a number of relations qua-

dratic to the number of <𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟,𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛>. In addition, a similar

trend is seen for angr as well. For smaller binaries of size less than

30KB, angr’s analysis time is close to that of SJA. However, it in-

creases steeply and takes around 10×more time for binaries of size

greater than10MB.Furthermore,Ghidra showsaconsistentlyhigher

analysis time (≈ 20×) than SJA for binaries of all sizes. This shows
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Fig. 10: Runtime performance on Pang et al.’s benchmarks

that state-of-the-art tools such as Ddisasm do not scale well with

binary size. On the other hand SJAmanages to analyze large binaries

in a reasonable time.Dyninst performs better (6× less time), however

its error rates are also much higher than that of SJA.

6.4.2 Evaluation of Analysis Time. We previously report the total

runtime performance of SJA in comparison with the other tools.

SJA consists of a few smaller steps, e.g., (a) disassembly, (b) binary

lifting, (c) CFG construction, and (d) analysis time. Among them, the

analysis task usually stands out as a major contributor to runtime

performance. For instance, Ddisasm incorporates an expensive re-

lational analysis as previously mentioned. Moreover, scalability is

one of the reasons why existing tools do not analyze all paths, e.g.,

angr and Dyninst restricts the backward slicing scope for the same

reason [23]. Therefore, we break down the performance efficiency

of the analysis step. Since our analysis is intraprocedural, we report

the analysis performance with respect to function size.

Recall that in bounds analysis, the complexity of a merge or a

branching is O(𝑚), where𝑚 denotes the number of variables that

have equality relationship with another. As a result, the complexity

of analyzing a function is O(𝑛𝑚), where 𝑛 is the function size. De-
spite that, Fig. 11 shows that SJA’s analysis time is roughly linear

in terms of function size. In fact, SJA can analyze code at the rate

of ≈ 300 KB/s. Perhaps, SJA is scalable because𝑚 tends to be small

in practice. For instance, memory aliasing can invalidate the rela-

tions involving a lot of memory locations. Meanwhile, there are just

dozens of registers to keep track with.

Fig. 11 shows two linear segments. For functions below 3K bytes,

the slope is less than that for larger functions. We believe this dif-

ference comes from cache performance. With smaller functions, our

analysis uses lessmemory andhence canmore easily fit in the caches.

As the function size increase, more of the accesses go to L3 or main

memory, and this increases the slope of the line. Nevertheless, the

overall trend is linear for larger function sizes as well.

7 RelatedWork
Accurate jump tables are essential in disassembly and control-flow

graph construction, which provide the basis for binary instrumen-

tation and binary analysis. As a result, jump table has been studied
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Fig. 11: Scalability of analysis performance per function

extensively by numerous existing works [1, 2, 4, 5, 8, 10, 11, 14, 16,

18, 21, 23, 24, 26–28, 30, 32–35, 37, 39–41, 41].

Pang et al. [23] quantitatively evaluate the disassembly perfor-

mance of numerous tools, including jump table accuracy. However,

since jump table accuracy is one of themany factors considered, they

do not provide detailed justification for themetrics they used. By per-

forming a more rigorous evaluation, we show that state-of-the-art

tools misidentify at least 10% of jump tables.

Most existingworks use backward slicing to resolve indirect jump

targets. To improve scalability and/or precision, they tend to analyze

only a part of the control-flow graph, and thus their techniques are

unsound. In particular, angr [32] andDyninst [11, 18] limit the scope

to a few basic blocks (or a few instructions) by default [23]. Ghidra

[30] assumes that both jump table base and index can be detected

in a single path [23]. Egalito [37], Jima [1] and BOLT [21] use syn-

tactical pattern-based techniques to identify jump tables, so their

results aremore platform-specific. In contrast, SJA analyzes all paths

using forward analysis and abstract interpretation. Note that our

approach can also detect nested jump tables that have been reported

by previous tools (e.g., Dyninst and Egalito).

rev.ng [8], OSRA [7] use forward analysis to recognize a simple

form of memory address that captures parts of jump table expres-

sions. However, they either lack of discussion or implement ad hoc

rules to detect jump tables. In addition, rev.ng and OSRA does not

support equality relations, thereby unable to infer the size of jump

table in complex cases. On the other hand, Ddisasm [10] derives

jump table expressions from relations between registers. That said,

their technique fails to capture expressions beyond registers, such

as nested jump tables. Moreover, instead of handling of constraints,

it implements ad hoc rules to determine the size of jump table. The

limited inference capabilities of these approaches result in some

bounds going undetected, which increases FPs. In contrast, SJA ad-

dresses this challenge by using an abstract domain that can represent

equality relations effectively. As a result, our technique can reduce

FPs from over 400% to just around 2%.

8 Conclusions
In this paper, we presented a new jump table analysis technique

that achieves soundness without compromising on performance

and scalability. It is based on a new abstract domain that we de-

signed to capture the computation used to derive a code pointer.

We also presented a new and efficient bounds analysis technique

for determining jump table bounds. By combining these techniques,

we achieve greatly improved false negatives — just 0.2% — while

incurring a low false positive rate of 2%. Compared on the error rates

based on F1-score, our results represent a 3× improvement over the

best results reported in the literature.
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9 Data-Availability Statement
The source code of SJA and relevant scripts to reproduce of the re-

sults are available [20]. The dataset and groundtruths, which are

based on a prior work, are also published [22].
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