
A Framework for Building Privacy-Conscious Composite Web Services∗

Wei Xu ∗ V.N. Venkatakrishnan † R. Sekar ∗ I.V. Ramakrishnan ∗

∗Department of Computer Science
Stony Brook University

Stony Brook, NY 11790-4400
Email: {weixu,sekar,ram}@cs.sunysb.edu

†Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607
Email: venkat@cs.uic.edu

Abstract
The rapid growth of web applications has prompted increas-
ing interest in the area of composite web services that in-
volve several service providers. The potential for such com-
posite web services can be realized only if consumer pri-
vacy concerns are satisfactorily addressed. In this paper,
we propose a framework that addresses consumer privacy
concerns in the context of highly customizable composite
web services. Our approach involves service producers ex-
changing their terms-of-use with consumers in the form of
“models”. Our framework provides automated techniques
for checking these models at the consumer site for compli-
ance of consumer privacy policies. In the event of a policy
violation, our framework supports automatic generation of
“obligations” that the consumer generates for the compos-
ite service. These obligations are automatically enforced
through a dynamic program analysis approach on the web
service composition code. We illustrate our approach with
the implementation of two example services.

1 Introduction
The past decade has witnessed a phenomenal growth in the
number of users who routinely use the web to obtain in-
formation, conduct research, or carry out financial transac-
tions. While the ability of the web to provide customized
information and financial services has boosted personal and
business productivity, it has raised significant concerns re-
garding consumer information privacy. Solutions such as
providing an explicit verbal statement of the websites terms-
of-use of the user’s private data have not increased con-
sumer confidence due to their imprecise and verbose nature.

To address consumer concerns on information privacy,
web service providers have taken the steps to conspicuously
identify and display their policies regarding the storage and
use of personal user information. A first step in this di-
rection is the P3P [2] (Platform for Privacy Preferences)
approach, in which the website expresses its terms of use
regarding privacy in a machine-readable format. The con-

∗This research was supported in part by Computer Associates, ONR
grant N000140110967, and the Sensor CAT at Stony Brook (a NYSTAR
Center for Advanced Technologies).

sumer checks if these terms of use match her privacy pref-
erences via a P3P-enabled web browser and thereby is en-
sured that her preferences meet the website’s terms of use.

The privacy concerns of end-users are exacerbated fur-
ther as we progress towards a world of complex web ser-
vices that involve multiple providers. Here our focus is on
composite web services that provide advanced services to
end-users based on simpler services provided by multiple
providers. Illustrative examples of such composite web ser-
vices include:
• A travel arrangement service that can, in one stop, make

all travel arrangements, such as airline reservation, hotel
accommodation, and local transportation arrangements.

• An electronics purchase service that integrates research,
reviews, and comparison shopping into a single, easy-to-
use service.

• Advanced over-the-counter (OTC) medicine procurement
consulting medical histories, online databases and credit-
card transactions.
Current trends indicate that the greatest potential for ad-

vanced web services lie in the context of such composite
services. However, successfully realizing such advanced
web services requires addressing the challenges raised in
terms of consumer information privacy. In this case, per-
sonal information could be shared across the providers in
ways that weren’t intended by the owner of the information.

Consider the travel example given above, and let us say
that there are airlines A1 through A10, hotels H1 through
H10 and rental car companies R1 through R10 that partic-
ipate in the composite service. In reality, a composite web
service may be composed of several hundreds of individual
web services. Consider that not all the individual web ser-
vices are agreeable to the consumer’s privacy preferences.
In such cases, the consumer may prefer to have her personal
information distributed only to some of these component
web services by indicating this in her privacy preferences.
For instance, she may choose to use airlines A4, A7, hotels
H1, H2, H3 and rental car agencies R1 and R4 out of the
possible options. With the use of P3P, compliance checking
involves matching the web-service’s terms of use with the
consumer’s privacy preferences. This compliance checking

results in a number of conflicts (“hotels H4 through H10

will receive your travel information”) that are reported to
the consumer. Such compliance violations do not suggest
that the consumer disagrees with the composite service’s
privacy policy; they merely suggest that the consumer does
not want to share her information with some subset of com-
ponent services. (For instance, these may be the compo-
nent services that the consumer has no prior transaction his-
tory.) Given the nature of highly, customizable compos-
ite web services, we claim that it is very much possible
to offer privacy-conscious services to the consumer. Such
privacy-conscious services can be accomplished by dynam-
ically adapting the behavior of the web service to take into
account the consumer privacy preferences.

In this paper, we present a framework to realize such
highly customizable privacy-conscious composite services.
Our approach can be summarized as follows: When a con-
sumer provides data to a service provider, she wants to en-
sure that the information she provides will be used in a man-
ner consistent with her privacy preferences. To verify if this
will be the case, the consumer requests a model of the ser-
vice. The model summarizes the manner in which the com-
posite service uses the consumer data (e.g. how the con-
sumer data can flow to various component services.) In our
approach, we provide automated techniques using which
the consumer can check this model’s compliance to her pri-
vacy preferences . If the check succeeds, the consumer for-
wards the request to be processed by the service. Otherwise,
the consumer can forward this violation as an obligation to
the composite service, and mandates the obligation to be
enforced. Our past work [10] on dynamic analysis tech-
niques provides the basic technology for such enforcement.
This analysis ensures that these obligations are respected
when the code for the service is executed. Although the
techniques discussed in this paper are suitable for any web
service framework, we have implemented our approach in
the context of WinAgent system [5]. The WinAgent system
offers web services APIs by creating open wrapper services
around existing web sites. Composite services are built us-
ing such unit services. Two case studies have been devel-
oped in our implementation.

We want to point out that our approach (similar to
P3P) does not address the problem of malicious service
providers: there can be no technological solution that pro-
vides protection from providers that intentionally lie about
their usage of consumer data. Even code analysis tech-
niques are of no avail here: these techniques can ensure that
a given piece of software satisfies a certain policy, but in
a distributed environment, end-users have no authority (or
even access) to the computers hosting the service. There-
fore, they cannot prevent a malicious service provider from
simply switching to a different piece of software that vi-
olates these policies. As such, technology cannot prevent

malicious providers that misrepresent their terms of usage,
or provide incomplete information about it. Indeed, our
approach relies on the premise that due to market or soci-
etal forces, providers and consumers have already decided
to collaborate in order to protect consumer privacy. Our
approach simply provides a technological basis to facili-
tate this collaboration. We therefore assume some non-
technological means (e.g., legal enforcement) can address
the problem of such malicious providers.

In addition, several challenges need to be addressed in
the area of security in composite web services. Some of
them are authentication and trust management, confiden-
tiality of communication, privacy, integrity, reliability and
quality of service. Our focus in this paper is solely on pri-
vacy aspects, and we indirectly address aspects of quality of
service through better privacy guarantees.

The rest of this paper is organized as follows: Section 2
gives our framework architecture. We then discuss the indi-
vidual components in the framework in the following sec-
tions: composition infrastructure in Section 3, service mod-
els in Section 4, consumer privacy policies in Section 5,
policy checking, obligation generation, and obligation en-
forcement in Section 6. In Section 7 we present two exam-
ple services that we have implemented to demonstrate our
framework. In Section 8 we discuss related work.

Some ideas from an earlier stage of this work were
sketched in a poster presentation [13]. The paper adds no-
tions of obligation generation and enforcement to the ba-
sic approach and provides details on the technical under-
pinnings of the high level ideas presented in the poster.

2 Framework Overview
Figure 1 shows the architecture of our framework, which
consists of five major components: a) service composition
code, b) service models, c) privacy policies, d) policy com-
pliance checker and obligation generation, and e) obligation
enforcer.

The component services are represented by ovals in the
lower right part of the figure. Each component service ac-
cepts inputs from its caller, then interacts with other enti-
ties such as web sites, and returns requested results to the
caller. These services are glued together using the composi-
tion code, resulting in a composite service which typically
provides richer functionalities. Each composite web ser-
vice is associated with a service model that captures how
the input data provided to the service can flow into various
entities such as its component services.

Consumers can express their privacy concerns using pri-
vacy policies. These policies capture what types of con-
sumer data they are willing to share with which service
providers (“principals”). When a consumer interacts with
a composite web service, she first requests the model of the
service, and check whether the model is compatible with

Policy
Compliance

Checker

Consumer

Privacy
Policy

Conflict
Feedback

Service Provider

Service
Model

Privacy
Obligation

Obligation
Enforcer

Composition Code

Composite Service

Service A
Service B

Service C

Figure 1. Framework architecture

her privacy policies. If the check succeeds, the service re-
quest is forwarded to the service provider. If the policy is
violated, however, the consumer can then have two options:

• Consumer policy refinement. The consumer may relax her
privacy policy so that the service can be used. In this case,
the consumer is told the manner in which the policy is
being violated, e.g., zip code is being sent to an Internet
merchant through a comparison shopping service. The
consumer may allow to reveal her zip code information to
obtain the service.

• Obligation generation. The consumer may present this
violation as an obligation and forwards it to the provider
to see if the service can be provided without violating con-
sumer policy, e.g., the comparison shopping service is in-
formed that zip code should not be sent to any merchants.
The comparison shopping site may still be able to provide
most of its service, e.g. provide price quotes from those
merchants that do not ask for zip code.

When the obligations are presented to the composite ser-
vice, our approach ensures that these obligations are not vi-
olated during the execution of the composite service code.

To realize the above-mentioned approach, two important
problems need to be addressed:

• Policy compliance checking. The consumer needs to be
informed a’priori of the potential web services that may
need access to the consumer’s private information. The
compliance checking needs to provide support (in the
event of compliance checking violations) for generating
obligations that will be passed on to the web service. In
addition, it should provide guidance for making changes
to the consumer’s privacy policies if the consumer decides
to relax her policies.

• Obligation enforcement. Once the web service is given
a set of obligations that it needs to enforce, support has
to be provided for meeting these obligations. This would
entail tracking how the consumer’s information flows to
and from the composite service, and prevent any of such
information flow that is not authorized by the consumer.

In our approach, compliance checking is addressed by
automated techniques that check whether the service’s
model complies with the consumer’s privacy policies, and
generation of any violations. Such violations can be used to
either guide the consumer to relax her policies, or automati-
cally generate obligations to be satisfied by the web service.
Obligation enforcement involves tracking the flow of infor-
mation to and from the component web services, and within
the composite service, as and when it happens.

Running example. To illustrate the main ideas behind our
approach, we shall use a running example which will be
revisited in later sections when we discuss each component
of the framework.

Suppose that the composite service in Figure 1 is a travel
management service, which is composed from a JetBlue air-
line ticket booking service (Service A), a Hotels.com hotel
reservation service (Service B), and a MapQuest driving di-
rection service (Service C). Consumers can make use the
composite service as a one-stop shop for their travel plan-
ning and reservations. To use this service, a user provides
her travel information (e.g. the origin/destination cities)
and her payment information (e.g. the credit card number),
phone contact information (e.g., emergency contact) to the
composite service. The composite service will invoke Ser-
vice A with the origin/destination addresses and payment
and contact information to book an air ticket; then request
Service B to reserve a hotel near the destination address, and
execute Service C to retrieve the driving directions from the
destination airport to the hotel.

To protect users’ privacy in the composite service, the
user needs to define her privacy policy to specify her own
privacy concerns. One example privacy policy (in English)
would be that “both origin/destination addresses and pay-
ment information are allowed to be sent to JetBlue and Ho-
tels.com, but the destination address is the only piece of
information (neither the billing information nor the mo-
bile number information) that is allowed to be sent to
MapQuest.” Each composite service is required to provide
a model that describes the manner in which consumer data

is handled by component services that are invoked by this
composite service. For instance, the model of the compos-
ite service with regard to the JetBlue air ticket booking ser-
vice might describe itself as “origin/destination addresses
and payment information are sent to JetBlue”. The model
of the composite service with regard to the MapQuest sys-
tem may say “destination address and mobile phone infor-
mation (if present) are sent to MapQuest” (for maps sent
by mobile phone). These models are then used by the pol-
icy compliance checker to verify if the services violate the
consumer’s privacy policy. In this case, the consumer pol-
icy specifies that only her address information be sent to
MapQuest and not her phone numbers. Here, the consumer
can suggest that the “mobile phone information be used for
JetBlue” (only for emergency contact information purposes)
and generate an obligation to the composite service that mo-
bile phone information “not be provided to MapQuest”. The
composite service receives the request and proceeds with
the airline reservation and hotel reservation, and the obliga-
tion enforcer makes sure that the service from MapQuest is
obtained without providing the mobile number.

3 Service Composition
Service composition is a technique in which an advanced
service can be built by composing a number of smaller ser-
vices that implement a relatively simpler task. Though sev-
eral automated approaches have been proposed for service
composition, we note that our focus here is not on service
composition itself but on a different goal: in providing con-
sumer data privacy in service composition.

3.1 Composition Language
We shall use some formalism to introduce the composition
framework. A natural formalism involves construing every
component service as a function that maps a set of inputs to
a set of outputs. Let (i1, i2, i3, . . . , in) denote a set of inputs
to an individual service A, and the corresponding outputs
be (o1, o2, o3, . . . , om). Each of the individual inputs can
come from primitive types such as int, float, string, or
aggregated types. Now each composition can be understood
as a function that maps the outputs of service A to inputs of
other services.

Several standard languages have been proposed for
web services composition, notably BPEL4WS [3] and
WSCI [1]. We used a simple imperative language to write
composite code in our prototype implementation. This lan-
guage is similar to the above languages, but with constructs
to allow us to directly refer to service models and to fa-
cilitate the automated policy enforcement process detailed
later in this paper. In the future, we shall explore ways to
implement these functionalities in a standard web service
composition language.

Each composition code consists of three sections: ser-

vice declaration, variable declaration, and composition se-
quence. Service declaration defines simple services that
the composite service is based on, while variable declara-
tion defines variables used in the composition. The last
section, composition sequence, expresses the actual com-
position logic through a sequence of composition actions,
which include service invocations (INVOKE), variable as-
signments (ASSIGN), conditional branches (SWITCH), and
loops (WHILE). Though the composition code is responsi-
ble for the control flow of the composition logic and han-
dling data flows among participating component services,
we note that it does not directly manipulate any data val-
ues other than propagating these values from one compo-
nent service to another. All the actual data processing is
performed within component services themselves.

A compiler for the composition language has been devel-
oped, which translates the composition code of each com-
posite service into a Java program that can be linked into
executables with service libraries as well as other libraries.
Services are central to composition, and the APIs for ac-
cessing services in Java composition code are defined in
service libraries. In our prototype implementation of the
framework, we make use of the WinAgent system [5] to
create open wrapper services around existing web sites.

Each component service is represented as an object of
class Service. A Service object can be constructed from
a service definition XML file, and defines the following im-
portant methods:
• int setInput(String nam, Object val). Sets

the value of service input named nam to val.
• Object getOutput(String nam). Returns the value

of service output named nam.
• int execute(). Executes the service.
Composition example. Below is the composition code
snippet of the travel management service example described
in Section 2.
PARTNERS {
SERVICE jb("jetblue_service.xml");
SERVICE htl("hotels_service.xml");
SERVICE mq("mapquest_service.xml");

};
VARIABLES { ... };
SEQUENCE {
INVOKE jb

IN ["sourceCity": srcCity;
"destinationCity": destCity;
"creditCardNo": ccNo]

OUT ["price": price;
"confirmNo": confirmNo];

INVOKE htl
IN ["address": destCity;

"creditCardNo": ccNo]
OUT ["hotel": hotel];

INVOKE mq
IN ["fromAddress": destCity;

"toAddress": hotel]

OUT ["Direction": directions]; };

The generated Java code snippet is shown as follows:
Service jb = new Service("jetblue_service.xml");
jb.setInput("sourceCity", srcCity);
jb.setInput("destinationCity", destCity);
jb.setInput("creditCardNo", ccNo);
status = jb.execute();
price = jb.getOutput("price");
confirmNo = jb.getOutput("confirmNo");
...

4 Service Model
The model of a web service is built by the service pro-
ducer and encodes the data flows among its inputs, outputs,
and interacting principals. In the service composition, the
model is specified as an additional argument to the service
definition construct SERVICE. Using the model, the policy
compliance checker can verify whether the web service sat-
isfies the consumer’s privacy policy.

4.1 Model Language
In a model for a component service, the relations input and
output define data items that flow into and out of service
principals, respectively. A model also captures two kinds
of data flow dependences that happen in a service: from an
input to an output, and from an input to a principal. These
data flows are specified by the relation depend defined be-
low (Here we do not distinguish principals and outputs, and
just mention sources and destinations):

The relation depend is defined as a subset of the cross-
product of destinations and sources. Any member (Y,X)
of this relation is a tuple that suggests that there is a flow
of information from source X to destination Y. Note that
input(Y,X) automatically implies depend(Y,X).

The model of a composite web service is basically a
collection of the models of its component services. How-
ever, the data item names used in the individual models are
canonicalized such that they are unique across the entire
composite service model. This renaming is necessary to
reflect the data flow relationship among the component ser-
vices due to the composition operation.
Model example. We present part of an example model for
the JetBlue service in the travel management composite ser-
vice as follows:

input(Jetblue,srcCity).
input(Jetblue,destCity).
input(Jetblue,creditCardNo).

output(Jetblue,price).
output(Jetblue,confirmNo).

depend(price,srcCity).
depend(price,destCity).

This model states that the output price depends on the
inputs srcCity and destCity, and the output confirmNo

does not depend on any inputs. Because the input re-
lation implies depend, the model also (implicitly) states
the values of the three inputs, srcCity, destCity, and
creditCardNo, flow into the principal entity Jetblue;

Currently our model representation captures only data
flow relationships between inputs and outputs. But the
model can be extended to support more expressive represen-
tations such as those carrying temporal control-flow based
relationships. (“Input to principal B or principal C is given
strictly after output is received from principal A”). Conse-
quently, the algorithm described in Section 6 that is used to
check the model against a policy needs to be augmented to
handle these additional features.

Finally, we mention a few words about model construc-
tion. The model can be constructed manually by the web
service provider (in a manner similar to P3P) by formal-
izing its terms of use, to our language. Automated source
code analysis techniques can also be used to extract mod-
els, however, a discussion of such techniques is beyond the
scope of this paper.

5 Privacy Policy
A privacy policy describes the privacy requirements of a
user by defining constraints on how her data could flow
between different entities. Because privacy concerns vary
across users, privacy policies are defined by users and
checked at the user end in our framework. Also user-side
policy checking naturally allows for policy refinement in
case of non-compliance. Policy specifications are also neu-
tral to services, i.e., they express a user’s privacy concern
independent of the services that might be executed.

5.1 Policy Language
To specify privacy policies, our policy language uses an im-
portant concept, label, which is described as follows.
Labels. In our approach, a piece of user’s data (data item),
can flow into various entities (principals), such as service
providers. Both data items and principals are grouped using
labels to ease policy specification and management.

Labels are classified as data labels and principal labels,
which are used to group data and principals, respectively.
Each label is a vector of label attributes, each representing a
particular privacy-related aspect of data or principals. Each
label attribute can have a finite number of possible values,
and is also partially ordered. In our implementation, we
have defined two label attributes (sensitivity level and in-
formation category) for data labels, and one label attribute
(trust level) for principal labels.
Data label attributes. The attribute sensitivity level de-
scribes how sensitive a piece of data is, and the possible sen-
sitivity levels can be highly sensitive, sensitive, less sensi-
tive, and public. For instance, one might consider her credit

card number and bank account number to be highly sensi-
tive; the credit card expiration date or the bank name to be
sensitive; and data such as which country she lives in to be
less sensitive. Then these data items can be assigned to sen-
sitivity levels highly sensitive, sensitive, and less sensitive,
respectively.

Data items can also be categorized into different infor-
mation categories. A user might classify her social secu-
rity number (SSN) and date-of-birth as personal informa-
tion, her credit card numbers as financial information, and
her residence street name and number as address informa-
tion. Such categories are described by the label attribute in-
formation category. Figure 2 presents example data labels
based on sensitivity levels and information categories.

Highly sensitive Sensitive less sensitive
Personal SSN, DoB age name, gender
Address apt. no. street no. city, zip code,

state, country
Financial account no. routing no. have checking?
Payment CC no. CC exp date CC type
Health medical history blood pressure height

Figure 2. Data labels based on sensitivity lev-
els and information categories.

Using the label attributes sensitivity level and informa-
tion category, a consumer can to express more expressive
privacy policies. Let us take the case of a consumer who
considers that both her SSN and credit card number as sen-
sitive information. When she is shopping in an on-line store,
she may be willing to give her credit card number to the
store, but not her SSN. By classifying SSN and credit card
number into different categories, we can differentiate the
information flow requirements for these two applications.

Principal label attributes. A user may trust different web
sites or web services in varying ways. A well established
on-line retailer might be deemed as “highly trusted”, a less
known web site might be treated as “less trusted”, and a
random web site might be considered as “untrusted”. The
principal label attribute trust level is used to express such
users’ privacy preferences.

Policy rules. A user’s privacy policy P is formalized as a
set of policy rules. A policy rule is of the form:

pref(X,Y,Action).

which either grants a flow of data with label X to a principal
with label Y when Action is “allow,” or restricts such a
flow when Action is “deny.” As an example, if a user does
not want to release any sensitive financial information to a
less trusted site, she can specify a policy rule:
pref((sensitive,financial),(less_trusted),deny).

The default action (when a rule for a piece of data is
unspecified) is to deny.

6 Policy Enforcement
Once the model of the composite service is received by the
user, her privacy preferences need to be enforced. Our ap-
proach for enforcement involves two stages: the first is a
(static) policy compliance checking stage, which proceeds
to check the model against the consumer specified policy P ,
detect any violations and possibly generate obligations to
the composite service. The second stage is when these obli-
gations are enforced through a dynamic analysis approach
on the composite code. In this section, we first describe the
algorithm for static checking used to detect violations, fol-
lowed by the dynamic analysis for obligation enforcement.
Label initialization. As mentioned earlier, the policy is
specified in terms of labels (e.g. sensitivity), while the
model (after the variable renaming step during composi-
tion), is described in terms of data item names. So as the
first step in policy enforcement, the labels described using
the consumer preferences in the form of a relation such as
pref(X,Y,allow), where X and Y are labels, are now
converted to actual principal and data item names present in
the model for the composite service. This results in cpref,
a new concretized version of the relation pref. This new
relation specifies if a particular principal has access to a par-
ticular data item. For instance, consider a user’s privacy pol-
icy expressed as pref(highly sensitive, trusted,
allow). If the data item ccNo represents the credit card
number, and is assigned the label (highly sensitive),
and if the principal JetBlue is trusted, then through label
initialization the new relation cpref contains the following
rule: cpref(Jetblue,ccNo, allow). This is shown in
lines 1 to 13 in the privacy policy checking procedure given
in Figure 3.
Dependency propagation. Recall that the dependency re-
lationships expressed in the service models denote the re-
lationship of the inputs received by the model to its out-
puts. If these relationships were not taken into account in
the policy checking procedure, information flows that arise
due to these dependencies will remain ignored, and will af-
fect the correctness of the approach. For instance, if the
model contains the terms input(Jetblue, srcCity)
and depend(price, srcCity), the latter expressing the
dependency between data items srcCity and price, then
any web service that receives the price may be able to in-
fer the value of srcCity. Hence, our approach propagates
the user’s policy across these dependencies. This is done by
computing a transitive closure of the cpref relation, with
respect to the depend relation. This is shown in steps 14 to
19 in Figure 3.
Policy compliance checking and obligation generation.
The third and final step (lines 20 to 26 in Figure 3) in-
volves checking the user’s privacy preferences as given in
cpref with that of the input to various web services. Any

1: input: models (input, depend) relations, policy pref(X, Y, Z) re-
lation

2: begin

3: for all data labels (`c, `s) and for all principal labels lp do
4: if pref ((`c, `s),`p, allow) then
5: for all data items d with label (`c, `s), and for all principals p

with label lp do
6: cpref(d, p, allow)
7: end for
8: else
9: for all data items d with label (`c, `s), and for all principals p

with label lp do
10: cpref(d, p, deny)
11: end for
12: end if
13: end for/* end label initialization */
14: newdepend = transitive-closure(depend)
15: for all d, p such that cpref(d, p, deny) do
16: for all d1 such that newdepend(d, d1) do
17: add-rule cpref(d1, p, deny)
18: end for
19: end for/* end dependency propagation */
20: for all d, p such that cpref(d, p, deny) do
21: if input(d,p) then
22: raise violation /* for refinement */
23: generate-obligation(d, p) /* if necessary */
24: end if
25: end for/* end policy check */
26: end

Figure 3. Algorithm for policy compliance
checking and obligation generation

policy violations indicate that the web service’s input re-
quirements do not match the user’s privacy policy. In this
case, a set of violations (“service MapQuest is given the
data item phone number”) is generated. The user can then
decide to relax her policy (by allowing MapQuest to have
her phone number) or generate an obligation that the com-
posite service needs to respect. The obligation is also a rela-
tion obligation(Principal,DataItem) that suggests
to the enforcement mechanism that Principal should not
be given DataItem. In the above example, the obligation
will be obligation(Mapquest,phone-number). Such
obligations are forwarded to the composition code for en-
forcement, which is described next.

Obligation enforcement. Once enforcement obligations
are generated at the consumer site, they are passed on to
the composite service. To enforce these obligations, the
composite service needs to track whether the flow of con-
sumer’s data inputs (through various actions of the compos-
ite service) respect these obligations. For instance, when
obligation(Mapquest,phone-number) is provided to
the composite service, the tracking needs to check whether
data related to the consumer’s phone number is provided
to MapQuest during code execution. As the obligations are
only available during service execution, our framework per-
forms a dynamic analysis of the actions of the composition
code to perform such tracking. The monitoring code that
performs dynamic analysis itself is introduced as part of the

composition code through a program transformation opera-
tion. The details on the program transformation technique
and proofs of correctness are available in [10].

Below we show an example of transforming part of the
travel management service composite code.
Obligation jb_oblg; /* obtained from consumer */
Service jb=new Service("jetblue_service.xml");
Model jb_model=new Model("jetblue_model.xml");
...
jb.setInput("creditCardNo", ccNo);
jb_model.setInput("creditCardNo",ccNo_lb);
if (jb_oblg.verifyObligation(jb_model)!=SUCCESS)

/* perform alternate actions */
raise PolicyViolationException;

status = jb.execute();
price = jb.getOutput("price");
price_lb = jb_model.getOutput("price");

7 Example Services
We implemented a prototype of the framework and built two
example composite services in the framework. Each com-
ponent service is implemented as a WinAgent agent.
Travel management service. This is similar to our run-
ning example. The inputs to this service are the origin, the
destination of travel, the zip code of the destination and
the credit card number. Agents are built for crawling and
searching a number of leading airline websites, whose re-
sults are put together in a consistent order for the user to
choose the most ideal itinerary. After the consumer chooses
the appropriate air travel, hotel and car reservations are done
and detailed driving directions are also obtained. Based on
the level of security assigned to each site that is explored,
the details such as destination zip code and credit card num-
ber are shared. Thus the privacy of the user and the details
of her travel are preserved appropriately.
Electronics shopping service. This composite service
queries different websites for a particular product, presents
reviews, and queries the best possible prices for the chosen
item from a set of trusted web sites. A buying agent is then
invoked to complete the purchase. During all these opera-
tions, the privacy policies of research, price search and buy
are verified for every agent that is invoked.

8 Related work
Access control based approaches (including sandboxing [6]
approaches) do prevent information from leaking from a
given resource (such as a user’s computer or a web site),
but they do not address the problem of controlling access to
a piece of information once it leaves a given host with the
consent of the user. An approach that addresses privacy of
information must address the problem of control to be effec-
tive. Anonymity based approaches [7, 4] also do not help, as
disclosure of personal information is required in situations
such as making airline reservations.

Several program analysis techniques for securing pro-
grams from information leaks [9, 12]. These approaches
are not particularly suitable in the context of services pro-
vided by various web sites, as users privacy information is
only available when the service actually executes and hence
dynamic tracking approaches such as ours are needed.

Solutions such as P3P [2] (Platform for Privacy Prefer-
ences) have aimed at web resources such as cookies and
files. P3P has been developed for individual web sites and
not for composite web services, consequently is challenged
in its ability to describe data flows within a composite web-
service. Also, P3P framework does not provide any support
for the consumer to provide any feedback to the service.
Our framework supports this through obligation generation
and enforcement.

One of the first known approaches for privacy in the con-
text of web services was presented by Rezgui et al [8]. Their
work involves private information stored and retrieved from
databases through web services (e.g., governmental web
sites) and credential based access control techniques to pre-
vent unauthorized access to this information. By allowing
users to describe their privacy preferences, the system pro-
vides mechanisms that control access to this information
both at the client and server side. However, as mentioned
above, access control mechanisms only prevent unautho-
rized access to information. They do not put limits on
how this information can be used after the initial access is
granted. Reasoning the information flows through the com-
posite web service is critical for providing guarantees about
further information leakage, and our work addresses this as-
pect of privacy.

Our earlier work [11] on privacy policy enforcement
used a similar program transformation approach for en-
forcement of consumer privacy policies. This work was
done in the context of enforcing privacy policies in an end-
user application. However, in the context of composite web
services the same approach suffers from two main weak-
nesses. If code for component services is not available the
approach is not applicable. In this paper, models bridge
this gap and provide the relationships between inputs and
outputs in component services. Secondly, a user’s privacy
policy was entirely provided to the application for enforce-
ment, which is not desirable in the context of web services.
In our current approach, obligations (if chosen by the con-
sumer) provide the right level of feedback based on the ser-
vice’s violation of the consumer privacy policy.

9 Conclusion
In this paper, we have proposed a framework for preserv-
ing privacy in web-based services. In our framework, con-
sumers can have facilities to specify their privacy concerns
through use of privacy policies, while service providers ex-
press their terms of use (of private data) through models.

The compatibilities between privacy policies and service
models can be verified automatically at the consumer end
using the techniques proposed in this paper. Any conflicts
can result in obligations that are provided to the producer,
who can enforce these obligations using dynamic analysis
techniques that we have proposed. We believe that address-
ing consumer privacy is an important area in composite web
services, and the framework presented in this paper is a sig-
nificant step in that direction.

References
[1] A. Arkin and S. A. et al. Web services choreography inter-

face. Technical report, W3C consortium, 2002.
[2] L. Cranor. The Platform for Privacy Preferences 1.1

(P3P1.1) Specification. W3C working draft, July 2004.
[3] F. Curbera and Y. G. et al. Business process execution lan-

guage for web services. Technical report, IBM Developer-
works, 2002.

[4] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias, and
A. Mayer. Consistent, yet anonymous web access with lpwa.
Communications of the ACM, 42(2), February 1998.

[5] A. Gandhre, P. Santhanagopalan, P. Singh, D. Ramavat,
I. Ramakrishnan, and H. Davulcu. Creating and manag-
ing personal information assistants via a web browser: The
WinAgent experience. In Workshop on Information Integra-
tion on the Web, Toronto, August 2004.

[6] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A se-
cure environment for untrusted helper applications: confin-
ing the wily hacker. In USENIX Security Symposium, 1996.

[7] M. K. Reiter and A. D. Rubin. Anonymous web transactions
with crowds. Communications of the ACM, 42(2), February
1999.

[8] A. Rezgui, M. Ouzzani, A. Bouguettaya, and B. Medjahed.
Preserving privacy in web services. In Workshop on Infor-
mation and Data Management, 2002.

[9] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE J. Selected Areas in Communications,
21(1), Jan. 2003.

[10] V. N. Venkatakrishnan, D. C. DuVarney, W. Xu, and
R. Sekar. A program transformation approach for enforce-
ment of information flow properties. Technical Report
SECLAB-04-01, Department of Computer Science, Stony
Brook University, 2004.

[11] V. N. Venkatakrishnan, W. Xu, I. V. Ramakrishnan, and
R. Sekar. A secure composition framework for trustworthy
personal information assistants. In IEEE conference on In-
tegration of Knowledge Intensive Multi-Agent Systems (KI-
MAS), April 2005.

[12] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. Journal of Computer Security (JCS),
4(3):167–187, 1996.

[13] W. Xu, R. Sekar, I. V. Ramakrishnan, and V. N. Venkatakr-
ishnan. An approach for realizing privacy preserving web-
based services. In World Wide Web conference (WWW)
(poster presentation), May 2005.

