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Abstract. Over the past several years, US-CERT advisories, as well
as most critical updates from software vendors, have been due to mem-
ory corruption vulnerabilities such as buffer overflows, heap overflows,
etc. Several techniques have been developed to defend against the ex-
ploitation of these vulnerabilities, with the most promising defenses be-
ing based on randomization. Two randomization techniques have been
explored so far: address space randomization (ASR) that randomizes the
location of objects in virtual memory, and instruction set randomization
(ISR) that randomizes the representation of code. We explore a third
form of randomization called data space randomization (DSR) that ran-
domizes the representation of data stored in program memory. Unlike
ISR, DSR is effective against non-control data attacks as well as code
injection attacks. Unlike ASR, it can protect against corruption of non-
pointer data as well as pointer-valued data. Moreover, DSR provides a
much higher range of randomization (typically 232 for 32-bit data) as
compared to ASR. Other interesting aspects of DSR include (a) it does
not share a weakness common to randomization-based defenses, namely,
susceptibility to information leakage attacks, and (b) it is capable of de-
tecting some exploits that are missed by full bounds-checking techniques,
e.g., some of the overflows from one field of a structure to the next field.
Our implementation results show that with appropriate design choices,
DSR can achieve a performance overhead in the range of 5% to 30% for
a range of programs.
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1 Introduction

Memory errors continue to be the principal culprit behind most security vul-
nerabilities. Most critical security updates from software vendors in the past
several years have addressed memory corruption vulnerabilities in C and C++
programs. This factor has fueled a lot of research into defenses against exploita-
tion of these vulnerabilities. Early research targeted specific exploit types such
as stack-smashing, but attackers soon discovered alternative ways to exploit
memory errors. Subsequently, randomization based defenses emerged as a more
systematic solution against these attacks. So far, two main forms of randomiza-
tion defenses have been explored: address-space randomization (ASR) [32,9] that
randomizes the locations of data and code objects in memory, and instruction
set randomization (ISR) [6,27] that randomizes the representation of code.

⋆ This research is supported in part by an ONR grant N000140710928 and an NSF grant
CNS-0627687. This work was part of the first author’s Ph.D. work [8] completed at Stony
Brook University.



Although ASR and ISR have been quite effective in blocking most memory
exploits that have been used in the past, new types of exploits continue to emerge
that can evade them. As defenses such as ASR begin to get deployed, attackers
seek out vulnerabilities and exploits that go beyond them. One class of attacks
that can evade coarse-grained ASR is based on corrupting non-control data [13].
In particular, buffer overflows that corrupt non-pointer data are not captured by
coarse-grained ASR. Moreover, ASR implementations that are deployed today
suffer from the problem of low entropy. This enables brute-force attacks that
succeed relatively quickly — with about 128 attempts in the case of Windows
Vista, and 32K attempts in the case of PaX [32,35]. Finally, ASR techniques are
vulnerable to information leakage attacks that reveal pointer values in the victim
program. This can happen due to a bug that sends the contents of an uninitialized
buffer to an attacker — such data may contain pointer values that may have been
previously stored in the buffer. We therefore develop an alternative approach
for randomization, called data space randomization (DSR), that addresses these
drawbacks of previous randomization-based techniques.

The basic idea behind DSR is to randomize the representation of different
data objects. One way to modify data representation is to xor each data object in
memory with a unique random mask (“encryption”), and to unmask it before its
use (“decryption”). DSR can be implemented using a program transformation
that modifies each assignment x = v in the program into x = mx ⊕ v, where mx

is a mask associated with the variable x. Similarly, an expression such as x + y

will have to be transformed into (x ⊕ mx) + (y ⊕ my).

To understand how DSR helps defeat memory corruption attacks, consider a
buffer overflow attack involving an array variable a that overwrites an adjacent
variable b with a value v. As a result of DSR, all values that are written into
the variable a will use a mask ma, and hence the value stored in the memory
location corresponding to b would be v ⊕ ma. When b is subsequently used, its
value will be unmasked using mb and hence the result will be (v ⊕ ma) ⊕ mb,
which is different from v as long as we ensure ma 6= mb. By using different
masks for different variables, we can ensure that even if the attacker manages to
overwrite b, all she would have accomplished is to write a random value into it,
rather than being able to write the intended value v.

Although inspired by PointGuard [17], which proposed masking of all pointer
values with a random value, our DSR technique differs from it in many ways.

– First, PointGuard is focused on preventing pointer corruption attacks — oth-
erwise known as absolute-address-dependent attacks. In contrast, the primary
goal of DSR is to prevent relative address attacks, such as those caused by
buffer overflows and integer overflows. Consequently, DSR is able to detect
non-control data attacks that don’t involve pointer corruption, such as at-
tacks that target file names, command names, userids, authentication data,
etc. Moreover, since pointer corruption attacks rely on a preceding buffer
overflow, absolute-address-dependent attacks are also defeated by DSR.

– Second, DSR randomizes the representation of all types of data, as opposed to
PointGuard which randomizes only pointer-typed data. (Indeed, as a result of



optimizations, the representation of many pointer variables are left unchanged
in DSR.) DSR uses different representations for different data objects in order
to prevent buffer overflows on one object from corrupting a nearby object in
a predictable way.

– Third, DSR corrects an important problem with PointGuard that can break
legitimate C-programs in which pointer and non-pointer data are aliased. For
instance, suppose that an integer-type variable is assigned a value of 0, and
subsequently, the same location is accessed as a pointer-type. The zero value
won’t be interpreted as a null value since PointGuard would xor it with a mask
m, thus yielding a pointer value m. We note that such aliasing is relatively
common due to (a) unions that contain pointer and non-pointer data, (b) use
of functions such as bzero or bcopy, as well as assignments involving structs,
and (c) type casts. DSR considers aliasing and hence does not suffer from this
drawback.

– Finally, like other previous randomization based defenses, PointGuard is sus-
ceptible to information leakage attacks that leak the values of encrypted point-
ers to a remote attacker. Since a simple xor mask is used, leakage of masked
data allows the attacker to compute the mask used by PointGuard. She can
then mount a successful attack where the appropriate bytes within the attack
payload have been masked using this mask. In contrast, DSR is able to dis-
cover all instances where masked data is being accessed, and unmask it before
use. As a result, an information leakage attack will not reveal masked values.

As compared to ASR, DSR provides a much larger range of randomization.
For instance, on 32-bit architectures, we can randomize integers and pointers
over a range of 232 values, which is much larger than the range possible with
ASR. Moreover, DSR can, in many instances, address the weakness of even the
fine-grained ASR techniques [10] concerning their inability to randomize relative
distances between certain data items, e.g., between the fields of a struct. Since
the C-language definition fixes the distance between struct fields, even bounds-
checking techniques do not provide protection from overflows across the fields
of a structure. In contrast, DSR has the ability to protect from such overflows
as long as there is no aliasing between these fields3. (However, this feature is
not currently supported due to our use of field-insensitive alias analysis in our
implementation.)

A direct implementation of DSR concept can lead to nontrivial runtime over-
heads due to the need for masking/unmasking after every memory access, and
due to the additional memory overheads for accessing mask data. To provide
better performance, observe that the first step in memory corruption attacks
involve a buffer overflow, i.e., an operation that starts with the base address
of an object a in memory, but then accesses a different object b as a result of
out-of-bounds subscript or invalid pointer arithmetic operation. Our implemen-
tation focuses on disrupting this step. Note that this is possible even without

3 Typically, aliasing of multiple fields is induced by low-level functions such as bcopy and
bzero. DSR can use different masks for different fields of a struct object if the object is
not involved in these operations. In some cases, it is possible to improve this further by
incorporating the semantics of these block move operations into the DSR implementation.



masking b, as long as we ensure that a uses a non-zero mask. A static analysis
can be used to identify overflow candidates, i.e., objects such as a that can serve
as a base address in an address arithmetic computation that goes out-of-bounds.
In its simplest form, this analysis would identify all arrays, structures contain-
ing arrays, and any other object whose address is explicitly taken in the code.
This optimization provides significant benefits since most variables accessed in
C-programs are simple local variables that can be determined to be non-overflow
candidates.

One of the main limitations of the DSR approach is the need to use the same
mask for overflow candidate objects that may be aliased. To mitigate the impact
of this limitation, our implementation attempts to allocate different objects with
the same mask in different memory regions that are separated by unmapped
pages. This ensures that even when two objects are assigned the same mask,
overflows from one of these objects to the other would be detected since it would
cause a memory fault due to the protection memory page in between the objects.
However, the number of overflow candidate objects with the same mask may
become very large for heap-allocated objects, and hence this approach may not
be appropriate for such objects. In those cases, our implementation essentially
provides probabilistic protection against overflows involving such objects.

1.1 Paper Organization

In Section 2, we describe the transformations to introduce data space random-
ization. In Section 3, we describe a prototype implementation of our technique.
In section 4, we evaluate performance overhead, and analyze the effectiveness
of our technique against different attacks. Related work is covered in Section 5,
followed by concluding remarks in Section 6.

2 Transformation Overview

Our transformation approach for DSR is based on a source-to-source transfor-
mation of C programs. The basic transformation is quite simple. For each data
variable v, we introduce another variable m_v which stores the mask value to be
used for randomizing the data stored in v using an exclusive-or operation. The
mask is a random number that can be generated at the beginning of program
execution for static variables, and at the time of memory allocation for stack
and heap variables. The size of m_v depends on the size of the data stored in v.
Ideally, we can store a fixed size (say, word length) random number in the mask
variable, and depending on the size of the associated variable, we can generate
bigger or smaller masks from the random number. However, for simplicity of no-
tation, we will use mask variables having the same size as that of the variables
being masked.

The variables appearing in expressions and statements are transformed as
follows. Values assigned to variables are randomized. Thus, after every statement
that assigns a value to a variable v, we add the statement v = v ^ m_v to
randomize the value of the variable in the memory. Also, wherever a variable is
used, its value is first derandomized. This is done by replacing v with v ^ m_v.



So far the transformations seem straightforward, but we have not yet consid-
ered a case in which variable data is accessed indirectly by dereferencing pointers,
as in the following C-code snippet:

int x, y, z, *ptr;

...

ptr = &x;

...

ptr = &y;

...

L1: z = *ptr;

In the above code, the expression *ptr is an alias for either x or y. Since *ptr

is used in the assignment statement at L1, we need to unmask it before using its
value in the assignment. Therefore, the line should be transformed as:

z = m_z ^ (m_starptr ^ *ptr),
where m_z and m_starptr are respectively masks of z and *ptr. Unfortunately,
statically we cannot determine the mask m_starptr to be used for unmasking;
it can be the mask of either variable x or y.

One way to address this problem is to dynamically track the masks to be used
for referents4 of all the pointers. This requires storing additional information
(henceforth called metadata) about pointers. Similar information is maintained
in some of the previous techniques that detect memory errors. In particular,
they store metadata using different data structures such as splay tree [26] and
fat pointers [4,30]. These metadata storing techniques lead to either high perfor-
mance overheads or code compatibility problems. For this reason, we chose to
avoid dynamic tracking of masks.

Our solution to the above problem is based on using static analysis5. More
specifically, we use the same mask for variables that can be pointed by a common
pointer. Thus, when the pointer is dereferenced, we know the mask to be used for
its referents statically. This scheme requires “points-to” information which can be
obtained by using pointer analysis, further described in Section 2.1. In the above
example, from the results of any conservative pointer analysis technique, we can
conclude that both variables x and y can be pointed by the pointer variable
ptr. Hence we can use the same mask for both x and y, and this mask can be
then used for unmasking *ptr, i.e., m_x = m_y = m_starptr. Mask assignment
based on the results of pointer analysis is described in Section 2.2.

The principal weakness of the DSR approach arises due to potential aliasing.
In particular, if two objects a and b can be aliased, then the same mask will be
used for both, which means that overflows from a to b cannot be detected. To
address this problem, we allocate objects that share the same mask in different

4 A referent of a pointer is an object that the pointer points to.
5 A static analysis typically assumes the absence of memory errors. Yet, in our work, we

expect that memory errors will occur, and expect the technique to defend against them. In
this regard, note that the effect of a memory error is to create additional aliases at runtime
— for instance, if p was a pointer to an array a, due to a buffer overflow, it may also end
up pointing to an adjacent object b. However, since the static analysis did not report this
possible aliasing, we would have assigned different masks for a and b. As a result, the buffer
overflow would corrupt b with values that will appear “random,” when unmasked using mb.



memory regions that are separated by an unmapped memory page. In this case, a
typical buffer overflow from a to b will attempt to modify data in this inaccessible
page, which causes a memory fault. We will revisit this solution in the discussion
of optimization later in this section.

2.1 Pointer Analysis

Ideally, we would like to associate a distinct mask with each variable. Unfortu-
nately, the use of pointers in C language potentially forces the assignment of the
same mask for different variables. As a result, variables are divided into different
equivalence classes. All the variables in a class are assigned the same mask, and
those belonging to different classes are assigned different masks. The number of
the equivalence classes depends on the precision of pointer analysis. Intuitively,
greater the precision, there will be more number of the equivalence classes.

A pointer analysis is, in general, computationally undecidable [33]. As a re-
sult, existing pointer analysis algorithms use approximations that provide vary-
ing degree of precision and efficiency. The worst-case time complexities of these
algorithms range from linear to exponential. We need to consider the time com-
plexity for the analysis to be efficient and scalable. There are several factors that
affect precision and efficiency of analysis. Such factors include flow-sensitivity,
context-sensitivity, modeling of heap objects, modeling of aggregate objects, and
representation of alias information [24]. We need to consider these factors while
choosing the analysis.

Algorithms involved in existing flow-sensitive analyses [25] are very expen-
sive in terms of time complexity (high order polynomials). Context-sensitive ap-
proaches [21,39] have exponential time complexity in the worst case. We avoid
these two types of analyses as they do not scale to large programs. Among the
flow-insensitive and context-insensitive algorithms, Andersen’s algorithm [3] is
considered to be the most precise algorithm. This algorithm has the worst case
cubic time complexity, which is still high for it to be used on large programs.
On the other hand, Steensgaard’s algorithm [37] has linear time complexity, but
it gives less precise results. Interestingly, as we shall show in the next section, it
turns out that the results of Andersen’s and Steensgaard’s analyses give us the
same equivalence classes of variable masks. Therefore, we implemented Steens-
gaard’s algorithm for our purpose.

Steensgaard’s algorithm performs flow-insensitive and context-insensitive
inter-procedural points-to analysis that scales to large programs. It computes
points-to set over named variables corresponding to local, global and heap ob-
jects. We use single logical object to represent all heap objects that are allocated
at the same program point. We perform field-insensitive analysis, i.e., we do not
distinguish between different fields in the same structure or union. Our imple-
mentation is similar to the one described in [37].

2.2 Mask Assignment

Consider points-to graphs computed by Steensgaard’s and Andersen’s algorithms
as shown in Figure 1. A points-to graph captures points-to information in the
form of a directed graph, where nodes represent equivalence classes of symbols



...

void foo(int **s1)

}

foo(&s3);
foo(&s2);

(b)

s1

(c)

s2 = &s4;
s2 = &s5;
s3 = &s6;

{

(a)

s4 s5 s6

s2 s3

s1

s4,s5,s6

s2,s3

Fig. 1. Figure (a) above shows a sample C program for which points-to graph is
computed. Figures (b) and (c) show the points-to graphs computed by Andersen’s
algorithm and Steensgaard’s algorithm respectively.

and edges represent pointer relationships. Points-to information computed by
Andersen’s algorithm is more precise than that computed by Steensgaard’s al-
gorithm. For instance, according to Steensgaard’s graph, s2 may point to s6.
However, this relationship appears unlikely if we look at the program. Ander-
sen’s graph does not capture this relationship, hence it is more precise. In Steens-
gaard’s analysis, two objects that are pointed by the same pointer are unioned
into one node. This may lead to unioning of the points-to sets of formerly dis-
tinct objects. This kind of unioning makes the algorithm faster, but results in
less precise output as shown in the above example.

Now let us see how we can use the points-to information to determine the
equivalence classes of masks for the above example; we do this for Andersen’s
graph. Objects s2 and s3 can be accessed using the pointer dereference *s1. This
suggests that s2 and s3 should have the same mask, and therefore they belong
to the same equivalence class. Similarly, pointer dereference **s1 can be used
to access any of the objects pointed by s2 or s3. This implies that the objects
pointed by s2 and s3 should have the same mask, and hence objects s4, s5 and
s6 should be merged into the same equivalence class. This merging is similar to
the unioning operation in Steensgaard’s algorithm. Therefore, the equivalence
classes of masks will be the same even in the case of Steensgaard’s graph. For the
above example, the complete set of equivalence classes of masks is {{s1}, {*s1,
s2, s3}, {**s1, *s2, *s3, s4, s5, s6}}. As Steensgaard’s and Andersen’s graphs
are equivalent from the point of view of determining masks, we use Steensgaard’s
algorithm for our purpose as it is more efficient than Andersen’s algorithm.

Now we formally define the procedure for determining masks using a Steens-
gaard’s points-to graph (refer Figure 2). In general, a points-to graph of a pro-
gram consists of disconnected components. Hence we consider the procedure only
for one component which can be similarly applied to all the graph components.
For this, let us first look at the properties of a Steensgaard’s points-to graph.
The unioning operation in Steensgaard’s algorithm enforces following properties



Fig. 2. A Steensgaard’s point-to graph

in the points-to graph. A node in the graph has at most one outdegree and zero
or more indegree. Owing to this, a connected component in the graph assumes
a tree-like structure, where a node can have multiple children corresponding to
the indegree edges, but at most one parent depending on the presence of an
outdegree edge. However, this does not imply that the component is always a
tree. There is a possibility that the root node of the tree-like structure may have
an outward edge pointing to any of the nodes in the component, resulting in a
cycle. Figure 2 shows such an edge as a dashed line.

We assign a distinct mask to each node of the points-to graph. Note that a
node may correspond to multiple variables. The mask of the node is thus used
for masking all of its variables.

The mask of an object that is accessed using a pointer dereference is de-
termined as follows. Let ptr be the pointer variable. First, the node N corre-
sponding to the pointer variable is located in the points-to graph. For the object
*ptr, its mask is the mask associated with the parent node parent(N). Similarly,
the mask of **ptr is the mask associated with parent(parent(N)), and so on.
Since each node has at most one parent, we can uniquely determine the masks
of objects accessed through pointer dereferences. Note that this procedure also
works for dereferences of a non-pointer variable that stores an address because
the points-to graph captures the points-to relation involved. The procedure for
dereferences of pointer expressions involving pointer arithmetic is similar.

Optimization

Indiscriminate introduction of masking/unmasking operations can degrade per-
formance. For instance, many programs make use of a large number of variables
that hold integer (or floating-point) values. If we can avoid masking/unmasking
for such variables, significant performance gains are possible. At the same time,
we want to ensure that this optimization does not have a significant impact
on security. We show how this can be achieved by masking only the overflow
candidate objects.

There are two types of memory corruption attacks: absolute address-dependent
attacks and relative address-dependent attacks. Absolute address-dependent at-



tacks involve corruption of a pointer value. However, mechanisms used for cor-
rupting a pointer value, such as buffer overflows, heap overflows and integer
overflows, are in fact relative address-dependent. So if we can defeat relative
address-dependent attacks, we get automatic protection for absolute address-
dependent attacks. Relative address-dependent attacks involve overflows from
overflow candidate objects, and we make these attacks difficult as described be-
low.

All non-overflow candidate objects are allocated in one memory region and
we separate memory for this region from the overflow candidate objects with an
unmapped memory page. As a result, overflows from overflow candidate objects
into non-overflow candidate objects become impossible.

Overflows from an overflow candidate object into another overflow candidate
object is possible. To address this problem, first we mask all the overflow candi-
date objects. Second, we identify objects that may be aliased, and allocate them
in disjoint areas of memory that are separated by an unmapped memory page.
Now, any attempt to overflow from one of these objects to the other will cause
a memory exception, since such a write must also write into the intervening un-
mapped page6. The number of memory regions needed is equal to the number of
different objects that use the same mask at runtime. This number can be stati-
cally estimated and is small for static data, and hence each such object can be
allocated in a disjoint memory area. In typical programs, this number appears to
be small for stack-allocated data, so we have been able to allocate such objects
across a small number of disjoint stacks. (We call them buffer stacks.) Note that
the strategy of removing overflow candidate objects from the main stack has
some additional benefits: it removes the possibility of a stack-smashing attack
— not only is the return address protected this way, but also other data such as
saved registers and temporaries. This is important since, as a source-to-source
transformation, we cannot ensure that saved registers and temporaries use a
mask. Since this data cannot be corrupted by buffer overflows, we mitigate this
weakness. If the number of stack objects with the same mask is large, we can
move the objects into the heap. Protection of these objects will then be the same
as that of heap objects.

For the heap, however, the number of distinct objects with the same mask
may be large, thereby making it difficult to allocate those objects from different
memory regions. As a result, our approach is to use a fixed number of memory
regions, and cycle the heap allocations through these regions as successive objects
with the same masks are allocated. This approach increases the likelihood of
successful buffer overflows across two heap blocks, but note that traditional
heap overflows, which are based on corrupting metadata stored at the beginning
(or end) of heap blocks will fail: an attempt to overwrite metadata value with x

6 The details of this step are somewhat complicated by our choice of implementing this tech-
nique using a source-to-source transformation, as opposed to modifying a compiler. With
this choice, we cannot control how the memory for objects is allocated. We therefore bor-
rowed a technique from [10] which uses an extra level of indirection for accessing objects.
Intuitively, this technique can be viewed as a means to control the layout of objects.



will instead end up writing x^m_h, where m_h denotes the mask associated with
the heap block.

The technique of separating aliased objects with a guard page prevents the
common form of buffer overflows, which involve writing a contiguous (or closely
spaced) set of locations beyond the end of a buffer. However, there can be buffer
overflows that allow an attacker to corrupt memory that is far from the base
of the buffer. Such overflows are common in conjunction with integer overflows.
The guard-page technique does not protect against this attack. We therefore rely
on our relative-address randomization technique [10] as a second line of defense
against such attacks.

The technique described so far contains a vulnerability that occurs due to
reuse of storage for non-overflow candidate objects. For instance, such a vul-
nerability may arise in a program that uses an uninitialized pointer variable for
which we do not assign any mask. Now, if an attacker can control the previous
use of the memory corresponding to this pointer, she can potentially corrupt
the pointer with a chosen value. We address this vulnerability by ensuring that
all objects are initialized before use, which is any way necessary to prevent in-
formation leakage attacks. An information leakage attack targets randomization
techniques by exploiting a vulnerability that leaks the random values. An unini-
tialized non-overflow candidate variable may hold a masked value of a previously
used data, and if this value is leaked, it is possible for an attacker to derive the
mask. The attacker can then target other variables that share the derived mask.
Note that an overflow candidate object is not vulnerable to information leakage
attacks because any attempt to read this object will cause the mask associated
with the object to be applied. In other words, the attacker receives the plaintext
data rather than the masked data.

3 Implementation

Our transformation approach is applicable to C programs. We use CIL [29] as
the front end, and Objective Caml as the implementation language. We describe
our implementation approach for a 32-bit x86 architecture and Linux operating
system.

As a first step in the transformation of a program, we first perform pointer
analysis in order to determine masks associated with different data. Our current
implementation supports Steensgaard’s pointer analysis. One of the limitation
of our current implementation is that it is based on whole program analysis and
transformation. The whole program analysis approach requires a merged source
file. The CIL toolkit provides an option to automatically generate such a merged
file. Sometimes this kind of merging can fail due to type mismatch of variable
declarations present in different files. Such cases can be handled by manual
changes to the declarations. With some extra effort, our implementation can
be extended to a separate file compilation-based transformation approach. Even
with the current implementation approach, we have demonstrated its practicality
by transforming several “real-world” programs without any manual changes.



int *p1, *p2, **pp1, **pp2, intval;
...
int main()
{

...
p1 = &intval;
pp1 = &p1;

pp2 = pp1;
p2 = *pp2;
...
... = &pp2;
...

}

intval

pp2
(mask3)

p1
(mask2)

(mask1)

p2

pp1

(a) A sample C code (b) Points-to graph for the code

static unsigned int mask1, mask2, mask3;
int **p1 ptr, *p2, **pp1, ***pp2 ptr, *intval ptr, ...;
int main()
{ ...

(*p1 ptr) = intval ptr;
(*p1 ptr) = (int *)((unsigned int)(*p1 ptr) ˆ mask2);
pp1 = p1 ptr;
(*pp2 ptr) = pp1;
(*pp2 ptr) = (int **)((unsigned int)(*pp2 ptr) ˆ mask3);
p2 = (int *)((unsigned int)(*((int **)

((unsigned int)(*pp2 ptr) ˆ mask3))) ˆ mask2);
...

}
static void ( attribute (( constructor )) dsr init)()
{ ...

/* code to allocate memory for intval, p1 and pp2 using their
pointers intval ptr, p1 ptr and pp2 ptr respectively. */
...
dsr maskassign(mask1); dsr maskassign(mask2);
dsr maskassign(mask3);...

}

(c) Transformed code for the code in (a)

Fig. 3. A sample example illustrating basic DSR transformations.

In the second step, we generate the program’s points-to graph, from which we
then compute the equivalence classes needed for assigning random masks to data
variables. In the third step, we transform the code as per the transformations
described in the previous section.

The example shown in Figure 3 illustrates the above transformation steps. In
this example, variables p2 and pp1 correspond to non-overflow candidate objects,
which are not required to be masked due to our optimization. On the other
hand, variables intval, p1 and pp2 correspond to overflow candidate objects
because their addresses are taken. So we mask these variables, and for this we
respectively introduce variables mask1, mask2, and mask3 to store their masks.
Each of these mask variables is initialized with a different random value using
the macro __dsr_maskassign in the constructor function __dsr_init() that is



automatically invoked before the start of the execution in main(). Recall from
Section 2 that we need to allocate memory for overflow candidate objects in
different memory regions. For this to be possible, we access overflow candidate
objects with an extra level of indirection using pointers, e.g., a variable v is
accessed using (*v_ptr), where v_ptr is a pointer to v. In this example, we
introduce pointers intval_ptr, p1_ptr, and pp2_ptr to access intval, p1, and
pp2 respectively. The memory for these overflow candidate objects is allocated
in the initialization code present in __dsr_init(). Since the overflow candidate
objects in this example do not share masks, we allocate their memory in the
same region, in between two unmapped memory pages. As a result, overflows
from overflow candidate objects cannot corrupt non-overflow candidate objects.
Moreover, overflows among overflow candidate objects are detected because all
of them use different masks.

The statements are transformed as follows. If an overflow candidate variable
is assigned a value, the value is first masked and then stored in the memory; if
it is used in an expression, its masked value is unmasked before its use.

Now we discuss a few issues concerning the basic implementation approach.

3.1 Handling Overflows Within Structures

According to C language specifications, overflows within structures are not con-
sidered as memory errors. However, attackers can potentially exploit such over-
flows also. For instance, an overflow from an array field inside a structure corrupt-
ing adjacent fields in the same structure may lead to an exploitable vulnerability.
Thus, it is desirable to have some protection from these overflows. Unfortunately,
even bounds-checking detection techniques do not provide defense against these
types of overflows. ASR too fails to address this problem due to the inherent
limitation of not being able to randomize relative distances between fields of a
structure because of language semantics. DSR can be used to provide some level
of protection in this case. The basic idea is to use field-sensitive points-to analy-
sis so that we can assign different masks to different fields of the same structure.
However, our current implementation does not support field-sensitive points-to
analysis. As a part of future enhancement, we plan to implement Steensgaard’s
points-to analysis [36] to handle field-sensitivity. The time complexity of this
analysis, as reported in [36], is likely to be close to linear in the size of the pro-
gram in practice. Hence, this enhancement would not affect the scalability of our
approach. Moreover, it does not increase runtime performance overhead.

Library functions such as memcpy, memset and bzero, which operate on entire
structures, need a special transformation. For instance, we cannot allow bzero

to zero out all the fields of a structure. Instead it should assign each field a value
corresponding to its mask. This would require computing points-to set for pointer
arguments of these functions in a context-sensitive way (as if the functions are
inlined at their invocation point). As a result, the pointer arguments would most
likely point to specific type of data including structures and arrays. So if the data
pointed by an argument is a structure, we would use corresponding masks for
the individual fields of the structures using summarization functions.



3.2 Handling Variable Argument Functions

Variable argument functions need special handling. In effect, we treat them as
if they take an array (with some maximum size limit) as a parameter. This
effectively means that the same mask is assigned to all the parameters, and
if some of these parameters happen to be pointers, then all their targets get
assigned the same mask, and so on. However, the imprecision in resulting pointer
analysis can be addressed by analyzing such functions in a context-sensitive
manner. Our implementation currently does not support this.

3.3 Transformation of Libraries

A source-code based approach such as ours requires the source code for the
program as well as the libraries, as all of them need the transformation.

A few extra steps are required for handling shared libraries. Using the steps
described in Section 2, we would obtain points-to graphs for all the shared li-
braries and the main executable. Since these graphs could be partial, we need
to compute the global points-to graph. This could potentially lead to merging of
some equivalence classes of masks, which in turn can make an object in a shared
library an alias of another object from the executable or other shared libraries.
In such situation, mask values are needed to be shared across the executable and
the libraries.

A natural way to implement the above steps is to enhance the function-
ality of the dynamic linker. For this, each binary object (an executable or a
shared library) needs to maintain dynamic symbol information about the points-
to graph, which is a general yet an important piece of information that could
be useful to many program analysis and transformation techniques. In addition,
the binary objects need storage for mask variables and also dynamic symbol in-
formation about them. Using this information, at link-time, the dynamic linker
can compute the global points-to graph, and resolve the mask variables just like
it resolves other dynamic symbols. Additionally, it needs to initialize the mask
variables with random values.

At times, source code may not be available for some libraries. Such libraries
cannot be directly used with our DSR technique. The standard approach for
dealing with this problem is to rely on summarization functions that capture
the effect of such external library functions.

Given the prototype nature of our implementation, we did not transform
shared libraries, and instead used the approach of summarization functions. For
the test programs used in our experiments, we needed to provide summarizations
for 52 glibc functions. In addition, we do not mask external variables, (i.e.,
shared library variables) and any internal variable that gets aliased with an
external variable, so as to make our technique work with untransformed libraries.

4 Evaluation

4.1 Functionality

We have implemented DSR technique as described in the previous section. The
implementation is robust enough to handle several “real-world” programs shown



in Figure 4. We verified that these programs worked correctly after the transfor-
mation. We also manually inspected the source code to ensure that the masking
and unmasking operations were performed on data accesses, and that variables
were grouped into regions guarded by unmapped pages as described earlier.

4.2 Runtime Overheads

Figure 4 shows the runtime overheads, when the original and the transformed
programs were compiled using gcc-3.2.2 with optimization flag -O2, and run
on a desktop running RedHat Linux 9.0 with 1.7 GHz Pentium IV processor and
512 MB RAM. Execution times were averaged over 10 runs.

Program Workload % Overhead

patch-1.06 Apply a 2 MB patch-file on a 9 MB file 4

tar-1.13.25 Create a tar file of a directory of size 141 MB 5

grep-2.5.1 Search a pattern in files of combined size 108 MB 7

ctags-5.6 Generate a tag file for a 17511-line C source code 11

gzip-1.1.3 Compress a 12 MB file 24

bc-1.06 Find factorial of 600 27

bison-1.35 Parse C++ grammar file 28

Average 15

Fig. 4. Runtime performance overhead introduced by transformations for DSR.

For DSR transformations, the runtime overhead depends mainly on mem-
ory accesses that result in masking and unmasking operations. In I/O-intensive
programs, such as tar and patch, most of the execution time is spent in I/O op-
erations, and hence we see low overheads for such programs. On the other hand,
CPU-intensive programs are likely to spend substantial part of the execution
time in performing memory accesses. That is why we observe higher overheads
for CPU-intensive programs. The average overhead is around 15%, which is a
bit higher than the overheads for ASR techniques. Nonetheless, DSR technique
is still practical and provides a stronger level of protection.

4.3 Analysis of Effectiveness Against Different Attacks

Effectiveness can be evaluated experimentally or analytically. Experimental eval-
uation involves running a set of well-known exploits against vulnerable programs,
and showing that our transformation stops these exploits. Instead, we have relied
on an analytical evaluation for the following reasons. First, exploits are usually
very fragile, and any small modification to the code, even if it they are not
designed for attack protection, will cause the exploit to fail. Clearly, with our
implementation, which moves objects around, the attacks would fail even if we
used a zero-valued mask in all cases. Modifying the exploit so that it works in
this base case is quite time-consuming, so we did not attempt this. Instead, we
rely on an analytical evaluation that argues why certain classes of existing ex-



ploitation techniques will fail against DSR; and estimate the success probability
of other attacks.

Stack buffer overflows. Memory for all the overflow candidate local variables
is allocated in a buffer stack or the heap. Typical buffer overflow attacks on the
stack target the data on the main stack, such as the return address and the saved
base pointer. These attacks will fail deterministically, since the buffer and the
target are in different memory regions, with guard pages in between. Similarly,
all attacks that attempt to corrupt non-aggregate local data, such as integer or
floating-point valued local variables, saved registers, and temporaries will also
fail.

Attacks that corrupt data stored in an overflow candidate variable by over-
flowing another overflow candidate variable is possible if they are both in the
same memory region. However, such attacks have low probability of success
(2−32) because we ensure that objects with the same mask are allocated in dif-
ferent memory region. As mentioned before, in our implementation, we could
do this without having to maintain a large number of buffer stacks. If this as-
sumption did not hold for some programs, then we could resort to moving those
overflow candidate variables to the heap, and falling back on the technique (and
analysis of effectiveness) as overflows in the heap.

Static buffer overflows. Static overflow candidate objects are separated from
static non-overflow candidate objects with inaccessible pages. So overflows in
static memory cannot be used for corrupting non-overflow candidate static data.

Overflows from a static overflow candidate object into another overflow can-
didate object (not necessarily a static object) that is allocated in a different
memory region are impossible due to the use of guard pages in between regions.
However, overflows within the same static data region are possible. For such
overflows, since our implementation ensures that the masks for different vari-
ables within each region will be different, the probability of a successful data
corruption attack is reduced to 2−32. In our experiments, we needed less than
150 distinct memory regions in the static area.

Heap overflows. Heap overflows involve overwriting heap control data consist-
ing of two pointer-values appearing at the end of the target heap block (or at
the beginning of a subsequent block). This sort of overwrite is possible, but since
our technique would be using a mask for the contents of the heap block (which,
as pointed out earlier, is an overflow candidate data), whereas the heap-control
related pointer values would be in cleartext. As a result, the corruption has only
2−32 probability of succeeding.

Overflows from one heap block to the next are possible. If the two heap blocks
are masked with different masks, then the attack success probability is 2−32.
However, heap objects tend be large in numbers, and moreover, possible aliasing
may force us to assign the same mask to a large number of them. An important
point to be noted in this case is that the number of different memory regions
required for heap objects is a property of input to the program, rather than
the program itself. Hence we use a probabilistic approach, and distribute heap
objects randomly over a bounded number of different memory regions. Moreover,



it should be noted that inter-heap-block overflows corrupt the heap control data
in between, so the program may crash (due to the use of this corrupted data)
before the corrupted data is used by the program. Nevertheless, it is clear that
the success probability can be larger than 2−32. In practice, this is hard because
(a) heap allocations tend to be unpredictable as they are function of previous
computations performed and inputs processed, (b) the control data will also be
corrupted, and so it will likely be detected.

Format string attacks. Traditional format-string attacks make use the %n

directive to write the number of bytes printed so far, and require the attacker to
be able to specify the location for this write. Note that the attacker has control
only over the format string, which being an overflow candidate object does not
reside on the main stack. The location for the write is going to be a parameter,
which will reside on the main stack. Thus the attacker cannot control the target
into which the write will be performed, thus defeating traditional format-string
attacks.

Other ways of exploiting format string attacks may be possible. The attacker
may use %n to refer to a pointer value or an attacker-controlled integer value
that is already on the stack. Also, the attacker can use other format specifiers
such as %x and %d to print out the contents of the stack.

We point out that this weakness is shared with most existing defenses against
memory error exploits. Nonetheless, the best way to deal with format-string
attacks is to combine DSR with an efficient technique such as FormatGuard[16].

Relative address attacks based on integer overflows. Note that the base
address used in any relative address attack must correspond to an overflow can-
didate variable. There is a small probability that the target location overwritten
by the attack will have been assigned the same mask as the one corresponding
to the base address. It is hard to predict this probability independent of the
program, as it is the same as the probability of possible aliasing between the
base address and the target address of the attack. In any case, relative-address
randomization of overflow candidate objects in DSR provides probabilistic pro-
tection against these attacks.

Attacks Targeting DSR. We discuss possible attacks targeted at DSR.

– Information leakage attack. Randomization based defenses are usually
vulnerable to information leakage attacks that leak the random values. For
instance, ASR is vulnerable to attack that leaks the values of pointers that are
stored on the stack or the heap. Interestingly, DSR is not susceptible to this
attack. This is because any attempt to read a pointer value will automatically
cause the mask associated with the pointer to be applied, i.e., the result of
the read will be in plaintext rather than being in encrypted form. Thus,
information regarding the masks is not leaked.

– Brute force and guessing attacks. The probability calculations in the
previous sections indicate the difficulty of these attacks.

– Partial pointer overwrites. These attacks involve corruption of the lower
byte(s) of a pointer. Partial pointer overflows can decrease the attacker’s work



because there are only 256 possibilities for the LS byte. But these vulnera-
bilities are difficult to find and exploit. Even when exploitable, the target
usually must be on the stack. In our implementation, since the main stack
does not contain overflow candidate variables, it becomes impossible to use
buffer overflows to effect partial overflow attack on stack-resident data.

5 Related Work

Runtime Guarding. These techniques transform a program to prevent cor-
ruption of specific targets such as return addresses, function pointers, or other
control data. Techniques such as StackGuard [18], RAD [15], StackShield [5],
Libverify [5] and Libsafe [5], in one way or another, prevent undetected cor-
ruption of the return address on the stack. ProPolice [22] additionally guards
against corruption of non-aggregate local data. FormatGuard [16] transforms
source code to provide protection from format-string attacks.

As above techniques provide only an attack-specific protection, attackers find
it very easy to discover other attack mechanisms for bypassing the protection.

Runtime Enforcement of Static Analysis Results. Static analysis based
intrusion detection techniques such as [38] were based on using a static analy-
sis to compute program control-flow, and enforcing this at runtime. However,
since enforcement was performed only on system call invocations, control-flow
hijack attacks were still possible. Control-flow integrity (CFI) [1] addressed this
weakness by monitoring all control-flow transfers, and ensuring that they were
to locations predicted by a static analysis. As a result, control-flow hijack at-
tacks are detected, but the technique does not detect data corruption attacks.
Data-flow integrity [12] addresses this weakness by enforcing statically analyzed
def-use relationships at runtime. However, it incurs much higher performance
overheads than CFI as well as DSR.

Write-integrity testing (WIT) [2] proposes a faster way to perform runtime
checking of validity of memory updates. Specifically, they use a static analysis
to identify all memory locations that can be written by an instruction, and
assign the same “color” to all these locations. This color is encoded into the
program text as a constant. At runtime, a global array is used to record the color
associated with each memory location. Before a memory write, WIT ensures
that the color associated with the write instruction matches the color of the
location that is written. Although developed independent of our work [8], the
techniques behind WIT share some similarities with DSR. In particular, their
color assignment algorithm is also based on alias analysis.

WIT reports lower overheads than DSR, but this is achieved by checking
only the write operations. In contrast, DSR addresses reads as well as writes,
and hence can address memory corruption attacks that may be based on out-of-
bounds reads. In terms of strength of protection, DSR and WIT are comparable
in the context of buffer overflows where the source and target objects are not
aliased. If they are aliased, then WIT can still offer deterministic protection
against typical buffer overflows that involve writing a contiguous (or closely
spaced) set of locations beyond the end of a buffer. DSR can also provide deter-



ministic protection in such cases, but its implementation technique for achieving
this, namely, the use of unwritable memory pages, does not scale well for heap
objects. However, WIT fails to provide any protection in the case of buffer over-
flows where the source and target objects are aliased and are far apart — this
happens often in the case of integer overflows. In contrast, DSR offers proba-
bilistic protection in this case due to its use of relative address randomization
as a second line of defense.

Runtime Bounds and Pointer Checking. Several techniques have been de-
veloped that maintain, at runtime, metadata related to memory allocations
and pointers [4,26,30,34,41,20]. Pointer dereferences are then checked for va-
lidity against this metadata. While the techniques differ in terms of the range
of memory errors that they are able to detect, they all cover a broad enough
range to protect against most memory error exploits. As compared to the tech-
niques described in previous paragraph, these techniques tend to be more precise
since they rely on runtime techniques (rather than static analysis) for metadata-
tracking. However, this also translates to significant additional overheads.

Randomization Techniques. Our DSR technique is an instance of the broader
idea of introducing diversity in nonfunctional aspects of software, an idea first
suggested by Forrest et al [23]. The basic idea is that the diversified programs
maintain the same functionality, but differ in their processing of erroneous in-
puts. As a result, different variants exhibit different behaviors when exposed
to the same exploit. In the context of memory error vulnerabilities, several re-
cent works have demonstrated the usefulness of introducing automated diversity
in the low level implementation details, such as memory layout [32,40,23,28],
system calls [14], and instruction sets [27,6]. System call and instruction set ran-
domization techniques only protect against injected code attacks, but not from
return-to-libc (aka existing code) or data corruption attacks. On the other hand,
the techniques which randomize memory layout, popularly known as address
space randomization (ASR) techniques, provide protection against injected code
as well as data corruption attacks. ASR techniques that only perform absolute
address randomization [32,9] (AAR) don’t directly address buffer overflows, but
are still able to defeat most attacks as they rely on pointer corruption. ASR tech-
niques that augment AAR with relative address randomization (RAR) [10] are
effective against all buffer overflows, including those not involving pointer cor-
ruption. DieHard [7] and DieFast [31] approaches provide randomization-based
defense against memory corruption attacks involving heap objects.

Randomization techniques with relatively small range of randomization, e.g.,
PaX with its 16-bits of randomness in some memory regions, can be defeated
relatively quickly using guessing attacks [35]. As mentioned earlier, they are also
susceptible to information leakage attacks. Cox et al. [19] and Bruschi et al. [11]
have shown how process replication can be used to address these deficiencies, and
hence provide deterministic (rather than probabilistic) defense against certain
classes of memory exploits. However, they come with a significant overhead due
to the need to run two copies of the protected process. In contrast, DSR incurs



only modest overheads to mitigate guessing attacks (using a much larger range
of randomization) as well as information leakage attacks.

6 Conclusion

In this paper, we introduced a new randomization-based defense against mem-
ory error exploits. Unlike previous defenses such as instruction set randomiza-
tion that was effective only against injected code attacks, our DSR technique
can defend against emerging attacks that target security-critical data. Unlike
address space randomization, which is primarily effective against pointer cor-
ruption attacks, DSR provides a high degree of protection from attacks that
corrupt non-pointer data. Moreover, it is not vulnerable to information leakage
attacks. Finally, it provides much higher entropy than existing ASR implemen-
tations, thus providing an effective defense from brute-force attacks.

We described the design and implementation of DSR in this paper. Our
results show that the technique has relatively low overheads. In addition to
reducing the likelihood of successful attacks to 2−32 in most cases, the technique
also provides deterministic protection against attacks such as stack-smashing,
and traditional format-string attacks. In future work, we expect to address some
of the limitations of current prototype, such as the inability to address intra-field
overflows.
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