
A Practical Mimicry Attack
Against Powerful System-Call Monitors∗

Chetan Parampalli†, R. Sekar and Rob Johnson
Department of Computer Science

Stony Brook University, Stony Brook, NY 11794.

ABSTRACT
System-call monitoring has become the basis for many host-
based intrusion detection as well as policy enforcement tech-
niques. Mimicry attacks attempt to evade system-call moni-
toring IDS by executing innocuous-looking sequences of sys-
tem calls that accomplish the attacker’s goals. Mimicry at-
tacks may execute a sequence of dozens of system calls in
order to evade detection. Finding such a sequence is dif-
ficult, so researchers have focused on tools for automating
mimicry attacks and extending them to gray-box IDS1. In
this paper, we describe an alternative approach for build-
ing mimicry attacks using only skills and technologies that
hackers possess today, making this attack a more immediate
and realistic threat. These attacks, which we call persis-
tent interposition attacks, are not as powerful as traditional
mimicry attacks — an adversary cannot obtain a root shell
using a persistent interposition attack— but are sufficient to
accomplish the goals of today’s cyber-criminals. Persistent
interposition attacks are stealthier than standard mimicry
attacks and are amenable to covert information-harvesting
attacks, features that are likely to be attractive to profit-
motivated criminals. Persistent interposition attacks are
not IDS specific — they can evade a large class of system-
call-monitoring intrusion-detection systems, which we call
I/O-data-oblivious. I/O-data-oblivious monitors have per-
fect knowledge of the values of all system call arguments as
well as their relationships, with the exception of data buffer
arguments to read and write. Many of today’s black-box and
gray-box IDS are I/O-data-oblivious and hence vulnerable
to persistent interposition attacks.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software; C.2.0
[General]: Security and Protection

∗This research is supported in part by NSF grant CCR-0208877
and an ONR grant N000140110967.
†The author is currently at Google, Inc. This work was completed
while the author was at Stony Brook University.
1Gray-box IDS examine additional information at the point of
system call invocation, such as the code address at which the
system call was invoked [27], or the set of return addresses on the
stack [8, 10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS ’08, March 18-20, Tokyo, Japan
Copyright 2008 ACM 978-1-59593-979-1/08/0003 ...$5.00.

General Terms
Security

Keywords
Mimicry attack, Intrusion-detection, System-call monitor,
Memory error, Buffer overflow

1. Introduction
System-call monitoring intrusion detection systems (IDS2)

have created an arms race between defenders, who create
new and more powerful monitors, and attackers, who create
new attacks to evade the monitors. Researchers have refined
system-call monitoring defenses by capturing sequencing re-
lationships [16, 34], by using call-site [27], call-stack [8, 10],
and system-call argument [19, 30, 3] information. In paral-
lel, mimicry attacks, which achieve attacker-intended effects
without modifying IDS-monitored aspects of an application
behavior, have evolved to evade these defenses. These con-
tinuing developments lead to the following question:

Can system-call monitoring be made powerful enough
to defeat current and future evasion attacks?

The answer to this question would be affirmative if we were
to build a perfect system-call monitor that captures the to-
tality of interactions between an application and its OS.
Since these interactions define what we consider as an ap-
plication’s behavior, a monitor that can predict the totality
of these interactions has to effectively duplicate the applica-
tion logic. Moreover, in order to provide effective protection,
the monitor shouldn’t duplicate any of the application’s vul-
nerabilities! Since this isn’t a recipe for a practical system
call monitor, we formulate the notion of a I/O-data-oblivious
monitor that comes close to being perfect: the only differ-
ence is that such monitors ignore the actual content of the
data that is read using the read system-call, or written us-
ing the write system-call. This eliminates the need for the
monitor to predict the application’s behavior as a function
of its inputs/outputs, thereby making it more practical. We
note that existing system-call monitoring techniques [16, 18,
28, 32, 27, 34, 23, 12, 25, 19, 30, 8, 14, 7, 10, 13, 3] are all
I/O-data-oblivious3.

We show that, despite their power, I/O-data-oblivious
monitors can be defeated using an attack that we call as
“persistent interposition attacks.” An important implication

2Henceforth, we use the term “IDS” to refer to system-call moni-
toring IDS.
3Content-based IDS, such as PAYL [33] aren’t I/O-data-
oblivious, but are vulnerable to attack techniques that are or-
thogonal to ours [9]. By combining the two techniques, these IDS
can likely be evaded as well — See Section 5 for a more detailed
discussion.

of this result is that current and future system call monitor-
ing techniques, by themselves, are unlikely to provide a good
defense against attack vectors that permit injected code exe-
cution.

Overview of Persistent Interposition Attacks

Like previous mimicry attacks, persistent interposition at-
tacks rely on code-injection vulnerabilities. They inject code
that interposes on I/O operations performed by the victim,
potentially modifying the data read or written by the vic-
tim but leaving the control-flow and other system-call ar-
guments unmodified. (This strategy is similar to that of a
“man-in-the-middle” attack.) Although persistent interposi-
tion attacks give up some power — they typically cannot be
used to obtain a root shell — for stealth and ease of devel-
opment, they are powerful enough to accomplish the goals
of profit-motivated cyber-criminals:

• Steal credit-card numbers or passwords. A persistent in-
terposition attack against a web server processing e-com-
merce requests can enable the theft of credit-card num-
bers (or passwords) of customers visiting the server.

• Redirect requests. A hacker can use a persistent interpo-
sition attack against a domain’s DNS server to redirect
(some or all) visitors to the domain’s web server to the
hacker’s web site. Alternatively, a DHCP server may be
attacked in a way that enables an attacker to redirect
clients to her name server, and subsequently, redirect all
client requests to the destinations of her choice.

• Impersonate a secure server. A persistent interposition
attack against a secure web server can allow an attacker
to steal the server’s private key, which would enable him
to subsequently impersonate the server.

• Suppress or alter emails. An adversary can use a persis-
tent interposition attack on a mail server to suppress or
alter emails delivered by it.

• Launch worms. An attacker could use complementary
attacks against a server and client to build a worm: com-
promised clients would infect servers and compromised
servers would infect clients.

The primary advantage of persistent interposition attacks
over conventional mimicry attacks is simplicity. Persistent
interposition attacks rely on techniques such as function-call
interposition that are already known in the hacker commu-
nity, thus making it possible for hackers of moderate skill
to convert typical code injection exploits into persistent in-
terposition attacks with some engineering effort. Traditional
mimicry attacks are more difficult to construct because they
evade detection by executing a sequence of system calls that
accomplish the attacker’s goal without triggering the IDS.
Such sequences are often dozens of system-calls long[11] and
are deeply dependent on the application’s control flow and
the IDS model of the application, necessitating automatic
tools for finding mimicry attacks[15]. Persistent interposi-
tion attacks side-step this problem by interposing on I/O
system-calls the application makes during its normal execu-
tion, obviating the need for automatic attack construction
tools.

Persistent interposition is well-suited for attacking long-
running event-driven applications that execute a request-
response loop, e.g., most network servers, as well as some
frequently targeted desktop applications such as browsers

and email readers. In addition, the “embed-and-wait” strat-
egy used in our attack can achieve more powerful end-goals
against weaker IDS: if the IDS doesn’t monitor system-call
arguments, then our attack code can simply interpose itself
on open and write operations, and when they are invoked,
modify the arguments to create (or overwrite) a file of at-
tacker’s choice.

We have implemented a proof-of-concept persistent inter-
position attack that uses the OpenSSL KEY ARG overflow
to compromise an SSL-enabled Apache web server[6]. The
interposed code then counts the number of pages served by
the server and, upon receiving a special command from the
attacker, returns this number in the web server’s response.
A more realistic attack could harvest credit card numbers or
user passwords and output them in response to the attacker
command. We have also examined several other applications
to verify that they could also host a persistent interposition
attack.

Previous Work in Mimicry Attacks

Prior mimicry attacks attempted to alter the control flow
of their victims while generating system call sequences that
would seem benign to an IDS, but this turned out to be
quite complex. Typically, the attack code needs to make
a large number of system calls, e.g., Wagner and Soto [31]
found a sequence of 138 system calls that evaded the pH IDS
while attacking wuftpd, while Gao et al [11] showed that the
shortest possible mimicry attacks typically needed a few tens
of system calls.

Modern gray-box IDS that inspect a program’s run-time
stack [8, 10] pose additional challenges for mimicry attacks.
In particular, the attack code cannot call system calls since
that would save the attack code’s address on the stack, there-
by revealing execution of code from a writable section of
memory. Instead, it has to jump to some location in the
application’s existing code that invokes a system call. How-
ever, this means that control won’t return back to the attack
code after this system call, and hence the attack can’t con-
tinue. To overcome this problem, Kruegel et al [20] devised
a technique to corrupt memory locations (and registers) in
a manner that ensures that control is returned back to the
attack code when the code following the system call is ex-
ecuted. They developed an elegant technique to automate
the identification of the memory locations that need to be
corrupted, and the corresponding values. Their work showed
that regaining control-flow is feasible, but didn’t address sev-
eral other issues that arise in constructing mimicry attacks
against real-world applications:

• For complex applications, how feasible is it to set up the
stack before each system call (invoked by the attack code)
so as to escape detection by a stack-inspecting IDS?

• Typical attacks need tens of system calls, and each call
requires many operations to (a) set up its arguments, (b)
set up the call stack, and (c) to modify memory loca-
tions needed for regaining control. Will the exploit code
needed to accomplish these steps be small enough to fit
within the size limits imposed by typical code injection
vulnerabilities?

• Given that the technique of [20] successfully regains con-
trol only about 90% of the time, how feasible is it to
string together the tens of system calls needed in typi-
cal mimicry attacks? Will repeated memory corruptions

(needed for regaining control after each system call) cause
a program to crash before the attack is complete?

• How easy is it to extend the attack technique to work
against more powerful IDS, such as those that reason
about system-call arguments [19, 30, 13, 3]?

Persistent interposition attacks avoid these obstacles be-
cause they do not attempt to maintain constant control over
the application’s execution.

Advantages of Persistent Interposition Attacks

As compared to the control-flow hijack strategy employed
in previous mimicry attacks, we believe that our persistent
control-flow interposition strategy is simpler, more reliable,
and stealthy, thus enabling us to develop a fully-working
evasion attack against real-world servers. Our technique ad-
dresses some of the key issues raised above in developing
practical mimicry attacks, e.g., restoring stack content after
an attack, and limiting the size of attack code. It side-steps
other issues by employing a different attack strategy: rather
than eagerly attempting to control program behavior at every
point, we take the lazy approach of lodging the attack at key
places in the program where such interposition can be done
easily and reliably, and without a need for repeated mem-
ory corruptions. With this strategy, the victim application
“cooperates” in the attack by invoking the attack code at
convenient points during the request processing cycle of the
victim application! Moreover, data needed by the attack
code is typically available at this point via parameters on
the stack, thus avoiding the error-prone guessing of absolute
memory locations of victim application’s data structures.

By inserting itself into the request-processing flow of a
server, a persistent interposition attack provides an active
channel for the attacker to dynamically control and/or al-
ter the behavior of the attack code. For instance, an at-
tacker can interactively examine and/or modify the memory
of victim by sending appropriate “commands” embedded in
legitimate-looking requests to the server. Alternatively, the
attacker can upload new code that embodies additional at-
tack capabilities onto the victim. Note that the attacker is
able to control the contents of the victim’s inputs remotely,
and its outputs using the interposed attack code on the vic-
tim side. This makes it possible for the attacker to em-
ploy techniques such as those described in [9] for evading
content-based IDS by encoding his requests and responses
in a manner that blends it with normal traffic.

In summary, persistent interposition attacks are quite con-
venient for implementing application-layer attacks. They
are practical for hackers to implement using skills and tools
they already have, thus making them perhaps a more real-
istic and immediate threat, as compared to prior mimicry
attacks.

Paper Organization

Section 2 defines the class of Input-Output data oblivi-
ous monitors. The design of persistent interposition attack
is described in Section 3, followed by its implementation
and evaluation in Section 4. Implications of our attack on
system-call monitoring techniques is discussed in Section 5,
followed by a discussion of related work in Section 6, and
concluding remarks in Section 7.

2. Input/Output-Data-Oblivious System-Call
Monitors

In this section, we formalize I/O data-oblivious monitors
that were intuitively described in the introduction. We also
explain how they capture the likely limits of future system-
call monitors.

We begin by formalizing the notion of program behaviors
as observed by a system call monitor. In theory, a system
call monitor could examine the entire memory of a moni-
tored application at the point of invocation of each system
call. For performance reasons, practical system call moni-
tors limit the amount of memory that is examined to that of
system-call arguments. In addition, gray-box anomaly de-
tectors also examine the program’s call stack. This suggests
the following formalization of execution traces.

Definition 1 (Gray-box Execution Trace). A
gray-box execution trace (or simply, a trace) for a program
P , denoted T (P), is the sequence of all the system calls in-
voked by P during its execution. A system call in a trace pro-
vides information about its name, arguments (at the point of
call and its return), return value, and the context in which
it is made, i.e., the list of return addresses on the pro-
gram’s stack. Traces also includes environment variables,
command-line arguments and other data available to the pro-
gram when it starts.

Note that, in principle, a powerful monitor can incorpo-
rate knowledge about possible control-flows in the program,
and hence can infer the calling context without explicitly
reading the program memory. Nevertheless, we chose to in-
corporate the calling context in the definition in order to
explicitly include so-called gray-box anomaly detection tech-
niques [27, 8, 10] that rely on this information. Based on
execution traces, program behaviors can be formalized as
follows:

Definition 2 (Program Behavior). The behavior of
a program is the set T (P) of all traces generated by P during
any of its legitimate executions.

Not all of the possible executions of a program may be
considered as acceptable uses of the program from a security
perspective. We use the term “legitimate execution” in the
above definition to eliminate unacceptable behaviors from
consideration.

Practical system-call monitors accept a superset of T (P)
defined above. However, one can imagine the extreme case
where the monitor accepts exactly T (P):

Definition 3 (Perfect System-Call Monitor). A
perfect system-call monitor classifies a trace T as legitimate
if and only if T ∈ T (P).

Since a perfect monitor has complete knowledge about the
entire behavior of a program, it can potentially be used as
a generator of traces rather than as an acceptor of traces.
This is particularly easy to see in the case of a determin-
istic program P , since the next system call made by such
a program is uniquely determined by its inputs until this
point. Moreover, these inputs (including command-line and
environment parameters) are fully captured by the system
calls made thus far, together with their arguments and re-
turn values. Thus, a perfect monitor can uniquely determine
the next system call that would be made by P from all the
preceding calls. This suggests that such a monitor must
effectively be duplicating the essential application logic con-

tained in P . Moreover, it must do this without duplicating
the vulnerabilities in P , or otherwise an attack may compro-
mise the monitor as well. Although some existing system call
monitors[8] are able to track scalar system call arguments,
such as file-descriptors or process IDs, most monitors [23, 25,
32, 8, 22, 10, 3] ignore the data read or written by the appli-
cation, i.e. the monitors do not track the content of files or
network packets. This observation motivates the following
definition of practical system-call monitors.

Definition 4. (Input/Output Data Oblivious Mon-
itor (IOM)). An I/O-oblivious monitor accepts a trace T

if it can be converted into a trace T ′
∈ T (P) by modifying

the data arguments to zero or more input and output system
calls in T .

Since IOMs ignore the data read and written by the applica-
tion, traces that differ only in the I/O content are effectively
equivalent. An IOM will accept any trace that is equivalent
to a legitimate one. Note that the IOM definition only spec-
ifies the minimum set of traces accepted by the monitor, and
hence captures existing system-call monitors as well as those
that are much more powerful, while placing some limits on
the maximum power.

Note that the most powerful IOMs ignore only the data-
buffer arguments to system calls that perform actual in-
put/output, such as read, write, send and recv; other ar-
guments to these calls (and return values from them) are
incorporated into its behavior model. Moreover, all argu-
ments to every other system call, including I/O-related calls
such as open are captured in the models constructed by the
most powerful among the IOMs. As a result, these monitors
can be significantly more powerful than existing monitors.
In spite of their power, we show that they can be evaded
by our persistent interposition attack, which is designed to
leave the stack unmodified at every system call, and only
modifies the data buffer arguments to I/O system calls. As
a result, persistent interposition attacks, by design, cannot
be detected by any I/O data oblivious monitor.

Some systems enable applications to perform I/O without
a system call through mechanisms such as mmapped files
and shared memory segments. This I/O is completely un-
observable to a system-call monitoring IDS, so injected code
can modify these I/O operations without risk of detection
by any graybox IDS. Persistent interposition attacks do not
use or depend on these kinds of I/O, so these technologies
are irrelevant to the results of this research.

We comment that although the intent of the IOM def-
inition was to rule out very powerful monitors that could
exactly predict application outputs (or more generally, its
future actions) as a function of its inputs, it has the effect
of ruling out more practical techniques such as those based
on signature-based filtering or statistical profiling of input
contents. However, other researchers [9] have already de-
veloped techniques that are orthogonal to ours in order to
evade existing content-based IDS. These techniques rely on
encoding attack inputs in such a manner that their charac-
teristics (e.g., byte frequency distribution) conform to the
normal profile used by the IDS. These techniques can easily
be combined with our attack technique since it gives the at-
tacker full control over the contents of attack inputs as well
as all outputs of the victim server.

3. Design of Persistent Interposition Attacks

In this section, we describe the design steps common to
all persistent interposition attacks, and outline possible im-
plementations of these steps. The specific choices made in
our implementation are presented in Section 4.

Our starting point for persistent interposition attack is an
exploit built on a typical code-injection vulnerability that
enables execution of injected code without making addi-
tional system calls, e.g., a typical stack-smashing, heap-
overflow or format-string vulnerability. Such an exploit may
impose fairly stringent limitations in the size of exploit code,
which may be much smaller than the code size needed to
support sophisticated attacks, e.g., stealing of credit card
information from a web server. For this reason, we design
persistent interposition attack to proceed in three steps:

• Initial exploit phase: In this phase, a bootstrapping shim
is inserted on the victim’s normal execution path. Rel-
atively small amount of code (about 100 bytes in our
experiments) is needed to carry out the exploit phase, so
that it can be used as a payload for most code-injection
attacks.

• Bootstrapping phase: In this phase, additional attack
code is sent by the attacker within legitimate-looking
requests to the victim application. The bootstrapping
code identifies these requests, assembles them into the
code needed for the operational phase of the attack, and
transfers control to the assembled code.

• Operational phase: Like the bootstrapping code, the op-
erational code is also hooked into the victim’s normal
execution path. It examines every input and output, and
modifies the outputs as desired by the attacker. The
attacker may also upload additional code to change the
attack over time.

Like previous works on mimicry attacks, our implementa-
tion assumes no defenses against memory corruption at-
tacks. A defense such as address-space randomization (ASR)
can make persistent interposition attacks harder to develop,
but they will remain possible as long as there are code in-
jection vulnerabilities. Specifically, with ASR, exploit code
cannot hard-code the addresses of data or code objects that
it wants to target. However, since most ASR techniques
only randomize the base addresses of different memory re-
gions, it is possible to develop scanning attacks to compute
these addresses. Specifically, the exploit code can scan the
stack for return addresses and data pointers. By comparing
the addresses of corresponding objects (say, a specific global
array or a return address pointing to a location within the
executable) between victim and attacker’s systems, it is pos-
sible to “de-randomize” the locations of all objects within a
memory region (i.e., global area or executable code area).

As noted in [20], mimicry attacks against stack-inspecting
gray-box IDS must not leave any trace of attacks on the call
stack. In particular, the attack code needs to use a jump

rather than a call so that its address won’t be saved on
the stack. This means that the attack code cannot get con-
trol when system calls (or any of the application’s function
calls) return, and hence it cannot immediately examine the
data returned by a system call such as read. Instead, it
has to wait for a subsequent function call that has been set
up for interposition by the attack code. [20] develops a so-
phisticated static analysis to automate the identification of
function pointers that could be hijacked for this purpose,
and the same techniques could be applied here. However, in

practice, we have found that persistent interposition attacks
require very few functions to be interposed, and those can
be easily identified by dynamically tracing the sequence of
function calls made by the victim application. This is the
approach we used in our implementation.

3.1 Phase I: Initial Exploit Phase
In this phase, persistent interposition attack uses a code-

injection vulnerability to install the bootstrap code. It con-
sists of the three steps described below.

Step I.1. Storing Bootstrap Code

The bootstrap code must persist long enough to upload
the operational code, so we need to find a safe place to stow
it. We considered the following candidate locations:

• Stack. If the victim application consumes only a limited
amount of stack memory, the region of the stack beyond
this space could be used by the attack. We need to en-
sure that the attempt to use this space does not cause a
signal due to an invalid memory access. Some operating
systems, including Linux, allocate stack space on demand
and inspect the application stack pointer to determine
whether a page-fault should be handled by extending the
stack. To deal with this problem, our technique pushes
a large amount of data onto the stack and then pops it
off, and then copies the code into stack space allocated
by the kernel as a result of these pushes.

• Global buffers. It is common for programs to use buffers
that are much larger than the size of data likely to be
stored in them. Alternatively, certain global arrays may
hold rarely used data that can be overwritten without a
significant chance of affecting program behavior. Note
that the memory location of global variables is statically
known, and hence the attack code knows the locations of
such variables.

• Heap. Instead of global buffers, we can use heap-allocated
buffers that contain rarely used data, or contain more
memory than is typically needed. Pointers to such heap
buffers are often stored in global variables, and so the
exploit code can find them.

While one may need to choose among the three alternatives
on other OSes, on Linux, the stack is likely to be the location
of choice for storing bootstrap code: it can be used without
significant risk of overwriting application data. Moreover,
exploit-code doesn’t need to know the locations of global
or heap-allocated variables, which may be hard to obtain if
defenses such as address-space randomization are deployed.

Step I.2. Interposing Bootstrap Code

After copying itself to a safe location, the initial exploit
code modifies one or more pointers to functions that would
be invoked during the victim’s normal operation. To identify
a suitable function pointer, the following choices need to be
considered.

• Application-specific support for plug-ins and modules:
Modern server and client software often provide exten-
sibility features in the form of plug-ins or modules. Calls
to module-provided functions (as well as some functions
called by the module) are made using tables of function
pointers. For instance, the Apache web server uses the
mod_ssl module in order to support SSL. This module

registers two functions with Apache that the web server
can use to read and write encrypted data. These function
pointers are an obvious target for a persistent interposi-
tion attack.

• Virtual table pointers in C++ programs: Virtual meth-
ods in C++ programs are implemented using a vtable,
i.e. an array containing pointers to each virtual method
implemented by the object’s class. The bootstrap code
can interpose on virtual method invocations by all objects
in this class by overwriting these pointers in the vtable.
This is particularly easy because C++ compilers usually
generate one vtable, stored at a fixed location, for each
class, and place a pointer to this table in every instance
of that class4.

• Global Offset Table (GOT) entries: The global offset ta-
ble is used in Linux to dispatch calls made from the main
executable to shared libraries, such as glibc, and from
one shared library to another. Every externally-visible
shared library function has an entry in the GOT. The
dynamic linker maps the name of each shared library
function into the corresponding address, and fills the cor-
responding entry. By default, Linux uses a lazy approach
for resolving shared library functions, i.e., the address of
a function is resolved the first time it is invoked. To
support this, the GOT remains writable throughout the
program’s execution. Given this fact, and the fact that
shared library functions are used by applications for per-
forming all of their I/O operations, GOTs are an obvious
choice for interposition — a fact that is leveraged com-
monly in attacks such as heap-overflow exploits, as well
as previous mimicry attacks such as [20].

Once the adversary has identified the target function point-
ers, he can program the exploit code to modify them to point
to the bootstrap code. The options listed above are not
meant to be exhaustive. The bootstrap code can intercept
program execution at any convenient location, potentially
quite far removed from the actual I/O operation. The only
constraint is that the attack code must be able to intercept
and modify possibly modify the I/O data that is relevant to
the attacker’s goals.

Step I.3. Cleanup

The last step of the initial exploit phase is to cleanup any
damage resulting from the exploit so that the victim applica-
tion will continue executing without making any anomalous
system calls. The technique for accomplishing this is dic-
tated by the nature of the underlying vulnerability:

• Heap overflow: Heap overflow exploits typically overwrite
a GOT-entry for a function that will normally be invoked
by a victim application immediately after the overflow
takes place. In this case, exploit code can resume normal
execution by simply transferring control to the beginning
of the original function called by the victim program. In
our experiments described in Section 4.1, we were able to
identify the location of the original function without any
problem5.

4 Some compilers store vtables in read-only data section. To cope
with this, we can modify the vtable pointer in a single object so
that it points to a table constructed by the attack code. Typically,
a suitable object can be identified by scanning the stack.
5It is usually quite easy to identify the location of the original
function — the location of the function is usually identical be-

• Stack-smashing vulnerability: A typical stack smash re-
sults in the corruption of the return address in the stack
frame containing the vulnerable buffer, and possibly some
local variables of the caller’s frame. Since the attack code
gains control when the vulnerable function attempts to
return to its caller, we only need to ensure that the caller
continues normal execution. If the attacker can predict
the values of the caller’s corrupted local variables, then
the attack can easily restore them. If some of the cor-
rupted values can’t be predicted, the attack code can re-
turn an error code to the caller, causing it to return early
without using the corrupted variables. The attacker can
evaluate these options on his system before settling on a
specific choice.

An alternative technique is to modify the exploit so that
it does not write beyond the return address targeted by
the attack. This may reduce the size of the payload, but
still, most stack-smashing vulnerabilities involve moder-
ate to large arrays, and hence can be expected to be suf-
ficient to hold the initial exploit.

• Format-string attacks: Format-string attacks may over-
write a return address or a function pointer, such as an
entry in the GOT. Typical format-string attacks cause a
small amount of collateral damage, especially to the stack
or the GOT. Possible techniques for recovering from such
damage were already discussed above.

As the above discussion shows, heap overflows are especially
suited for persistent interposition attack since the cleanup
phase is very easy. In our implementation, we have also
demonstrated a successful cleanup after a stack-smashing
attack on Samba server.

3.2 Phase II: Bootstrapping Phase
Once the initial exploit phase is complete, the bootstrap-

ping code is invoked during normal operation of a victim
application. Typically, the bootstrapping code may be in-
voked on each read and write operation. After the bootstrap
code finishes execution, it uses a jump to transfer control to
read or write

6. As pointed out earlier, it is important to
use a jump (rather than a call) instruction to effect this con-
trol transfer, so that a system call monitor will not see any
trace of the attack code on the stack. Specifically, all reg-
ister values, including those of the stack pointer and base
pointer, need to have the same values as at the invocation
of the attack code.

Since a jump is used, control does not return to the boot-
strap code after a read or write. In order to be able to read
the data returned by read, the bootstrapping code uses the
following strategy:

• Store the address of the buffer being used to read input
data

• Intercept the next interceptable function call, and read
and (optionally) modify the contents of the input buffer

Obvious choices for the subsequent interception are (a) the
next system call invoked by the victim, (b) a free call that

tween the attacker’s machine and the victim machine. Even if
there are differences, e.g., due to ASR, the relative distances be-
tween functions in the shared library will remain the same. As
such, the exploit code can compute the location of the overwritten
function from the location stored in the next GOT entry.
6Henceforth, when we refer to read and write, we are referring
to all input and output system calls respectively.

may be used by the victim to free a buffer used for read-
ing the data, or (c) utility functions such as strtok, strcpy
or memcpy that may be used to process the input data. In
our experiments, we could readily identify the appropriate
function call by examining the source code of the victim ap-
plication, or by dynamically tracing the function calls made
by it.

To upload additional code, the attacker sends specially
marked inputs to the victim. The exact format of these
inputs will need to be adapted to the victim application.
Conceptually, these inputs contain (a) a marker that identi-
fies a request from the attacker, (b) the code that is sent as
part of this input, and (c) an op-code that indicates what
the bootstrapping code should do with this code. When the
marker is recognized by the bootstrapping code, it will copy
the code into the memory region chosen in the previous step
(or another free area of memory). Note that the marker
could be implicit, e.g., the bootstrapping code may include
logic that treats inputs from certain IP addresses as coming
from the attacker. Alternatively, it could be a byte sequence
that is explicitly included in the input. In this case, the at-
tacker will aim to minimize the likelihood that other inputs
accidentally contain the marker, but such accidents can be
tolerated if they are rare: they would simply cause the cur-
rent bootstrapping phase to fail, and require the attacker to
retry the attack.

Note that the attack code contained in the input could be
encoded in some way to reduce the likelihood that it would
be identified by a content-based IDS. For instance, binary
code may be encoded into ASCII data, and converted back
by the boot-strapper.

The bootstrapping code should recognize two op-codes:
one that indicates a copy operation, and another that in-
dicates the bootstrap code should transfer control to the
beginning of the code uploaded during the bootstrap phase.
The bootstrapping phase ends when the second op-code is
processed.

3.3 Phase III: Operational Phase
The operational code uploaded during the bootstrapping

phase performs the real work of the attack. Note that it is
possible for this code to interpose on a different set of func-
tions (as compared to the bootstrapping phase) by appro-
priately modifying function pointers in the process memory.

From now on, the operational code gets to see and modify
all outgoing messages. It uses the same strategy as the boot-
strapping code to examine input messages. The operational
code can accomplish several attacker objectives using these
two capabilities:

• Extract client secrets. An attacker can use a persistent
interposition attack to obtain client credit card numbers
or other personal data from an e-commerce web server.

• Redirect clients. The adversary can redirect clients to
attacker-controlled hosts by modifying the responses to
name-lookup queries, or even by modifying the target ad-
dress of links in web pages served to them. Once clients
have been redirected, the adversary can attack them us-
ing his server.

Even if the redirection involves a cryptographically pro-
tected service such as HTTP over SSL, the attacker may
be able to combine redirection with stealing of server’s
private key to carry out a successful attack.

• Corrupt clients. An attacker can use a subverted file-
server to corrupt clients by giving them modified exe-
cutable binaries. Alternatively, servers may compromise
vulnerable clients by sending them malicious data, such
as image or multimedia files that can exploit buffer over-
flows or other vulnerabilities in clients.

• Drop messages. A system call monitor may prevent the
attack code from dropping an incoming message com-
pletely, but the attack can still alter the output actions
that result from this input. For example, an attack on an
email server could allow it to save a different email mes-
sage in the file system from the one that was received.

• Extract system secrets. Many servers read in the sys-
tem password file, /etc/shadow, to authenticate users.
The attack code could embed the contents of this file in
responses to the attacker, enabling her to perform an off-
line dictionary attack.

• Extract server secrets. Servers that support the SSL pro-
tocol have a private key that is used to authenticate the
server during connection negotiation. Since the key is
used during every connection, most servers keep it in
memory all the time. The attack code can look up the
server key and embed it in the responses to the attacker’s
subsequent messages.

• Extract arbitrary memory. In general, the attack code
could monitor incoming messages for commands of the
form (a, n), and return the contents of n memory loca-
tions starting with the address a.

Standard root-shell attacks could accomplish these goals as
well, but they would be detected by an I/O data oblivious
IDS. Persistent interposition attacks show how to accom-
plish these goals while remaining stealthy.

4. Implementation and Evaluation
In order to focus the exposition on aspects that are cen-

tral to establishing practicality of persistent interposition
attacks, we organize this section into three parts. In Sec-
tion 4.1, we present a complete persistent interposition at-
tack on the Apache web server. Section 4.2 considers the
attack phases described in the previous section and eval-
uates the feasibility of different alternatives suggested for
implementing them. In Section 4.3, we provide a theoretical
rather than an empirical analysis of how persistent inter-
position attacks can be implemented on a few more server
programs.

4.1 Apache OpenSSL Vulnerability
OpenSSL versions before 0.9.6d contained a buffer over-

flow in the handling of client-provided keys, known as the
KEY ARG overflow. Solar Eclipse [6] developed a code-
injection exploit against this overflow. This exploit over-
writes the GOT entry for free with the address of the in-
jected code. When the server subsequently calls free, it ends
up executing the injected code that spawns a shell. We mod-
ified this exploit as described below to construct a persistent
interposition attack.

4.1.1 Initial exploit phase
In our implementation, the initial exploit code was about

100 bytes, small enough to be accommodated in the payload
of typical code-injection exploits.

To decide where to store the exploit code, we performed
a dump of Apache’s global memory, and noticed that there
were three large and mostly unused buffers: ap_server_root,
ap_server_confname, and ap_coredump_dir. These character
arrays are 8KB each, but the path names stored in them are
typically only a few tens of bytes. We chose to copy our code
to an offset of 100 bytes from the base of ap_server_root.

Apache includes an extensive plug-in architecture that en-
ables dynamically loaded modules to override built-in func-
tionality. The SSL extension to Apache overrides the basic
input and output functions by registering two of its func-
tions, ssl_io_hook_read and ssl_io_hook_write, as the read
and write hooks. Our attack targets the ssl_io_hook_write

function pointer for interposition. It saves the current value
of this pointer and then overwrites it with a pointer to the
attack code.

There are benefits to interposing on the above functions.
First, it enables the attack code to access messages in plain-
text rather than ciphertext. Second, the attack will continue
to work even if GOT were made read-only.

It turned out that we did not need to interpose on calls
to ssl_io_hook_read at all, since the data returned by a read
operation is made available by Apache in a client request
argument to ssl_io_hook_write. We relied on this fact to
implement the attack entirely by interposing just a single
function call, namely, ssl_io_hook_write.

The initial exploit overwrites the GOT entry correspond-
ing to free. Thus, the cleanup phase in our attack consisted
simply of restoring this GOT entry to point to the location
of free function in glibc. Since the shared libraries were
loaded at the same address on the victim and the attacker’s
machine, it was easy to predict the value needed for restora-
tion.

4.1.2 Bootstrapping Phase
The bootstrapping code installed by the initial exploit

phase now intercepts calls to ssl_io_hook_write and can in-
spect and change its arguments. As mentioned previously,
an argument passed to this function also contains the data
read from the client. The interposed code checks the input
buffer for a special op-code indicating that a message con-
tains the operational attack code. In this case, it copies the
incoming operational attack code into the ap_server_root,
while being careful to avoid overwriting itself. If the op-
code indicates the end of operational code, then the boot-
strap code updates the write hook to point to the operational
code.

4.1.3 Operational phase.
The operational code uploaded by the attacker during the

bootstrap phase could be very large in principle, and could
perform the attacks described in Section 3. However, since
the focus of our evaluation was on the initial exploit and
bootstrap phases, we could do with a code size of about 200
bytes for a proof-of-concept operational phase. Our opera-
tional code simply monitored the number of requests han-
dled by the compromised server. The attacker can query
this number by sending specially crafted requests with an
op-code recognized by the operational code.

Apache forks off several child processes to handle incom-
ing requests, which poses some challenges to the operational
phase of our attack. A successful completion of this attack
compromises only one of these children. If subsequent at-

tacker command packets are processed by a different child
process, then our attack code will not see them. This prob-
lem is overcome either by repeating the attack to compro-
mise multiple children, or by resending command messages
until they reach the compromised child. A related problem
is that Apache dynamically adjusts the number of running
servers based on the number of incoming requests. If server
load drops for a long period, Apache may kill some children
processes. If all the compromised children are killed as a
result, then the attacker needs to repeat the attack in order
to compromise another one of the child processes that are
still alive.

In summary, we successfully implemented a persistent in-
terposition attack on the Apache server and were able to
utilize the operational code to query the number of requests
Apache had processed.

4.1.4 Verifying evasion of an I/O-data-oblivious
monitor

By design, persistent interposition attacks cannot be de-
tected by any IOM. Nevertheless, it would be useful to ex-
perimentally verify this. However, a direct verification is not
feasible since the system call monitors available today (or
those that are likely to be available in the future) are weaker
than the most powerful IOMs. Consequently, we need to
rely primarily on manual reasoning based on the definition
of IOMs to establish that no IOM can detect an persistent
interposition attack. Specifically, we used the following com-
bination of manual reasoning and experimentation to verify
that the attack presented above won’t be detected by any
IOM.

We used strace to generate logs of the system calls made
by Apache and each of its child processes. First, we started
the Apache server, and used a client to carry out the above
attack, and logged the system calls. We then restarted the
Apache server, and used the same client to send benign re-
quests. We recorded the system calls in this case. These
two steps were repeated several times to obtain multiple
logs, each corresponding to one (benign or attack) run. We
then used diff to compare the strace logs for each run. We
observed that across the benign runs, there were small dif-
ferences in the logs, such as the the position of sbrk and
mmap calls (both used for memory allocation), file descriptor
numbers and process ids. Since this variation is present in
benign runs, an IOM, by definition, must accept these varia-
tions. We then compared benign runs with attack runs and
verified that the differences between the two runs were the
same as those observed between benign runs, or were due to
the data arguments to read and write calls. Thus, an IOM
would accept the attack run as well.

4.2 Implementing Persistent Interposition
Attack on Other Applications

In this section, we consider each of the steps in persistent
interposition attacks, and evaluate the ease with which they
can be implemented. We chose a collection of applications
(rather than a single one) for this evaluation, so that we can
independently evaluate each of the implementation choices
mentioned in Section 3.

4.2.1 Initial Exploit Phase

Storing Bootstrap Code

Several alternatives were discussed in Section 3 for this
step. Of these, the feasibility of storing data in global buffers
was already established by the Apache case study. We also
verified the feasibility of copying attack data into the stack.
We used a test program for this verification, but the de-
tails won’t change across applications. Our implementation
pushes data on the stack within a loop, and pops off this
data. To ensure that the attack code won’t be clobbered
by the victim during its normal operation, the amount of
data pushed should be more than the total of the maximum
stack ever used by the victim and the memory needed by
the attack code. Since our implementation could allocate
hundreds of MBs of space in this manner without triggering
any system calls, we did not pursue storage of attack data
on the heap.

Interposing Bootstrap Code

Our Apache implementation demonstrated the feasibility
of interposing on application-specific function pointers used
to support module and plug-in functionality. Interposing
on GOT is perhaps most convenient, since it works reliably
across all applications in practice. We used interposition
on GOT entries for two server programs, namely, bind and
lsh. Interposing on virtual functions (or pointers to virtual
function tables) is also likely to be quite easy. However, we
did not have access to working exploits on real-world C++
applications, and hence didn’t evaluate this choice experi-
mentally.

Cleanup

Three common exploit types are prevalent today: stack-
smashing, heap-overflow and format-string attacks. We ob-
tained working exploits for the first two types, but could
not find a fully-working exploit of a format-string vulnera-
bility. Nevertheless, as described before, the technique for
recovery from a format-string exploit is similar to that of
heap-overflow or stack-smashing attack, depending on the
nature of “collateral damage” resulting from a format-string
attack.

Our Apache case-study has already demonstrated the ease
of the clean-up phase on a heap-overflow exploit, so we con-
sider stack-smashing exploits here. First, we examined the
trans2open vulnerability in the Samba server. This attack
overflows a 1024-byte stack buffer, overwriting the return
address on the stack frame above that of call trans2open.
We used an available exploit that launches a shell when
trans2open returns to its caller. As with any stack-smashing
attack, the value of the saved ebp pointer and the return ad-
dress on the stack are modified, causing the victim to crash
when the shell-code finishes. We modified this attack so
that the process could recover. Specifically, the length of
the overflow was reduced so as to avoid clobbering the local
variables of the caller. Next, as soon as control was trans-
ferred to the attack code, it computed the expected value of
ebp register from the value of the esp register and restored
this value. It then executed a ret instruction. These changes
added about 20 bytes to the shell-code and were sufficient to
allow the samba process to continue normal execution after
the attack without making any additional system calls.

4.2.2 Bootstrap Phase
The bootstrap phase remains essentially the same across

all applications, so we did not pursue additional feasibility
evaluation of this step beyond the Apache server.

4.2.3 Operational Phase
Since our intent is to demonstrate what can be accom-

plished by interposing attack code during normal operation
of a victim, we simplified our evaluation task by interposing
at the source-code level rather than using the more labor-
intensive binary-code interposition. We ensured that we
used only those capabilities that were available to code that
would be injected in binary form into a working process,
e.g., the ability to examine and alter input parameters to
an interposed function, or to change global data. Using this
approach, we verified that bind (a popular DNS server) and
lsh (a GNU implementation of the ssh version 2 protocol)
could be successfully attacked using a persistent interposi-
tion attack. We describe these results below.

BIND

DNS is a lightweight, connectionless, query-response pro-
tocol, so most DNS servers use a single process but may be
multi-threaded. We examined bind-8.2.2_p5 for targets for
code interposition. The GOT entries for sendto and recvfrom

are very convenient targets for an interposition attack. Our
attack interposed on sendto. Using documented DNS record
formats, we were able to identify the location of the IP ad-
dress (which is the most important piece of data within the
DNS response) within the buffer argument to sendto. We
simply modified this data to redirect clients to our server.
It is possible to make this attack stealthier by doing this sub-
stitution selectively, e.g., when the query is from a certain
IP address.

LSH

We inspected lsh-1.4.2 for interposition targets. After
authenticating a user, lshd does an execve on the lsh-execuv

program with command-line arguments that specify the user-
id and the group-id for the shell to be spawned. It is this lsh-
execuv program that executes the actual setuid and setgid

calls. In our attack, we targeted the GOT entry of execve. It
was simple to modify the argument data at the entry of the
execve call so as to set the userid to an arbitrary, attacker-
chosen value. Depending upon the configuration of the LSH
server, the attacker may still not be able to get a root shell
this way, but he/she can easily assume any other userid.
(Note that although this attack involves changing a system-
call argument, the change is undetectable to an IDS, in the
sense that the new value that we use would be a valid value
in a different run of the server, where the user correspond-
ing to this userid authenticated herself. The only difference
between such a run, corresponding to valid authentication,
and the attack sequence, is the authentication data itself,
which appears as the data argument to an input system call
— a difference that, by definition, can’t be detected by an
I/O data oblivious monitor.)

4.3 Possible attacks on other servers
In this section, we discuss (rather than experimentally

verify) possible persistent interposition attacks on a few ad-
ditional servers.

DHCP Servers

On most networks, DHCP servers provide clients with
their IP address, name server, and IP gateway, and may
be configured to supply even more configuration parame-
ters. An attacker could use a compromised DHCP server to
redirect client DNS requests to a server under his control,
or to redirect client packets through his computer, acting as
a gateway.

The Internet Systems Consortium DHCP server handles
all requests in one, long-lived process, making a persistent
interposition attack against the DHCP server relatively easy
and powerful.

Sendmail

Sendmail forks a new process to handle each incoming
mail message, so a persistent interposition attack against
sendmail’s message reception code will be of limited use –
the compromised server will exit soon, anyway. Sendmail
can also forward messages, though, and, in its default con-
figuration, uses a single process to handle all the messages
queued up for later transmission. If an attacker finds a bug
in sendmail’s message forwarding routines, he can mount
a persistent interposition attack on the forwarding process
by inserting malformed messages in the forwarding queue.
The attacker’s code can then read and modify all subsequent
messages processed from the same queue. This enables at-
tackers to alter forwarded emails, misdirect them, or read
the emails intended for arbitrary users.

5. Implications for Existing Defenses

System-call Learning Based IDS

Our work was motivated by the long series of research
works in this area [16, 27, 34, 8, 10, 3, 19, 30]. All of them
use I/O data oblivious models, and hence aren’t able to de-
tect persistent interposition attacks. The range of objectives
that are achievable using persistent interposition attack sug-
gests that one shouldn’t rely on these IDS to protect against
injected code attacks. Nevertheless, these techniques can be
used to detect various other types of attacks such as race
conditions, temp file bugs, and so on. More generally, due
to its reliance on learning, these techniques have the po-
tential to detect attacks that involve unintended uses of an
application that wasn’t captured in training.

Static-Analysis Based IDS

A number of system call monitoring IDS have been based
on static analysis of application code. Some of these tech-
niques rely on source-code analysis [32], while others can
operate on binaries [14, 7, 13]. They construct I/O data
oblivious models, and are hence susceptible to our attack.

The main advantage of this class of techniques is that they
don’t produce false positives. This is because they rely on
static analysis techniques that are sound with respect to the
semantics of the programming language (namely, C or C++)
of the victim application. As a result, these techniques will
detect only those attacks that cause the victim’s code to be-
have differently from the semantics specified by its language.
Many kinds of attacks, including race condition attacks due
to TOCTTOU vulnerabilities, temp file attacks, and vari-
ous types of injection attacks, do not involve any violation
of the semantics assumed by the static analysis, and hence

aren’t be detected by these techniques. Memory corruption
attacks do involve a violation of the language semantics and
hence fall within the scope of these techniques. However, our
techniques show that it is possible to modify typical memory
corruption exploits so as to evade detection by these IDS.
As a result, it is unclear if there are attack types that can
be reliably detected using existing static analysis based IDS
techniques.

Policy-Enforcement Techniques and Specification-

Based IDS

Well-defined policies or specifications with specific secu-
rity objectives can be successfully enforced using system-call
monitoring, and our results don’t dispute this in any man-
ner. However, in the absence of such policies, it is harder
to quantify the protection offered by these techniques. For
instance, Systrace and SELinux policies7 have the primary
objective of limiting damage to system resources and other
applications that can result when a protected application is
compromised. Their policies do achieve this objective. Our
results show that, even if the rest of the system is protected
from a successful attack against a single application, attack-
ers can still violate crucial security goals, such as stealing
private keys and passwords. System-call-monitoring policy-
enforcement techniques are therefore only part of a complete
defense system.

Techniques for Control Transfer Integrity Checking

Recently, techniques have been developed that are related
to system call monitors, but go beyond it in that they mon-
itor most control transfers rather than just system calls.
Control-flow integrity [2] transforms binaries to introduce in-
tegrity checks on targets of control transfers before any jump
or call. Such a technique can disrupt the initial control-
hijack step of code injection attacks. PAID [22] is a hy-
brid approach that incorporates a limited degree of integrity
checking into a system call monitor. In particular, it uses
source-code transformation to insert notify system calls be-
fore each indirect function call to report the target of the
indirect branch to a system call monitor. Although this was
designed as a measure to resolve non-determinism in the au-
tomata model extracted from the program by PAID, it has
the effect that the monitor will come to know about any
jump into injected code residing in data segment.

Injected code attacks seem virtually impossible with these
techniques, so persistent interposition attacks aren’t effec-
tive against them. However, there are simpler attacks that
can succeed against these techniques by simply modifying
system call arguments. Chen et al [5] demonstrate several
powerful memory corruption attacks that operate by cor-
rupting only data values, while providing the attacker with
capabilities similar to those of code injection attacks. Al-
though PAID can detect some of these attacks by examin-
ing system call arguments, due to the difficulty of accurate
data flow analysis in languages such as C, there will likely
be plenty of opportunities to craft successful data attacks.

Defenses against memory corruption attacks

The results of this paper, together with the above discus-
sion, reinforce the idea that effective defenses against mem-

7SELinux policies aren’t stated in terms of system calls, but are
close enough for our purposes, so we discuss them together with
system-call based techniques.

ory corruption attacks need to focus on the corruption step
itself, rather than attempting to contain the damage that
follows memory corruption. The best defenses are provided
by techniques that detect a memory error before it happens,
such as those described in [24, 17, 26]. However, these tech-
niques may cause performance or compatibility problems, in
which case one might rely on techniques designed to detect
memory error exploits such as address-space randomization
[1, 4].

Network IDS and Payload Anomaly Detection Tech-

niques

Network IDS, such as Snort and Bro, scan the content
of packets in search of known attack signatures. However,
signatures aren’t available for unknown exploits, and hence
a successful persistent interposition attack can be crafted
based on such exploits.

Several techniques have emerged recently that detect in-
trusions by identifying anomalies in protocol payload data
[33, 21]. Such content-based intrusion detection systems
have been based on statistical analysis of input requests to
a server, and recognizing anomalies such as binary data, or
data with other unusual characteristics. These systems fall
outside our definition of I/O data obliviousness. However,
other researchers [9] have already developed techniques that
are orthogonal to ours in order to evade existing content-
based IDS. These techniques rely on encoding attack inputs
in such a manner that their characteristics (e.g., byte fre-
quency distribution) conform to the normal profile used by
the IDS (e.g., PAYL [33]). These techniques can easily be
combined with our attack technique since it gives the at-
tacker full control over the contents of attack inputs as well
as all outputs of the victim server.

6. Related Work
We limit our discussions in this section to mimicry attacks

and other related work that hasn’t previously been discussed
in this paper. Wagner and Soto [31] pioneered the concept
of mimicry attacks. They suggest several strategies for con-
structing mimicry attacks, but ultimately choose one that
hijacks control-flow of the victim application, and executes
a system call sequence that is consistent with the application
model used by the IDS. The attacker’s objectives could still
be achieved by altering the arguments to these system calls,
since the IDS they considered didn’t monitor system-call ar-
guments. All subsequent works on mimicry attacks [29, 11,
20, 15] have relied on this strategy that couples control-flow
hijack with modifications to system-call arguments.

Wagner and Soto pose the problem of generating such
an attack sequence as a finite-state automata intersection
problem, and generated a mimicry attack consisting of over
100 system calls that achieves the effect desired by an initial
exploit consisting of 8 system calls. However, they did not
implement a working mimicry attack. This problem was
addressed by Tan et al [29], but their focus was on black-
box IDS. Ours is the first working mimicry attack against
real-world applications protected by gray-box IDS.

Gao et al [11] coined the term gray-box anomaly detector,
and developed an elegant framework that unified previously
known system-call anomaly detectors [16, 27, 8, 34], and
further generalized them. They evaluate these anomaly de-
tectors in terms of their resistance to mimicry attacks. For
programs such as wu-ftpd and Apache httpd, they show that

the minimum possible length of mimicry attacks is between
5 and 50 system calls, with the sequence length increasing
with the precision of models.

Recent research has targeted the two main problems in
developing the kinds of mimicry attacks described above.
First, manual generation of these mimicry attacks is hard,
given that typical attack sequences consist of several tens
to hundreds of system calls. Second, as described in the
Introduction, it is difficult for the attack code to make a
series of system calls against a gray-box IDS.

Giffin et al [15] generate mimicry attack sequences using
techniques from model-checking. The input to the model
checker includes a (manually developed) specification of OS
behavior, the program behavior model used by the IDS, and
a specification that characterizes an “unsafe” OS state de-
sired by an attacker. By using the OS model, their tech-
nique can generate all possible mimicry attacks that achieve
the OS state desired by the attacker, instead of being lim-
ited by an initial exploit that served as the starting point for
previous works. Moreover, the OS model enables the gener-
ation of arguments to system calls used in a mimicry attack.
Although their formulation can handle push-down models,
their evaluation considered the finite-state models generated
by the Stide technique [16]. They did not consider gray-box
IDS.

A significant problem when generating mimicry attacks
against gray-box IDS is that system calls cannot be made
directly by attack code, since the IDS can then detect the
presence of a return address on the stack that falls outside of
the program text. To cope with this problem, Gao et al [11]
suggest that the attack code must jump to existing code
in the victim application that will then make the system
call on behalf of the application. However, this means that
after the execution of system call, control will return back
to the application rather than the attack code. To regain
control, they suggest modification of a code pointer used
by the application code following the system call so that it
points back to the attack code. They showed the feasibility
of this technique on a small example program, but manual
development of mimicry attacks based on this technique for
realistic programs poses a daunting challenge.

Kruegel et al [20] address the above challenge with a novel
technique that automates the steps needed for regaining
control. Specifically, they use symbolic code execution to
compute relationships between the memory (and register)
contents at the point where the attack code jumps into the
application code, and the code pointers used subsequently
by this code. By analyzing these relationships, their analysis
identifies if control can be regained, and if so, the memory
locations that need to be modified and their contents. They
demonstrated their technique on three example programs
(about 30 lines each), as well as real applications such as
Apache, showing that about 90% of the time, control could
be successfully returned to the attack code. However, the
focus of their evaluation was to demonstrate the ability of
their symbolic execution technique to generate configura-
tions that can return control back to the attack code. As
mentioned before, several additional problems that need to
be addressed before constructing working mimicry attacks
against real-world applications were left open.

7. Conclusion
It is well known that no intrusion detection system can

precisely capture all deviations from an application’s cor-
rect behavior, but our research shows that, with relatively
little engineering effort, adversaries can execute powerful
attacks while blending in almost undetectably with the se-
quences of system calls normally executed by an application.
Our attack can evade all system-call-based intrusion detec-
tion systems with which we are familiar. The need to work
against powerful system-call monitors that examine almost
all system-call arguments will typically prevent persistent
interposition attacks from achieving arbitrary goals such as
gaining a root-shell, but we showed that typical end-goals
such as stealing credit-cards or hijacking and impersonating
servers can be achieved.

Whereas previous mimicry attacks required static analy-
ses to discover system call sequences that can compromise
an IDS, and to regain control between these system calls,
our technique side-steps these problems by “co-opting” the
vulnerable application into invoking the attack code at con-
venient points during its execution. As a result, persistent
interposition attacks are practical for today’s hackers to im-
plement using skills and tools they already have, making
them a more realistic threat as compared to prior mimicry
attacks.

Persistent interposition attacks demonstrate the limits of
system-call monitoring defenses in general, as any defense
that could detect our attack would begin to emulate the
monitored victim application. They call into question the
feasibility of developing system-call monitors that can reli-
ably detect the most common type of attack prevalent today,
namely, code-injection attacks.

Our results don’t imply the absence of practical defenses
against persistent interposition attacks. As discussed ear-
lier, code injection defenses, as well as memory error exploit
defenses, will defeat these attacks. But our results do high-
light the importance of deploying dedicated defenses against
powerful attack vectors such as memory errors, rather than
relying on the secondary line of defense provided by intru-
sion detection systems.

8. References
[1] The PaX team. http://pax.grsecurity.net.

[2] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay
Ligatti. Control-flow integrity - principles,
implementations, and applications. In ACM conference on
Computer and Communications Security (CCS), 2005.

[3] S. Bhatkar, A. Chaturvedi, and R. Sekar. Dataflow
anomaly detection. In IEEE Symposium on Security and
Privacy, 2006.

[4] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney.
Efficient techniques for comprehensive protection from
memory error exploits. In Proceedings of the 14th Usenix
Security Symposium, pages 271–286, August 2005.

[5] Shuo Chen, Jun Xu, Emre C. Sezer, Prachi Gauriar, and
Ravi Iyer. Non-control-data attacks are realistic threats. In
USENIX Security Symposium, Baltimore, MD, August
2005.

[6] “Solar Eclipse”. openssl-too-open. http:
//www.phreedom.org/solar/exploits/apache-openssl/.

[7] H. Feng, J.T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P.
Miller. Formalizing sensitivity in static analysis for
intrusion detection. In IEEE Symposium on Security and
Privacy, 2004.

[8] H. Feng, O. Kolesnikov, P. Folga, W. Lee, and W. Gong.
Anomaly detection using call stack information. In IEEE

Symposium on Security and Privacy, May 2003.

[9] Prahlad Fogla, Monirul Sharif, Roberto Perdisci, Oleg
Kolesnikov, and Wenke Lee. Polymorphic blending attacks.
In USENIX Security Symposium, August 2006.

[10] Debin Gao, Michael K. Reiter, and Dawn Song. Gray-box
extraction of execution graphs for anomaly detection. In
ACM conference on Computer and Communications
Security (CCS), pages 318–329, Washington, DC, October
2004.

[11] Debin Gao, Michael K. Reiter, and Dawn Song. On
gray-box program tracking for anomaly detection. In
USENIX Security Symposium, pages 103–118, San Diego,
CA, USA, August 2004.

[12] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A
delegating architecture for secure system call interposition.
In USENIX Security Symposium, Washington, DC, USA,
August 2003.

[13] Jonathon T. Giffin, David Dagon, Somesh Jha, Wenke Lee,
and Barton P. Miller. Environment-sensitive intrusion
detection. In Recent Advances in Intrusion Detection
(RAID), September 2005.

[14] Jonathon T Giffin, Somesh Jha, and Barton P. Miller.
Efficient context-sensitive intrusion detection. In Network
and Distributed System Security Symposium, San Diego,
CA, February 2004.

[15] Jonathon T. Giffin, Somesh Jha, and Barton P. Miller.
Automated discovery of mimicry attacks. In Diego Zamboni
and Christopher Krügel, editors, RAID, volume 4219 of
Lecture Notes in Computer Science, pages 41–60. Springer,
2006.

[16] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji.
Intrusion detection using sequences of system calls. Journal
of Computer Security (JCS), 6(3):151–180, 1998.

[17] Robert W. M. Jones and Paul H. J. Kelly.
Backwards-compatible bounds checking for arrays and
pointers in C programs. In M. Kamkar and D. Byers,
editors, Third International Workshop on Automated
Debugging. Linkoping University Electronic Press, 1997.

[18] Calvin Ko, George Fink, and Karl Levitt. Automated
detection of vulnerabilities in privileged programs by
execution monitoring. In Annual Computer Security
Applications Conference (ACSAC), December 1994.

[19] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna. On the
detection of anomalous system call arguments. In European
Symposium on Research in Computer Security, Gjøvik,
Norway, October 2003.

[20] Christopher Kruegel, Engin Kirda, Darren Mutz, William
Robertson, and Giovanni Vigna. Automating mimicry
attacks using static binary analysis. In USENIX Security
Symposium, Baltimore, MD, August 2005.

[21] Christopher Kruegel and Giovanni Vigna. Anomaly
detection of web-based attacks. In Proceedings of the 10th
ACM Conference on Computer and Communications
Security (CCS), 2003.

[22] Lap Chung Lam and T. Chiueh. Automatic extraction of
accurate application-specific sandboxing policy. In Recent
Advances in Intrusion Detection (RAID), Sophia Antipolis,
French Riviera, France, September 2004.

[23] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. In Proc. of
the FREENIX Track: 2001 USENIX Annual Technical
Conference, 2001.

[24] George C. Necula, Scott McPeak, and Westley Weimer.
CCured: type-safe retrofitting of legacy code. In
Symposium on Principles of Programming Languages
(POPL ’02), pages 128–139, Portland, OR, January 2002.

[25] Niels Provos. Improving host security with system call
policies. In USENIX Security Symposium, Washington,

DC, USA, August 2003.

[26] Olatunji Ruwase and Monica S. Lam. A practical dynamic
buffer overflow detector. In Network and Distributed
System Security Symposium (NDSS), February 2004.

[27] R. Sekar, M. Bendre, P. Bollineni, and D. Dhurjati. A fast
automaton-based method for detecting anomalous program
behaviors. In IEEE Symposium on Security and Privacy,
2001.

[28] R. Sekar and P. Uppuluri. Synthesizing fast intrusion
prevention/detection systems from high-level specifications.
In Usenix Security Symposium, August 1999.

[29] Kymie Tan, Kevin Killourhy, and Roy Maxion.
Undermining an anomaly-based intrusion detection system
using common exploits. In Recent Advances in Intrusion
Detection (RAID), LNCS 2516, pages 54–73, Zurich,
Switzerland, October 2002. Springer-Verlag.

[30] G. Tandon and P. Chan. Learning rules from system call
arguments and sequences for anomaly detection. In ICDM
Workshop on Data Mining for Computer Security
(DMSEC), pages 20–29, 2003.

[31] D. Wagner and P. Soto. Mimicry attacks on host based
intrusion detection systems. In ACM conference on
Computer and Communications Security (CCS), 2002.

[32] David Wagner and Drew Dean. Intrusion detection via
static analysis. In IEEE Symposium on Security and
Privacy, Oakland, CA, May 2001.

[33] Ke Wang and Salvatore J. Stolfo. Anomalous
payload-based network intrusion detection. In Proceeding of
7th International Symposium on Recent Advances in
Intrusion Detection (RAID), 2004.

[34] A. Wespi, M. Dacier, and H. Debar. Intrusion detection
using variable-length audit trail patterns. In Recent
Advances in Intrusion Detection (RAID), Toulouse,
France, October 2000.

	1 Introduction
	2 Input/Output-Data-Oblivious System-Call Monitors
	3 Design of Persistent Interposition Attacks
	3.1 Phase I: Initial Exploit Phase
	3.2 Phase II: Bootstrapping Phase
	3.3 Phase III: Operational Phase

	4 Implementation and Evaluation
	4.1 Apache OpenSSL Vulnerability
	4.1.1 Initial exploit phase
	4.1.2 Bootstrapping Phase
	4.1.3 Operational phase.
	4.1.4 Verifying evasion of an I/O-data-oblivious[0.02in] monitor

	4.2 Implementing Persistent Interposition[0.02in] Attack on Other Applications
	4.2.1 Initial Exploit Phase
	4.2.2 Bootstrap Phase
	4.2.3 Operational Phase

	4.3 Possible attacks on other servers

	5 Implications for Existing Defenses
	6 Related Work
	7 Conclusion
	8 References

