
1

Automatic Generation of Assembly to IR
Translators Using Compilers

Niranjan Hasabnis and R. Sekar

Stony Brook University, NY, USA

Abstract—Translating low-level machine instructions into
higher-level intermediate representation (IR) is one of the central
steps in many binary translation, analysis and instrumentation
systems. Most of these systems manually build the machine
instruction to IR mapping table needed for such a translation.
As a result, these systems often suffer from two problems:
(a) a great deal of manual effort is required to support new
architectures, and (b) even for existing architectures, lack of
support for recent instruction set extensions, e.g., Valgrind’s lack
of support for AVX, FMA4 and SSE4.1 for x86 processors. To
overcome these difficulties, we propose a novel approach based
on learning the assembly-to-IR mapping automatically. Modern
compilers such as GCC and LLVM embed knowledge about
these mappings in their code generators. By leveraging this
knowledge, our approach can greatly reduce the implementation
effort required for lifting binary code to IR. Moreover, such an
approach is architecture-neutral, being able to support numerous
architectures for which GCC (or other compilers) already have
a backend. While coverage can be a challenge in learning-based
approaches, note that in this problem domain, there is virtually an
endless supply of training data that can be obtained by translating
vast quantities of open-source code using compilers such as GCC
and LLVM. We present experimental results that demonstrate
the promise of our approach. Already, our implementation can
support multiple architectures (x86, ARM and AVR), handle
binaries of significant size (openssl and binutils), and be
applied to multiple compilers (GCC and LLVM).

I. Introduction
Binary translation has been a very popular technique in provid-
ing cross-ISA compatibility for decades with QEMU [1] being
one of the popular open-source binary translators. Binary in-
strumentation, on the other hand, has been a popular technique
in software monitoring, debugging and policy enforcement. Pin
[2], Valgrind [3], and DynamoRio [4] are among the most
frequently used frameworks to support such instrumentation.

Translating assembly (or binary code) to an intermediate
representation (IR) is the first step in such frameworks. For
instance, Valgrind translates assembly instructions to its IR
called VEX. The essential idea behind using IR is to make the
instrumentation code for debugging and policy enforcement
architecture-independent, and thus applicable for binaries of
any architecture. Architecture-independence is thus one of
the desired properties of such frameworks. But all these
frameworks suffer from one significant limitation: they rely

This work was supported in part by grants from NSF (CNS-0831298, CNS-
1319137) and AFOSR (FA9550-09-1-0539).

on manually developed translators from assembly to their
IR. Unfortunately, such a manual approach is laborious and
error-prone for complex architectures such as x86, where
the manuals describing the instruction set semantics run to
thousands of pages (for instance, Intel’s 1400-page instruction
set reference (version 052) [5].) As a result, these frameworks
often support only a limited number of architectures, and
even for a single architecture, support only a subset of the
instructions. For instance, Valgrind1, still lacks support for
several classes of x86 instructions, including AVX, FMA4, and
SSE4.1, even after being in development for 10 years.

In this paper, we propose a novel automatic approach that
significantly reduces the manual efforts needed to build assem-
bly to IR translators. Our approach relies on the observation
that modern compilers such as GCC [6] and LLVM [7] already
contain detailed knowledge about instruction semantics for
many different architectures. Specifically, their code generators
can translate their IR to assembly code for many different
architectures. Moreover, these compilers have been tested
extensively, thereby minimizing the chances for errors in
modeling instruction set semantics. Thus, an interesting open
question is: Can we leverage the knowledge encoded in modern
retargetable compilers for lifting assembly back to IR? We
answer this question in the affirmative, and develop a (largely)
black-box approach for extracting this knowledge into rules
for translating assembly into IR.

Our approach offers three main benefits. First, it deals with
most of the complexities of modern instruction sets automati-
cally. Second, it helps in supporting many more architectures
than those supported by existing manual approaches. Third, it
also helps in supporting recent instruction set extensions for
existing architectures.

Our evaluation shows the potential of our approach. We have
demonstrated its ability to support three different architectures
(x86, ARM and AVR), while taking only a few man-hours
for each additional architecture. It is already able to handle
moderate-sized programs such as openssl and binutils, and
can work with multiple compilers (GCC and LLVM).

II. Approach and System Design
Compiler researchers have long worked to develop
architecture-independent code generators [8]. These code
generators start with an intermediate representation (IR),
and emit assembly code. GCC’s code generator is driven by

1We used Valgrind version 3.7.0 for our testing.

2

an instruction set specification called a machine description
(MD). Typically, there is a single MD rule corresponding to
each assembly instruction, and it specifies the semantically-
equivalent IR code. There may be additional constraints that
limit when each rule is applicable, e.g., some of the operands
should be registers.

Code generation now becomes a pattern-driven process:
given a piece of IR code that needs to be translated to assembly,
the code generator compares snippets of this IR against the IR
snippets in each MD rule, and replaces the matching IR by the
assembly instruction specified in the rule.

It may appear that we could simply use these MD rules in
reverse to translate assembly into IR. Unfortunately, this is not
possible because the MD rules are not complete specifications.
While they typically include basic information such as the
assembly instruction name and the number of operands, many
concrete details are hard-coded directly into the source code
of the code generator, and are not present in the MD rules.
Missing details include (a) the addressing modes and the
operand expressions (at the assembly as well as IR levels),
and (b) the conditions under which a rule is applicable, and
on so on. As a result, the MD rules cannot directly be used to
translate assembly to IR without considerable additional work
to understand the source code of the architecture-specific com-
ponents of the code generator, and encoding this knowledge
directly into MD rules2.

The incompleteness of MD specifications motivates the
approach we propose — a blackbox approach that discovers
the mapping by simply observing the (IR) inputs and the
corresponding (assembly code) outputs of a code generator,
and learning the mappings from these observations. Moreover,
availability of vast amounts of training data, obtained by
compiling large bases of open-source software, makes such
learning-based approach feasible. Another important benefit
of our blackbox approach is that it isn’t tied to a particular
compiler, e.g., it can be applied to GCC as well as LLVM
without requiring any changes.

A. System Design
We first use GCC to compile many source code packages, and
collect the IR to assembly translations performed by GCC.
Figure 1 illustrates a mapping observed when compiling a
program containing the statement x = x+ 2. All such captured
IR to assembly mappings are then fed to the next step in the
process.

The simplest learning approach is to memorize the exact
translations observed in the training data. We call this approach
Exact recall. However, such approach requires impractical
volumes of training data, while using unacceptable amount of
memory to store the mappings. For instance, the raw mapping
in Figure 1 can only handle the case of adding 2, and we
would need 232 such rules to handle all possible 32-bit values
of that can appear in place of 2. To avoid such explosion,

2These observations about machine descriptions apply not only to GCC
but also to LLVM, whose target descriptions are partly in the form of spec-
ifications, with many concrete details incorporated directly into architecture-
specific components of LLVM source-code.

IR instruction Assembly instruction
[(set (reg : SI ax)
(plus (reg : SI ax) add $2,%eax
(const int 2)))

(clobber (reg : FLAGS))]

Fig. 1: x86 add assembly instruction and its IR

we developed an approach for learning parameterized rules as
described below.

We begin by identifying parameters in assembly instruc-
tions. Currently, we identify only numeric parameters, such as
the number 2 in the above example. One reason for this choice
is that numeric parameters are the main source of explosion
in terms of the number of raw mappings produced; other
parameters such as registers don’t lead to an explosion since
their domain is usually small.

Once parameters are identified, they are replaced with a
symbolic parameter name in the assembly instruction. Any
occurrences of the replaced value in the IR are also replaced
with the corresponding parameter name. At this point, a pa-
rameterized rule can be learned. For instance, for the example
shown in the Figure 1, its parameterized rule is shown in
the row 1 of Figure 2. This parameterized rule captures the
semantics of adding any numeric constant to the eax register.

Blindly replacing constant values in IR with parameter
names can lead to errors in some cases. For instance, for
an assembly instruction foo $2, $2, the corresponding IR
instruction will mostly have immediate 2 a couple of times.
In that case, just looking at this mapping rule, it would be
hard to tell which $2 is first parameter and which one is
second parameter. Note that this ambiguity arises because
of limited training data (specifically, just one instance of
foo $2, $2 is not enough to understand precise parameter
mapping.) To resolve this confusion, we rely on a simple
idea of processing multiple instances of the same assembly
instruction with different parameter values. For instance, for
above example, we will look for an instruction foo $2, $3.
That way, parameter positions become clear. Having multiple
instances eliminates the errors that might occur when we have
only one instance.

Note that our parameterized rule learning predominantly
assumes that constants appear unchanged between IR and
assembly. Nonetheless, we have explored extensions that sup-
port simple transformations on parameters, such as addition,
subtraction, multiplication, or division with a constant. For
instance, occurrences of x in assembly may be replaced by
x+1, or perhaps x×2 in IR. However, in our experiments so
far, we have observed such transformations only for assembly
instructions that subtract a constant (e.g., x86 subl). For such
instructions, IR semantics is to add −x.

In the final step, we flag any inconsistencies identified in the
parameterized rules. Two types of inconsistencies are possible.
The first involves multiple distinct parameterized assembly
instructions produce the same IR. This is usually not a cause
for concern, as there can be several assembly instructions
that have the same effect, such as xor %eax,%eax and
mov $0,%eax. Currently, we manually examine these cases to

3

No IR Assembly
(set (reg : SI ax)(plus

1 (reg : SI ax)($P))) add $P,%eax
(clobber (reg : FLAGS))
(parallel [
(set (reg : SI r4)

2 (minus : SI (reg : SI r3) subs r4, r3, r7
(reg : SI r7)))

(clobber (reg : CC cc))])
(set (reg : DF st0)

3 (neg : DF fchs
(reg : DF st0)))

Fig. 2: Examples of parameterized rules generated by our
approach

verify that there is no ambiguity; development of automated
techniques to reduce the number of manual inspections is a
topic of ongoing research. The second inconsistency involves
a mapping of the same assembly instruction to distinct IRs.
Unless all such IRs are semantically equivalent, this incon-
sistency likely indicates an error in the mapping. We are
currently developing techniques for recognizing common cases
of equivalence among IRs, and avoid the need for manual
examination to rule out inconsistencies. In our experiments
so far, we have had to deal with a few instances of first
inconsistency, while those of second inconsistency were none.

B. Illustration and Discussion
Figure 2 lists a few illustrative examples of the rules learned
by our approach. We make following comments based on these
examples.

• Our approach requires only the barest minimum details
about the architecture. For instance, the row 2 in the
figure shows an ARM assembly instruction. Someone
who isn’t well-versed in ARM assembly may not be
able to identify the source and the destination operands
of the assembly instruction. It is interesting to note that
this information is obvious in the IR component of the
rule learned by our system, even though our implemen-
tation has no knowledge about these details. Indeed, our
implementation does not make any distinction between
x86, ARM, or assembly formats.

• Handling implicit operands. Many architectures, espe-
cially x86, have instructions where some of the operands
are implicit. To translate such assembly instructions into
IR, one needs to know all the implicit operands, and ex-
pose them accurately in IR. This is yet another complex
task which must be handled by manual approach. But
our approach does not need to handle it at as GCC’s
MD rules clearly specify such implicit operands. For
instance, the fchs instruction has no explicit operands,
but at the IR-level, GCC’s code generator has captured
the operands affected by the instruction.

• Capturing all the effects of instruction execution. A
potential concern in using machine descriptions is that at
the IR level, some effects may be specified incompletely,

or may be missing altogether.
CPU flags are the usual example of incomplete specifi-
cation. From rows 1 and 2, we only have the information
that flags are clobbered (i.e., modified) by the instruc-
tion, without specifying exactly how. This incomplete-
ness will be a problem in some applications (a typical
example being malware analysis), but not for binary
instrumentation: note that any missing information can
be obtained by directly querying the CPU at runtime
using an appropriate instruction, e.g., the x86 instruction
lahf can be used to move the value of CPU flags to
the ah register. Binary instrumentations can use such
instructions to obtain the values of any operands whose
values are incompletely specified.
While incomplete specifications are easy to deal with in
the context of binary instrumentation, missing effects
can be a serious problem that compromises the cor-
rectness of instrumentation. Fortunately, MDs generally
will not leave out effects, or else they would cause the
compiler to emit incorrect code. For instance, suppose
that there is an assembly instruction I that modifies a
register X but this effect is missing in the corresponding
IR component of the MD. This would render incorrect
many low-level analyses results computed by the com-
piler, e.g., the set of registers modified in a basic block.
This can, in turn, lead to incorrect register allocation,
and/or clobbering of results previously stored in register
X and accessed by an instruction following I .

III. Implementation
Our current prototype implementation works on Linux, and
we have used it to automatically generate assembly-to-IR
translators for x86, ARM and AVR3 architectures using GCC-
4.6’s code generator.

The implementation for collecting IR to assembly transla-
tions is architecture-neutral and is done using a GCC plugin
which took around 70 lines of C code. The plugin is used
in a standard manner in which GCC plugins are used. To
collect IR to assembly translations for foo.c, one would use
the command gcc -dP -fplugin=rule_collection.so
-fplugin-arg-out-file=log.S foo.c, where -dP is a
standard GCC option to tell GCC to dump the IR corre-
sponding to each assembly instruction as a comment. Thus the
translation collection phase easily integrates with configure
and make based package compilation process used commonly
on Linux.

The implementation of parameterized rule-learning is inde-
pendent of GCC, and it took 900 lines of C++ code. All this
code is architecture-independent, but we do require minimal
architecture-specific code (around 70 lines per architecture) to
identify comments and actual assembly instructions from the
collected dump files. Architecture-independent code identifies
parameters from the assembly instructions (we do not encode
architecture-specific knowledge (such as syntax) for identi-
fying parameters — code simply looks for numeric values)

3AVR is a modified Harvard architecture 8-bit RISC single chip microcon-
troller which was developed by Atmel in 1996.

4

and maps them to IR parameters. The mapping functions
implemented are exact equality and transformation functions
such addition, subtraction, multiplication, and division with a
constant (between 1 and 644). In the last step, exact duplicate
parameterized rules are eliminated.

IV. Evaluation
In this section, we provide experimental results that demon-
strate the benefits outlined earlier. To evaluate effectiveness of
our approach, we used it to build assembly-to-IR translators
for x86, ARM, and AVR architectures. We used openssl and
binutils packages to obtain compilation logs.

a) Sizes of the compilation logs and the generated assembly-
to-IR translators: Figure 3 compares the sizes of the compi-
lation logs and the assembly-to-IR translators extracted using
these logs. We used 3 different metrics for comparison: the
number of unique concrete rules (obtained after removing exact
duplicates) from the log files, the number of parameterized
rules derived by our approach from the concrete rules, and the
number of mnemonics covered by the derived parameterized
rules. Interesting things to note about the figure is that our ap-
proach obtains around 3X reduction in the number of concrete
rules by parameterizing them and eliminating duplicate param-
eterized rules. Although the number of mnemonics covered by
the combination of openssl and binutils is not considerably
more than that covered by these packages individually, increase
in the number of concrete rules indicate that a plenty of new
operand combinations were covered. These combinations also
translated in the increase of the number of parameterized rules
when logs obtained from new packages are added to existing
list.

b) Correctness: To ensure correctness, we undertook two
steps. First, our system reports an error if there can be any
assembly instruction that can be mapped into two distinct IRs.
Second, we use a “loop back” test: we use the assembly-to-IR
mapping learned by our system to lift a binary B to IR. We
then run the compiler (GCC in our case) with the IR as input,
and verify that it produces the exact same assembly code as
in the binary B. This loop-back test was performed on all of
the binaries used in the tests, and it worked without generating
any discrepancies or errors.

c) Completeness: A systematic evaluation of completeness
requires significant knowledge about a target architecture, or
else we cannot be sure whether all possible instructions have
been used. While it is relatively easy to enumerate all possible
opcodes, it is nontrivial to identify all possible operands,
especially in the case of complex instruction sets. Moreover,
we need to identify a collection of applications that use all
of these instructions, which is another nontrivial task. For this
reason, we have used an indirect approach that is commonly
used for evaluating learning based approaches: we use a set
of programs (Ptrain) to obtain compilation logs, and test them
using assembly instructions obtained from another set (Ptest)

4Limits 1–64 are configurable. We found this range to be sufficient for all
the tested instructions.

of programs. In particular, we determine what fraction of the
instructions in the binaries for Ptest can be lifted by the
rules learned from Ptrain. Specifically, for our experiments,
Ptrain consists of openssl and binutils packages, while
Ptest consists of selected programs from the coreutils
package. As a comparison point, we implemented an exact
recall approach, which would look for exact match of assembly
instructions from Ptest binaries in the logs obtained from
Ptrain. If a match is found, the corresponding IR instruction
is emitted as the translation of the input assembly instruction.

The result is shown in Figure 4a. In the figure, results
are presented for a combination of different training data and
assembly-to-IR translation approaches (In the figure, ER stands
for exact recall). For this testing, we used coreutils binaries
that come along with a typical Ubuntu-14.04 desktop install5.
Labels on x-axis contain coreutils program names and the
number of assembly instructions in them. After training our
system with GCC’s logs of openssl and binutils, we could
lift an average of around 94% instructions in all of coreutils
binaries. On the other hand, after training with the log of only
openssl, our system could translate an average of around
90.7% of the instructions. It clearly indicates that binutils
package provided some operand combinations which were not
found in the openssl log, and these combinations helped
in translating 3.3% of the additional instructions. This ob-
servation also falls in line with a slight improvement in the
results of exact recall. Nonetheless, even with the combined
log, exact recall could translate an average of around 42%
instructions only. This underlines the potential of replacing
constants with parameters, which helped our system cover
around 50% additional instructions.

The reason we could not lift 100% of the instructions can
be attributed to certain instructions we could not lift. One
such case is that of instructions (e.g., nop) generated by
the assembler for padding bytes6. These instructions are not
generated by GCC, and hence are not learned by our system.
Another source of incompleteness is that the compiler itself
may not use all of the instructions from a target architecture. To
address these sources of incompleteness, it may be necessary
to manually specify rules for missing instructions. Still, the
amount of manual effort required is greatly reduced as com-
pared to approaches that rely entirely on manual specifications:
the vast majority of instructions are already handled by our
learning approach, so only a small fraction may have to be
manually specified. Lastly, we also speculate that register
combinations might also be contributing some percentages
(though not significant) to the instructions that could not be
lifted. To address this issue, we might consider about treating
registers as parameters in the future.

d) Support for multiple architectures: We then repeated the
completeness tests described in the preceding paragraph for
the ARM architecture. After training our system with the

5To the best of our knowledge, Ubuntu uses GCC to compile programs. We
speculate that the exact version of GCC used is 4.7.

6Since these instructions are padding bytes, we might think that these
need not be lifted. But we do not want to encode such architecture-specific
knowledge in our system.

5

Arch Parameter Packages used for compilation
openssl binutils openssl+binutils

of unique concrete rules (in K) 21.8 40.3 55.3
x86 # of parameterized rules (in K) 6.7 14.2 19.4

of unique mnemonics 100 132 135
of unique concrete rules (in K) 32.4 38.7 45.1

ARM # of parameterized rules (in K) 7.3 11.5 15.2
of unique mnemonics 87 97 104
of unique concrete rules (in K) 0.3 0.43 0.56

AVR # of parameterized rules (in K) 0.17 0.25 0.31
of unique mnemonics 23 27 35

Fig. 3: Details of training data used for learning purpose

compilation logs of openssl and binutils (obtained using
GCC’s cross-compiler for ARM), we could lift an average
of around 91% of the instructions of the ARM’s coreutils
binaries (same ones used in x86 test). On the other hand, exact
recall could reach the maximum of around 33%.

We then selected AVR architecture, which is not supported
by any of the existing binary instrumentation frameworks.
We trained our system by compiling openssl and binutils
packages using GCC’s cross-compiler for AVR, and then tested
it on same set of coreutils binaries (for AVR) used in x86
test. Our system was able to translate 92% of the instructions,
while exact recall was able to translate the maximum of
around 48%. The total time taken including the time to port
architecture-specific part of our implementation was hardly 3
man hours.

e) Compiler Independence: To find out how many of the in-
structions produced by compilers other than GCC can be lifted
by our system, we used LLVM compiler (clang3.3) to pro-
duce coreutils binaries for x86 by compiling coreutils-
2.23 package. We lifted the compiled binaries to IR using
the rules learned from GCC’s compilation logs of openssl
and binutils. Results of this evaluation are summarized in
Figure 4b. Our system was able to lift an average of around
91% of the instructions. We found that 9% instructions that we
could not lift were using mnemonics and operand combinations
not covered in the training data. This finding is also reflected
in the result of exact recall, which is around 37% for LLVM
produced binaries (while it is around 42% for GCC produced
binaries.)

f) Lifting advanced x86 instructions: Recall our comment
that Valgrind does not yet support some of the advanced
x86 instructions. So we decided to evaluate our ability in
handling them. Specifically, we included AVX, FMA4, SSE4.1,
AES, and RAND in our evaluation. We trained our system
using the source code of scientific and image editing packages
such as gimp (in addition to training it on openssl), where
these advanced instructions were most likely to be used. After
training our system, we measured that our mapping table
covers 97% of these advanced instructions at least once. (This
means that 97% of the opcodes could be lifted, but there is
no guarantee that all possible operand combinations of these
instructions can be lifted.)

V. Related work
All of the previous approaches to translate low-level instruc-
tion into high-level IR are based on manually building the
components needed for such translation. Approaches such as
[2], [4], [9], [3], [1], [10], [11], [12], [13], [14] require a hand-
written target instruction specification to drive the translator.
Notably, Valgrind [3], one of the popular dynamic binary
instrumentation systems, relies on manually building assembly
to VEX (its IR) translators. QEMU [1], one of the popular
binary translators, requires manually-developed backend to
support new architectures. SecondWrite [11] requires an XML
specification of the architecture instructions, whereas UQBT
[12] has designed its own format for such specifications. All
these approaches suffer from the drawbacks mentioned in the
Introduction.

Approaches [15], [16] have developed assembly-to-IR trans-
lators by relying on QEMU’s support for multiple architec-
tures. Specifically, they have written a backend for QEMU
to translate QEMU’s IR to LLVM’s IR. BAP [17], on the
other hand, directly uses Valgrind’s assembly to IR translator.
Unfortunately, all these systems suffer from their dependence
on QEMU/Valgrind, and they inherit all the limitations of
QEMU and Valgrind discussed above.

Dagger [18] is one of the recent decompilation frameworks
that uses LLVM compiler for assembly-to-IR translation. In
particular, it relies on LLVM code generator’s architecture
modelling but adds new libraries to LLVM for decompilation.
Unfortunately, Dagger’s biggest limitation is that it treats
LLVM as a white-box. This limitation makes Dagger specific
to LLVM, and is not easily portable at all. Moreover, with
changes to LLVM, Dagger needs to be updated as well. Our
approach, on the other hand, treats a compiler as a black-box,
and is thus very portable.

VI. Conclusions and Future Work
In this paper, we outlined an automated black-box approach for
assembly-to-IR translation which can potentially reduce most
of the manual efforts in building assembly-to-IR translators.
The key contribution of our approach is that it reduces most
of the manual efforts in modelling the semantics of instruction
sets. Instead, it leverages knowledge about instruction sets that
is already incorporated into modern multi-target compilers.

We believe that our experimental results demonstrate the

6

 30

 40

 50

 60

 70

 80

 90

 100

chown (9837)

chgrp (9546)

chm
od (9106)

cp (22216)

cat (7555)

cut (6269)

dir (19008)

echo (3515)

head (6178)

ln (8272)

ls (19008)

m
kdir (7607)

m
v (21768)

pwd (3787)

rm
 (9541)

sort (17866)

tail (10444)

unam
e (3456)

Average

Geom
ean

%
 a

ss
em

bl
y

in
st

ru
ct

io
ns

 tr
an

sl
at

ed

(openssl, ER)
(openssl, Our)

(binutils, ER)

(binutils, Our)
(openssl+binutils, ER)
(openssl+binutils, Our)

(a) coreutils binaries (GCC compiled) found in Ubuntu-14.04 distribution

 30

 40

 50

 60

 70

 80

 90

 100

chown (9939)

chgrp (9630)

chm
od (9018)

cp (18043)

cat (6676)

cut (4986)

dir (20489)

echo (3800)

head (6919)

ln (8121)

ls (20489)

m
kdir (8021)

m
v (18375)

pwd (4136)

rm
 (9348)

sort (18510)

tail (11868)

unam
e (3733)

Average

Geom
ean

%
 a

ss
em

bl
y

in
st

ru
ct

io
ns

 tr
an

sl
at

ed

(openssl, ER)
(openssl, Our)

(binutils, ER)

(binutils, Our)
(openssl+binutils, ER)
(openssl+binutils, Our)

(b) LLVM compiled coreutils binaries

Fig. 4: Details of completeness results for coreutils binaries on x86

potential of our approach. Our ongoing and future work is aimed at a comprehensive evaluation of completeness using

7

a large training suite, and determining whether full coverage
can be obtained. We also plan to address related questions
such as the relative completeness of different compilers (such
as ICC [19]) in modeling instruction sets. Additionally, if
completeness results demand consideration of registers as
parameters, then we would plan to extend our approach to
handle them as well. Finally, and most importantly, we plan to
develop binary analysis and instrumentation applications based
on this approach.

References
[1] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX

ATC, 2005.

[2] C.-K. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” in PLDI, 2005.

[3] N. Nethercote et al., “Valgrind: A framework for heavyweight dynamic
binary instrumentation,” in PLDI, 2007.

[4] V. Kiriansky et al., “Secure Execution via Program Shepherding,” in
USENIX Security, 2002.

[5] “Intel 64 and IA-32 Instruction Set Reference, A-Z,” http://www.intel.
com/.

[6] “The GNU Compiler Collection,” http://gcc.gnu.org.

[7] “The LLVM Compiler Infrastructure Project,” http://llvm.org.

[8] J. W. Davidson and C. W. Fraser, “Code selection through object code
optimization,” ACM Trans. Program. Lang. Syst., 1984.

[9] C. C. et al., “Walkabout - a retargetable dynamic binary translation
framework,” in Workshop on Binary Translation, 2002.

[10] T. Dullien et al., “REIL: A platform-independent intermediate
representation of disassembled code for static code analysis,” 2009.
[Online]. Available: http://zynamics.com/downloads/csw09.pdf

[11] K. Anand et al., “Decompilation to compiler high IR in a binary
rewriter,” Univ of Maryland, Tech. Rep., 2010.

[12] C. Cifuentes et al., “The design of a resourceable and retargetable binary
translator,” in WCRE. IEEE, 1999.

[13] G. Balakrishnan et al., “CodeSurfer/x86 a platform for analyzing x86
executables,” in CC, 2005.

[14] J. Kinder et al., “Jakstab: A static analysis platform for binaries,” in
CAV, 2008.

[15] V. Chipounov et al., “Dynamically Translating x86 to LLVM using
QEMU,” Tech. Rep., 2010.

[16] C.-C. Hsu et al., “LnQ: Building high performance dynamic binary
translators with existing compiler backends,” in ICPP, 2011.

[17] D. Brumley et al., “BAP: a binary analysis platform,” in CAV, 2011.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2032305.2032342

[18] “Dagger,” http://dagger.repzret.org.

[19] “Intel Compilers,” https://software.intel.com/en-us/intel-compilers.

http://www.intel.com/
http://www.intel.com/
http://gcc.gnu.org
http://llvm.org
http://zynamics.com/downloads/csw09.pdf
http://dl.acm.org/citation.cfm?id=2032305.2032342
http://dagger.repzret.org
https://software.intel.com/en-us/intel-compilers

	I Introduction
	II Approach and System Design
	II-A System Design
	II-B Illustration and Discussion

	III Implementation
	IV Evaluation
	V Related work
	VI Conclusions and Future Work
	References

