
Search-based Fuzzing
László Szekeres

Google

R. Sekar

Stony Brook University

ABSTRACT
Fuzzing and dynamic symbolic execution (DSE) are the two main

approaches currently being used for automated bug finding. The

key strength of fuzzing is that it is simple to use, and can generate

and evaluate a very large number of test cases in a short time. Its

main drawback is its lack of direction (or blindness), which means

that the vast majority of test cases are not useful, i.e., they do not

identify new bugs or even contribute to increasing test coverage.

It is in this regard that symbolic execution excels: by employing

constraint solvers, DSE techniques can generate inputs that can

target specific branches of conditions, thereby providing a reliable

way to increase coverage. However, targeted input generation is far

slower than the test generation techniques used in fuzzers, leading

to far fewer test cases being explored every second. We propose a

new approach in this paper called search-based fuzzing (SBF) that
spans the gap between the two extremes represented by fuzzing and

DSE. SBF’s input generation is much more targeted than today’s

fuzzers, yet significantly faster than symbolic execution techniques.

This combination seems very promising: our evaluation shows that

SBF can achieve significantly more coverage than state-of-the-art

tools for fuzzing and symbolic execution.

CCS CONCEPTS
• Security and privacy→ Software security engineering;

KEYWORDS
software security, testing, fuzzing, automated test generation

1 INTRODUCTION
There are two main automated testing approaches for finding mem-

ory corruption bugs: fuzzing and dynamic symbolic execution (DSE).

Fuzzing [31] involves running the program under test with ran-

domly mutated inputs and detecting crashes. It is simple to use,

requiring little user effort. Fuzzing introduces very little (runtime

or memory) overhead to the test runs, so it scales well. These fac-

tors make fuzzing a popular choice among security practitioners.

Many of the infamous vulnerabilities of the past few years, such as

Heartbleed [10], Shellshock [44], and Stagefright [13], were found

with fuzzing.

Despite these successes, fuzzing tools are limited in their ability

to cover large parts of the code. Simple conditions, such as the one

shown in the code snippet below, may require billions of test cases

to be generated before arriving at one that satisfies the condition.

This is because fuzzers generally mutate inputs blindly, without
considering program logic or structure.

void fuzzme(int input) {
if (input == 0xbadc0de) { /* some vulnerable code */ }

}

In contrast, DSE [8] generates inputs that target specific condi-

tions to “punch” through. Programs are run with symbolic inputs in

order to generate a formula that captures the constraints necessary

to take a particular program path. These constraints are then solved

using a constraint solver to obtain a concrete input that traverses

the targeted path. Using this approach, DSE systems can generate

inputs that get past relatively complex conditions.

The systematic approach embedded in DSE systems has the po-

tential to exercise most program paths, and thus achieve good code

coverage. In practice, however, this potential is limited by the costs

and complexities associated with DSE. As a result, fuzzing tools can

often outperform DSE in practice. In their recent SoK paper, Shoshi-

taishvili et al. [39] reported that fuzzing tools identified almost

three times as many vulnerabilities as DSE techniques.

Trying to harness the best of fuzzing and DSE, researchers have

developed hybrid systems that first employ fuzzing to generate test

inputs, with DSE techniques applied whenever the fuzzer stops

making progress. During the recent DARPA Cyber Grand Chal-

lenge competition most of the teams, including the top three, used

this hybrid approach [3, 19, 30, 40]. Although such a combination

is effective in avoiding the worst outcomes of the two techniques,

it does not fundamentally address the underlying problems of ei-

ther approach: the fuzzer component continues to operate blindly,

while the DSE component continues to be challenged by large and

complex code bases.

In contrast, we present a new approach called search-based
fuzzing (SBF) that represents an intermediate point between the

two extremes of blind and highly-targeted input generation. SBF

uses two systematic techniques, namely, data-flow tracking and sto-

chastic local search to bring considerable directionality to fuzzing.

Although not nearly as precise as DSE in its targeting, SBF is able to

avoid many of the complexities of DSE, and hence can more easily

scale to large and complex programs.

1.1 Approach Overview
Automated test generation tools make a trade-off between:

(1) the computation needed to generate a new input, and

(2) the likelihood of increased coverage due to this input.

Fuzzing, at one end of the spectrum, spends very little time on input

generation, but these randomly generated inputs have a very low

probability of increasing coverage. At the opposite end of the spec-

trum, DSE generates inputs with a high probability of increasing

coverage, but to do so, it expends a lot of resources in generating

each input. We present a new approach called search-based fuzzing
(SBF) that falls in between, thus representing a more favorable

trade-off between the two extremes.

Like DSE, SBF is directed: it targets specific conditional branches
in order to increase coverage. Like fuzzers, it needs only a light-

weight source instrumentation, thereby avoiding the complexity of

DSE, and the performance costs of constraint solvers.

1

Unlike fuzzers that tend to operate blindly, SBF targets its input

mutations in order to reach a specific branch condition. It uses data-
flow tracking (DFT) to determine what parts of the input affect the
targeted branch condition, and targets its mutations to those bytes.

It then uses a stochastic local search (SLS) [20] to determine how to

mutate these bytes in order to take the targeted branch. Both DFT

and SLS are achieved using a light-weight instrumentation, thereby

enabling SBF to retain the performance benefits of fuzzing.

By combining some of the key strengths of DSE and fuzzing,

namely, directionality and performance, SBF can be more effective

than either of these approaches. We provide a few examples here

to illustrate this strength:

• “Magic value” example: A blind fuzzer needs about 2 billion

attempts (on average) before it generates the input 0xbadc0de
that passes the condition. In contrast, SBF requires just about

32 attempts using SLS.

• Adler checksum: Used in popular software packages such as

zlib and rsync, this checksum function is considerably more

complex than the simple comparison above. Given a condition

such as adler(s)==0xbadc0de, our experience with fuzzers

such as AFL is that they need several hours, if not more, to get

through the condition. In contrast, SBF completes this task in

seconds using its combination of SLS and DFT.

• Maze example: Finally, consider the maze example from the

KLEE tutorial [25]. Solving the maze requires successfully

passing over two dozen branches, a tall order for most fuzzing

tools. SBF is able to solve the maze in a fraction of a second.

These examples, together with our experimental evaluation results,

demonstrate that SBF is able to achieve more coverage in lesser

time than state-of-art fuzzing or DSE tools. In particular, SBF:

• reaches 2× higher coverage in a fewminutes than that achieved

by other tools after running for a few hours.

• finds all the bugs in a LAVA modified benchmark program in

under a minute, while other tools find only a subset of the

bugs after five hours.

Contributions. We introduce search-based fuzzing, a new auto-

mated test generation technique, based on stochastic local search.

It has the following three main components:

• search target identification, used to select the parts of the pro-

gram to target, and identify which bytes of the input need to

be mutated to reach those parts;

• local search based mutation strategy, which indicates how to

mutate these bytes in order to reach the selected target pro-

gram point. We propose a special stochastic local search based

on the Markov Chain Monte Carlo (MCMC) algorithm.

• test suite inflation and deflation technique, which overcomes

the limitations of edge coverage metric while containing path

explosion.

Another contribution of the paper is the open-source SBF tool,

set to be released together with the paper.

2 SEARCH-BASED FUZZING DESIGN
To provide feedback for input generation, we instrument the com-

parison instructions in the target program. We refer to comparison

instructions as nodes and their two outcomes as edges. Note that
complex if-statements will get translated into multiple nodes. We

represent our control-flow graphs (CFG) in terms of these nodes

and edges, as shown in Figure 1 for the following example:

Listing 1 Printable string example

bool str_isprint(unsigned char *data) {
for (; *data != '\0'; data++)
if (!(0x1f < *data && *data < 0x7f))

return false;
return true;

}

entry

for.cond

*data != 0

F T

if.endif.then

for.end

return

for.body

0x1f < *data

F T

land.lhs.true

*data < 0x7f

F T

0T

0F

2T

1T

1F

2F

Figure 1: CFG of the “printable string” example.

We illustrate our approach on this example using an initial input,

a single-byte vector [0x0]. This input takes the 0F path in Figure 1.

Running this input through our target identification algorithm, the

algorithm identifies that the true edge of node 0 (0T) has never been

taken before and that it depends on the first input byte. Because

of this, the edge 0T, together with its dependencies, is flagged as a

local search target. A stochastic local search is carried out to find a

value assignment to the relevant bytes that makes the execution

take the targeted edge. This means that we associate a distance

function with the targeted edge. Using the distance function as a

feedback, the local search will quickly modify the first byte to, say,

0x1, which will exercise the path [0T, 1F].

Having observed new coverage of the edge 1F, we next proceed

to target the edge 1T with a local search. The distance value for an

input assignment can be based on the Hamming-distance between

the two operands of the targeted compare node. With the input

[0x1], the targeted comparison is 0x1f < 0x1 and the Hamming

distance is 4. Reducing this distance gets us closer to negating the

outcome of the comparison. When the search algorithm modifies

the affecting byte, it uses this distance as a feedback to decide if a

certain mutation (e.g., a bit flip) is useful or not. Through iterative

improvements, the algorithm quickly finds an input, say [0x2f],
for which the distance is 2 and the execution takes the [0T, 1T, 2T]

path. The test generation continues in this manner by targeting

2

further uncovered edges, or even increasing the loop counts by

targeting taken edges more times than before.

This high level strategy resembles that of dynamic symbolic

execution systems. Say our initial input exercises the path with

the condition (data[0] , 0) ∧ (0x1f < data[0]) ∧ (data[0] < 0x7f).
In order to exercise a different path, we want to negate the out-

come of a node, say, (data[0] < 0x7f). This yields the new path

condition (data[0] , 0) ∧ (0x1f < data[0]) ∧ ¬(data[0] < 0x7f)
that is targeted next. In contrast with DSE, our algorithm does not

know about this formula. It only uses the distance value which is

computed by the instrumented program.

Another significant difference with symbolic execution is that we

try to find a satisfying input by focusing on just the last condition.

This assumes that mutating the bytes that influence the targeted

edge will not invalidate earlier branch conditions. This is an overly

optimistic assumption, and as a result, only a subset of new inputs

generated by SBF will follow the targeted program path. At the

same time, our assumption enables new test cases to be generated

incrementally with each additional branch condition, something

that is generally difficult in symbolic execution. The result is an

input generation step that can be orders of magnitude faster, making

up for lack of precision by allowing SBF to runmanymore iterations

of its search within the same time. Our experimental results suggest

that this speed makes up for the increased error in targeting that

may result due to a violation of our assumption.

2.1 Coverage Map and Distance Map
We instrument all nodes (compare instructions) in the program to

compute two mappings on edges (potential outcomes): the coverage
map C and the distance map D. For an edge e , C[e] is the number

of times the edge was passed. For each comparison c that was

executed, D specifies a distance value for its last execution. For a

taken edge etaken , D[etaken] = 0; for a non-taken edge e¬taken ,
D[e¬taken] = d(c), where c is the comparison preceding the edge.

The distance function d : C 7→ (0, 1], maps a comparison c = x [n] ▷◁

y[n] to a non-zero value, where n denotes the bit width of the

comparison. We implemented two distance functions: Hamming

distancedH (c), given by Equation (1), and arithmetic distancedD (c),
given by Equation (2). Note that in these equations, +/− is defined

with overflow semantics.

dH (c) =

{
1/n ·max (1, H (x , y)) if ▷◁ ∈ {=, ,, ≤, ≥}

1/n ·max (1, H (x , y) + 1) if ▷◁ ∈ {<, > }
(1)

dD (c) =

{
2
−n ·max (1, |x − y |) if ▷◁ ∈ {=, ,, ≤, ≥}

2
−n ·max (1, |x − y | + 1) if ▷◁ ∈ {<, > }

(2)

The distance function serves as our score function for local

search. It represents how close we are from taking a non-taken

edge, so it is always larger than 0. We call the non-taken edges

touched edges, because the execution traversed the corresponding

compare instruction, but the other edge was taken. Edges belonging

to non-executed nodes are assigned the maximum distance value.

2.2 Main Fuzzing Cycle
Algorithm 1 shows our high-level search algorithm. It has similari-

ties to coverage-guided fuzzing [6, 37, 43], as well as DSE systems.

This main function takes an existing set of test cases. If this set is

empty, then we generate a seed test case consisting of all zeroes.

The algorithm generates new test cases from existing ones. Test

cases are processed in a work list (queue). Each test case in the list

is fuzzed, and among the resulting mutants, those that achieve new

coverage are added back to the list. The algorithm returns when

the work list is exhausted. This is what we call one fuzzing cycle.

Algorithm 1 Main Search-based Fuzzing Cycle

Input: initial test suite TestSuite
Output: new test suite TestSuite and bug triggering inputs

Crashers
1: function SbfCycle(TestSuite)
2: if TestSuite = � then
3: TestSuite ← {"00. . . 0"}

4: WorkList ← TestSuite
5: TestSuite ← �
6: whileWorkList , � do
7: t ← PopOneFrom(WorkList)
8: T ← IdentifySearchTargets(t)
9: for each tarдet ∈ T do
10: LocalSearch(t, tarдet)

11: for each t ′ ∈ ByteMutations(t) do
12: RunAndCheck(t ′)

13: TestSuite ← TestSuite ∪ {t}

14: return TestSuite
15: function RunAndCheck(t ′)
16: Crun,D ← Execute(t ′)
17: if CrashHappened() then
18: Crashers ← Crashers ∪ {t ′}

19: if Crun 1 Cдlobal then
20: Cдlobal ← Cдlobal ∪ Crun
21: WorkList ←WorkList ∪ {t ′}

22: return D

To find new paths, SBF uses a more systematic, targeted strategy

than existing blind coverage-guided fuzzers. For each fuzzed input

SBF first establishes the set of potentially reachable new edges using

a target identification phase, implemented by IdentifySearchTar-

gets(); and then tries to reach them by carrying out a directed local
search for each of those targets. The vast majority of the fuzzing

time is spent in this local search phase (LocalSearch()). Optionally,

an additional blind fuzzing step is run after this phase (the second

for loop), which we will discuss more later.

The target identification phase identifies the edges towards which
we direct our local searches. Our goal here is to negate the outcome

of the nodes (comparisons) along the path taken by the initial input

so as to cover previously uncovered edges. One main difference

between blind fuzzing and search-based fuzzing is that we first

identify these touched edges and direct our input mutations towards

them. Trying to flip the taken branches is similar to the generational

search strategy [18] of concolic execution systems.

The output of the target identification phase is the list of control

dependent touched edges that if reached, would increase the global

coverage. With each edge, we provide the list of input byte indices

that affects the given edge. Input dependent means that the (con-

trollable) input of the program (i.e., the attack surface) has an effect

3

on that particular comparison (or branch). We use byte-precise data-

flow tracking (Section 2.3) to identify input dependencies. Once the

targets are identified, a local search algorithm (LocalSearch()) is

run for each target. This local search aims to take the target edge

by changing the affecting input bytes, using the distance map as

feedback. We discuss this phase in Section 2.4.

Finally, in the optional blind fuzzing step, random blind mu-

tations are done on each byte of the test vector, similarly to the

random bit and byte flips of existing (black or gray-box) fuzzers. The

ByteMutations() function returns a set of mutations of the input,

where only a single byte is modified in each mutant. This phase is

optional, as its primary purpose is not to find new paths, but to trig-

ger bugs along the original path triggered by the input. For instance,

considering the single path program char buf[10]; buf[input]=0;,

we might cover the path with input 5, but the bug is only triggered

with input outside of the [0, 9] range.

With each mutation carried out during a local search or during

the blind fuzzing phase, the program is run with the RunAnd-

Check() function, shown in Algorithm 1. Each time the coverage

map is generated to detect new coverage and the distance map is

generated to serve as a feedback for the local search.

2.3 Search Target Identification
The goal of the target identification phase is twofold: (1) to identify

the set of nodes (and their edges) influenced by input I and (2) for

each of those nodes, establish the set of input byte locations that

affect the outcome of the given node. We will target the touched

edges that the current input has an effect on and could increase the

coverage (as defined in Section 2.5). We will focus each targeted

local search to the input bytes that affect the targeted edge, thus

reducing the search space of the local search to focus only on the

bytes that matter.

The target identification algorithm uses byte-precise data-flow

tracking. We assign different labels to each input byte and we

propagate the labels of all memory locations and registers during

execution. Our instrumentation at each comparison checks if the

arguments depend on the input, and if they do, on which input

bytes exactly. After a single execution with data-flow tracking,

the analysis returns a set of search targets. Each target is a pair,

consisting of a yet uncovered reachable (touched) edge, and the

corresponding set of input dependencies.

2.4 Stochastic Local Search
Once the search targets are established by the target identification

phase, we start a stochastic local search for each target. During

the local search we mutate the bytes that affect the target branch,

with the guidance of a distance function. For instance, the distance

function for the edge corresponding to the condition (100 < sum)
in Listing 2 looks like Figure 2. (We are using the distance function

given by Equation (2)).

Listing 2 Simple example

void sum(byte input[2]) {
byte x = input[0], y = input[1], sum = x + y;
if (100 < sum && sum < 150) { /* some vulnerable code */ }

}

X input byte

0
50

100
150

200
250 Y input byte

0
50

100
150

200
250

Di
st

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Distance function for edge (100 < x + y).

The search algorithm can use this distance information as a

feedback to determine if a potential mutation on the input would

get us closer to the solution or not. A mutation can be considered

as a move from one point to another on the plot. By moving more

intelligently on this distance landscape than randomly, we can

find a satisfying solution point faster. Next we discuss the exact

algorithms we use.

2.4.1 Local search algorithms. A local search algorithm is com-

posed of the following three components:

(1) a distance function (also called the score function),

(2) a definition of neighbors,

(3) and a search strategy.

The distance function assigns a value to a point in the search

space representing how far it is from a potential solution. The

definition of neighbors determines what points do we consider

neighboring points in the search space, the ones reachable in a single
step. Finally, the search strategy defines how the search moves from

point to (neighboring) point, using the distance function as a guide.

In SBF we implemented two different distance functions, two

neighbor definitions and six different search strategies. We evalu-

ated all possible combinations of these on a variety of benchmarks.

We found that different algorithms work best for different targets,

yet this evaluation helped us design an algorithm that works well

on a wide spectrum of targets. In this section we describe this main

algorithm along with the others we tested. The SBF tool uses this

main local search algorithm by default, and the experiments in the

evaluation section were carried out using it as well.

The two distance functions in SBF are the ones defined in Equa-

tion (1) and (2). The two neighbor functions we considered are

BitFlip and AddSub. BitFlip defines neighbors to be those that differ

in exactly one bit position. AddSub adds (or subtracts) powers of
two to get to a neighbor. The neighbors of an input vector only

differ in the bytes that actually affect the targeted edge. In other

words, all mutations are done solely on the bytes that the targeted

edge depends on.

Next we describe the search strategies we implemented and

evaluated. Our first algorithm, Random Walk shown in Algorithm 2

makes a random move in every step. It is not a real local search
4

Algorithm 2 Random Walk

Input: Initial test vector I , target edge e , and the list of byte indices
l = (i0, in, . . . , ik) that e depends on.

Output: Test vector reaching e , or nothing. (Note, that implicitly

RunAndCheck() also saves all input that triggers new cover-

age.)

1: for i ← 1 tomax_steps do
2: I ← PickRandomly(Neighbors(I , l))
3: DI ← RunAndCheck(I)
4: if DI [e] = 0 then
5: return I

algorithm, as it does not use the distance function for guidance, only

to decide whether we have found a solution so the search can stop.

We will only use this algorithm as a baseline in our experiments.

In the following algorithms DI [e] denotes the distance of an input

I from edge e . Neiдhborn (I , l) is the n-th neighbor of I , where l is
the list of affecting byte indices.

Perhaps the most well-known local search algorithm is the Hill
Climbing algorithm. It is a greedy algorithm, which in each step

evaluates all neighbors of the current point and moves to the one

with the best distance. Doing this we can get stuck in local minima,

for which the common solution is to make random moves until

we can make progress again. We also follow this approach. We

extend the basic hill climbing with an eagerness probability. This
addition is shown on lines 14 and 15 of Algorithm 3. During the

evaluation of the possiblemoves, if the currently evaluated neighbor

improves the distance, with some probability we take that move

before evaluating all possible moves. When we eagerly move when

evaluating the ith neighbor, we continue by evaluating the i + 1th
neighbor of the new point.

In its limit, when the eagerness probability is 1, the algorithm

evaluates the possible moves in order and immediately takes any

improving one. This is especially useful when we target an equality,

e.g., if (input == magic_number). Suppose we use the BitFlip
neighbor definition, and Hamming distance as the distance function.

In this case, the local search algorithm will go through each bit of

input one by one, and flip them if that particular bit is different

in magic_number. This algorithm is guaranteed to find the right

input in maximum as many steps as the number of bits in input.
When eagerness probability is one we will refer this algorithm as

Eager, otherwise we call it Hill Climbing.

Our next algorithm is Simulated Annealing and its special case,

Markov Chain Monte Carlo (MCMC) sampling. This strategy does

not evaluate all options in every step, but picks a random neighbor,

then decide whether to move there or not based on the neighbor’s

distance value. When the distance is better (smaller), we always

make the move. However, to be able to escape from local minima,

we also accept non-improving moves with some probability. This

probability is determined by the Metropolis-Hastings acceptance

criteria, shown on line 11 of Algorithm 4.

Originally, MCMC is a method for sampling from probability

distributions, so that we take samples from regions with higher

probability density more often than regions with lower probability.

However, the technique can be directly applied as a local search

algorithm, sampling from a search space according to a distance

Algorithm 3 Hill Climbing with Eagerness Probability Extension

Input: Initial test vector I , target edge e , list of byte indices l =
(i0, in, . . . , ik) that e depends on, and the probability of taking

non-worseningmove eagerly (without evaluating all neighbors)

peaдer .
Output: Test vector reaching e , or nothing. (Note, that implicitly

RunAndCheck() also saves all input that triggers new cover-

age.)

1: for i ← 1 tomax_steps do
2: proдress ← True
3: while proдress do
4: proдress ← False
5: Nbest ← I
6: for n ← 1 to number_o f _neiдhbors do
7: N ← Neiдhborn (I , l)
8: DN ← RunAndCheck(N)
9: if DN [e] = 0 then
10: return N ▷ Found a solution.

11: if DN [e] < DNbest [e] then
12: proдress ← True
13: Nbest ← N
14: if Random([0, 1)) < peaдer then
15: I ← N ▷ Make move eagerly.
16: I ← Nbest ▷ Make the best move.

17: I ← PickRandomly(Neighbors(I , l))

function. This type of stochastic local search, has been used by

others as well, for instance, by STOKE [35] for superoptimization.

Simulated Annealing is another adaptation of the Metropolis-

Hastings acceptance criteria, where additionally to the MCMC

algorithm we also lower the acceptance probability with time. It

adds a T temperature factor to the algorithm, which is reduced

according to a γ cooling factor, as shown on line 13. In the extreme

case when γ = 1, the two versions of the algorithm is equivalent. In

this special case, we will refer to this algorithm asMCMC, otherwise
as Simulated Annealing.

Our final algorithm, which we designed particularly for SBF, is

the combination of the Eager and MCMC algorithms. We run the

the above described Eager (Algorithm 3 with peaдerness = 1) until

that strategy stops making progress (the first time we get stuck),

then we switch to MCMC. As the following benchmarks confirm,

this helps in finding solutions for easy targets, such as magic values

as quickly as possible, while also allows solving hard targets. We

refer to this algorithm as EagerMCMC.
In order to evaluate the described algorithms, we ran all possible

combinations of the two distance functions, two neighbors defi-

nitions, and six search strategies, with different parameters, on a

set of benchmarks. Considering the different parameters (e.g., for

β or peaдerness), this adds up to 236 different configurations of

local search algorithms. We tried these configurations on ten small

benchmarks. Each benchmark does some computation on the in-

put and compare the result of that computation to some constant

(i.e., equals/larger than). The computations include calculating dif-

ferent checksums, such as modular sum, Adler, and Fletcher. Others

5

Algorithm 4MCMC and Simulated Annealing

Input: I test vector, e target edge, l = (i0, in, . . . , ik) list of byte
indices e depends on, β accept probability factor, γ cooling

factor

Output: Test vector reaching e , or nothing. (Note, that implicitly

RunAndCheck() also saves all input that triggers new cover-

age.)

1: T0 ← 1.0

2: for i ← 1 tomax_steps do
3: N ← PickRandomly(Neighbors(I , l))
4: DN ← RunAndCheck(N)
5: if DN [e] = 0 then
6: return N ▷ Found a solution.

7: ∆← DN [e] − DI [e])
8: if ∆ < 0 then
9: I ← N ▷ Improvement found.

10: else
11: if Random([0, 1)) < e

−∆
β ·Ti then

12: I ← N ▷ Acceptance criteria passed.

13: Ti+1 ← γ ·Ti

convert the input string to an integer or a float number, or imple-

ment a polynomial function and some other simple functions. The

goal of each search in the benchmark is to find an input that takes

to true edge of the comparison.

We ran all configurations on all benchmarks 1000 times, with

max_steps = 100000, and measured how many times the search

found a solution. Table 1 summarizes the results. We do not list all

236 configurations, only the best configuration for the six differ-

ent algorithms we described earlier. We indicate the distance and

neighbors function used in the configuration, and the parameters

that were used for the search strategy.

The combined EagerMCMC algorithm, using Hamming distance

and AddSub neighbors definition had the highest success rate.

MCMC combined with the Eager algorithm does significantly better

only on the easiest targets (e.g., input equals to a constant), and

similarly on the other ones, therefore the overall success rate is just

marginally better. We also found that Simulated Annealing results

were always worse than MCMC. This is why Simulated Annealing

Search strategy Distance Neighbors Success rate

EagerMCMC Hamming AddSub 94.81%

(β = 0.2)

MCMC Hamming AddSub 94.54%

(β = 0.2)

SimulatedAnnealing Hamming AddSub 92.89%

(β = 0.2,γ = 0.999)

HillClimbing Difference AddSub 89.08%

(peaдerness = 0.1)

Eager Difference AddSub 80.23%

RandomWalk Difference BitFlip 10.27%

Table 1: The best configuration of each algorithm and its av-
erage success rate on our benchmark.

X input byte

0
50

100
150

200
250 Y input byte

0
50

100
150

200
250

Di
st

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Distance function for edge (x + y < 150).

performed the best when its γ parameter was closes to MCMC’s.

Hill Climbing did worse than MCMC in general, but interestingly

the best performing configuration was when the eagerness proba-

bility was 0.1. This means that our eagerness extension improves on

the standard algorithmm, where this probability is zero (or unused).

2.4.2 Targeting paths vs. targeting edges. There are two ways

we can direct a search towards an uncovered edge. We can target

a specific path prefix leading to the edge we want to reach, or we

can disregard the path prefix and only focus on the comparison

whose outcome we want to negate. We call the first path targeting,
and the other edge targeting. In case of path targeting, the distance

feedback for the local search needs to take into account all nodes

along the path prefix. We can define such path distance as the sum
of the node distances along the targeted path:

∑
∀e ∈Path D[e]. For

edge targeting, we simply use D[e] as the feedback.
Recall that we only target edges that are touched by the path of

the currently mutated input. This means that if we target an edge,

the current input already exercises the path prefix leading to it, so

all node distances along that path prefix will be zero. In other words,

initially the path distance and the edge distance will be the same.

We rely on this fact to make an optimization and only take into

account the distance for the targeted edge, not considering its path

prefix, and the dependencies of all prior nodes. This, however, is an

opportunistic optimization, because when we start mutating the

input, we can easily get off the original path prefix and no longer

reach the targeted node.

As an example, consider the distance function in Figure 3, which

represents the distance for edge corresponding to the condition

sum < 150 in Listing 2. This node is guarded by the condition

100 < sum. If this condition is not satisfied, we do not reach the

second node. These are the points with non-zero distance in Figure 2

on page 4. Recall, that for unreached edges we assign maximum

distance, which creates a plateau in the distance landscape, which

hinders guiding the local search. However, plateaus only cause a

problem if we start the search from them. In our example we are

guaranteed to start a search from a point outside the plateau areas,

because we target this edge from an input that already passes the

first comparison. In other words we start from one of the zero-

distance points in Figure 2, satisfying the 100 < x + y condition.

6

Our targeting of edges as opposed to specific paths reduces

the search space significantly and works well when the preceding

conditions along the path prefix are independent from the target

condition. The above example also shows that it can work well

when consecutive conditions are on the same input bytes. Another

benefit of directing the search towards an edge, and not forcing

it to take a specific path, is that it provides more opportunities

for expanding coverage beyond the target using cheap mutations.

Thus, SBF’s strategy represents a middle ground between coverage-

guided fuzzing, which does not target anything, and DSE, which

targets a specific path.

2.5 Coverage Metric
The SBF design focuses on increasing branch coverage: it targets

edges and uses edges as a coverage metric. The coverage metric de-

termines whether an input (mutation) is new coverage, and should

be added to the test suite. Specifically, we use counted edge cover-

age, which means that we consider an input new if (a) it covers a

new edge, or (b) it covers a previously covered edge more times than

before. This metric is similar to that introduced by AFL, and used by

existing coverage-guided fuzzers, however there is an important dif-

ference. Recall that SBF deals with the edges of comparison nodes,

while existing tools [37, 43] deal with the edges of the control-flow

graph. Tools measuring CFG-edges register jumps from one basic

block to another, by instrumenting jump instruction and/or basic

blocks. The edge coverage metric of SBF registers the outcome of

individual comparisons, by instrumenting compare instructions

only.

This has multiple benefits. First of all, we only have to instrument

compare instructions for maintaining both the coverage map (to

target and detect new coverage), and the distance map (to guide mu-

tation). Second, by instrumenting individual compare instructions

we can effectively attack the problem of complex branch conditions.

When a CFG edge is only taken if a complex branch condition is

satisfied (e.g., if (a && b && c)), a fuzzer relying on CFG edge

coverage can only detect when all sub-conditions become true. In

contrast, using SBF’s metric, we can detect incremental improve-

ments, e.g., when one or two of the sub-conditions get satisfied.

This more fine grained coverage feedback helps making progress,

even without SBF’s targeted search strategy, but also using just

blind mutation.

2.6 Test Suite Inflation and Deflation
Relying on (counted) edge coverage have certain limitations. To

demonstrate the issues, consider the example in Listing 3, which is

taken from a KLEE tutorial [25]. The function takes a string, where

each character represents taking a step in a maze. To win the game

the character sequence must lead through the maze reaching the

goal shown as #, i.e., the string ddddrrrruulluurrrrddddrruuuu
will reach the “You win!” edge. Let us consider what inputs can be

generated using different coverage metrics. The four interesting

edges (other than the winning one) are the ones corresponding to

taking the four different directions. With (uncounted) edge cov-

erage, the test generation stops after generating the inputs u, d,
l, and r, because with these we already covered taking all four

directions. With counted edge coverage we can also find dd, ddd

Listing 3Maze example

int walk_maze(char *steps) {
char maze[H][W] = { "+-+---+---+",

"| | |#|",
"| | --+ | |",
"| | | | |",
"| +-- | | |",
"| | |",
"+-----+---+" };

int x = 1; int y = 1; // Player position.
for (int i = 0; i < MAX_STEPS; i++) {

switch (steps[i]) {
case 'u': y--; break;
case 'd': y++; break;
case 'l': x--; break;
case 'r': x++; break;
default: printf("Bad step!"); return 1; }

if (maze[y][x] == '#') {
printf("You win!"); return 0; }

if (maze[y][x] != ' ') {
printf("You lose."); return 1; } }

return 1; }

and dddd, because covering the same edge more times constitutes

as new coverage. However, it will get stuck at that point and will

not find ddddr, because it already generated r, in other words, we

already covered “moving right once”.

The problem is that in order to generate that input, we would

need to take a previously covered edge, but from a different context.

One potential solution for this problem would be to differentiate

between all paths or path prefixes. This, however, would lead to a

test suite blow up due to the practically infinite number of paths

in any non-trivial program. We solve this problem differently and

eliminate the limitation of counted edge coverage while avoiding

using a path coverage metric.

Algorithm 5 Test Suite Inflation & Deflation

Input: initial test suite TestSuite
Output: new test suite TestSuite
1: while not stopped do
2: In f latedTS ← SbfCycle(TestSuite)
3: De f latedTS ← SetCover(In f latedTS)
4: TestSuite ← Randomize(De f latedTS)
5: Cдlobal ← � ▷ Reset global coverage map.

6: return TestSuite

We introduce an outer loop shown in Algorithm 5 around the

main fuzzing cycle, SbfCycle() (Algorithm 1). Every time the work

list gets exhausted, we take the generated test suite, minimize it,

randomize it, and restart the main fuzzing cycle with the global

coverage reset to empty. Resetting the global coverage allows sub-

sequent cycles to rediscover the same edges, but from a different

context, through the mutation of a different input. Preferably, we

want to re-take edges from a deeper point of the execution than

before. This is why we minimize the test suite after each cycle using

a naïve approximating set covering algorithm. We eliminate redun-

dant test cases that cover edges that are also covered by inputs

7

that cover more edges. In other words, we prioritize the test cases

that exercise longer paths. This way the next cycle can start from a

better input, and by rediscovering some edges from deeper in the

program, newer states might be reached. We do not want however

to always start fuzzing the input with the deepest path, therefore

before each cycle we also randomize the order of the test cases. This

makes sure that edges are rediscovered from a variety of contexts

in each fuzzing cycle.

We call this technique test suite inflation & deflation, because in
each round, the main fuzzing cycle inflates the test suite and the

outer loop deflates it. The inflation is because, due to the cleared

global coverage, a number of new inputs will be added to the test

suite. Even when these are redundant from the edge coverage per-

spective, they exercise new paths, which enables reaching com-

pletely new edges. Typically, after the first cycle, each inflation

approximately doubles the test suite size and each deflation halves

it. With this strategy, we avoid test suite blow up, while we mono-

tonically increase the global coverage.

In case of the running example, after the first cycle that gets stuck

with the input ddddr, the second cycle will likely start by fuzzing

this input, take the r edge from it and proceed in a similar fashion

until everything is covered. Indeed, SBF reaches 100% coverage in

this example in just a few microseconds.

3 IMPLEMENTATION
The SBF implementation has two parts, the SBF compiler and the

SBF library. The SBF compiler extends the LLVM/Clang compiler

with a plugin that performs the instrumentation. The SBF library

contains the implementation of the test generation algorithms de-

scribed so far. Like LibFuzzer, SBF links to the instrumented target

with the SBF library in order to create a single executable. As a re-

sult, fuzzing can execute within a single process. Also like LibFuzzer,

programs to be fuzzed need to implement an entry function with

the following interface: void run(char *input, size_t size). The

fuzzer runs one test case by calling this function with the generated

input.

3.1 Instrumentation for Coverage Maps
The main SBF instrumentation transforms the target program to

maintain the distance map and the coverage map. It is implemented

as an LLVM compiler pass, working on the intermediate represen-

tation (IR). This pass only modifies compare instructions. While

the LLVM IR contains a switch instruction as well, we lower them

to compares before carrying out the instrumentation.

After each compare instruction, we add a short code snippet

that updates the distance and the coverage map. The distance map

contains the distance values and the coverage map contains the

hit counts for each edge. Each edge is assigned a unique ID. The

distance and coverage maps are arrays, reserving one byte for

each edge, indexed by the edge ID. The instrumentation after each

comparison computes and stores the distance value of the non-

taken edge, while it sets the distance to zero and increments the

coverage counter for the taken edge.

3.2 Instrumentation to Identify Search Targets
We rely on dynamic data-flow tracking (DFT) for this instrumenta-

tion. LLVM already includes a DFT library, called DataFlowSanitizer,

which can maintain and propagate multiple (taint) labels. We assign

a separate label to each input byte index. After each comparison

instruction, we check the labels associated with the arguments of

the comparison. If there are associated labels, and the edge is not

covered yet (as many times as we could from the current context),

then we add the corresponding edge ID to the target list, along with

the byte indices represented by the labels.

Note that DFT is needed only during the target identification

phase. Since DFT has a significant runtime performance cost, we

would like to avoid it while doing the (far more frequent) local

searches. One approach for this is to create two binaries, one with

DFT, and one without. Synchronizing and communicating between

two processes however would add significant complexity and over-

head. We therefore devised an alternative approach: we still create

two versions of the targeted code, but link them into the same

binary by renaming functions and other globals in one of them.

Function versions that include DFT are prefixed with dft_. With

this naming scheme, SBF calls run() during local search runs, and

calls dft_run() for target identification.

3.3 Compiler Optimizations
We leverage compiler optimizations to create more edges, which

enables finer granularity measurement of coverage. In particular,

Loop unrolling and function inlining have the most potential for

increasing the number of edges. Consider the following loop:

for (int i=0, i<3; ++i)
if (!(isprint(input[i])))

return 0;
return 1;

During compilation, this loop gets unrolled as follows:

if (!(isprint(input[0]))) return 0;
if (!(isprint(input[1]))) return 0;
if (!(isprint(input[2]))) return 0;
return 1;

In the original program there was only one input dependent

comparison, but after unrolling, there are three. With this increase,

SBF is able to differentiate more between different execution paths.

Function inlining helps in a similar manner. We can differentiate

between the edges of the inlined function when they are called in

different contexts, as there will be separate code for each context.

Parser code often uses standard library functions for character

or string comparisons, such as isascii, isspace, or strcmp, and
memcmp. We also make sure that all these small C library functions

are inlined. We collected the implementation of these typically

single line functions from the musl C library and ensure that they

get inlined when we compile a target with the SBF compiler.

3.4 The SBF Library
The SBF library contains the implementation of the SBF algorithms

described in this paper, including the fuzzer cycle, the local search

algorithms, the coverage check, etc., and also the main function. It

is written from scratch, without using any external libraries and

consists of about 6 KSLOC of C++.

8

Crashing signals are handled and state saving and restoring

is also implemented. The state of the fuzzer consists of the last

minimized test suite, the global coverage map and the statistics

counters. These three are serialized when the process is stopped and

restored when restarted. For more precise bug detection, optimally

ASAN [38] or other LLVM sanitizer instrumentations can be used.

The hottest function in the code is the one comparing and up-

dating the global coverage (Cдlobal with Crun) after each run. We

implemented an optimized version of this function using the Intel

AVX2 instruction set to process the arrays 32 bytes at a time, which

resulted in a ~2× speedup.

4 EVALUATION
We evaluate SBF by comparing it to three other test generation

tools, namely to AFL [43], LibFuzzer [37], and KLEE [7]. AFL was

the first fuzzer that demonstrated that coverage-guided fuzzing

can be effective. LibFuzzer implements the same technique as AFL,

but instead of forking a new process for running each test case, it

does in-process fuzzing, by linking the fuzzer with the target library.

As described above, we also follow this design with SBF. KLEE is

the the most well known open source dynamic symbolic execution

engine. We are first to provide an in-depth comparison of AFL,

LibFuzzer and KLEE with each other on a range of programs.

We are most interested in the tools’ effectiveness in finding bugs.

Unfortunately, direct measurement of bug-finding ability is difficult.

First, bugs are relatively rare in programs, which means that they

provide a very low resolution metric. Second, it is inherently hard

to measure the number of unique bugs found by a fuzzer. Fuzzing

tools find crashes, but the number of crashes found does not equal

the number of bugs found. To precisely establish the number of

unique bugs given a set of crashes, one needs to do thorough root

cause analysis, which requires a lot of manual effort and expertise.

Bugs, however, are just erroneous program states, and to be able

to trigger them, a tool needs to be able to reach the corresponding

program state. Therefore, themost important aspect of a bug finding

tool is its ability to discover new program states, in other words, its

ability to increase coverage. This is why the primary focus of our

evaluation is the coverage reached by the tools. One could argue that

even on identical code paths, tools may differ in terms of their ability

to trigger bugs. However, in the case of SBF, we have not made any

new contributions in triggering bugs: like other state-of-the-art

fuzzers, SBF uses random blind mutations to trigger bugs, and/or

sanitizers (e.g., ASAN [38]) to detect errors more precisely along

paths that we can cover. This means that SBF’s bug finding potential

is closely correlated with its coverage. Nevertheless, we do provide

direct results on SBF’s bug finding ability, and compare it with the

other tools. To deal with the sparsity problem and the unique bug

identification problem, we rely on LAVA [12], a recently published

tool that automatically inserts vulnerabilities into programs. LAVA

can insert a high number of bugs in programs, each identified by a

unique ID, which enables us to do a rigorous evaluation.

We also evaluated the contribution made by each of the three

components of SBF to its coverage increasing ability. To this end we

tested SBF in the four configurations summarized in Table 2. The

first, CGF
base

, is the most basic coverage-guided fuzzing algorithm,

to which we add the SBF features one by one. For CGF
base

, we run

Inflation & Targeting & Local
Deflation mutation focus Search

CGF
base

SBF
blind

✓
SBF

targeted
✓ ✓

SBF
full

✓ ✓ ✓

Table 2: Four SBF configurations used in evaluation.

Algorithm 1 with the search target identification and local search

switched off, keeping only the random byte mutation phase. We

repeat the main cycle without the test suite deflation and coverage

reset in the outer loop. This means that we simply keep going

through each test case in the test suite, and for each test case, we

go through each byte and randomly mutate them.

In the next configuration, called SBF
blind

, we enable the test

suite inflation/deflation in the outer loop. With, SBF
targeted

, we also

add target identification. Here the local search function is also on,

but it uses the RandomWalk algorithm, as defined in Algorithm 2.

This means that the distance function feedback is not used at all.

Essentially, we do the same random byte mutations, as in case of

SBF
blind

, but this time it is focused only to the bytes on which the

targeted edge depends on. Finally, SBF
full

is where all three features

are switched on. In short, while SBF tells what bytes to mutate and

how, SBF
targeted

only tells the what, while SBF
blind

tells neither.

4.1 Coverage Increasing Ability
Wemeasured program coverage growth in time as SBF and the com-

peting tools generated test cases. We picked four programs among

the targets of the Google’s OSS-Fuzz project [1]: two that takes tex-

tual inputs (libxml and pcre), and two that parse binary formats

(libpng and libjpeg). We ran the four tools on the four different

targets for 12 hours each. We repeated all experiments 4 times to

also measure the variability of these randomized algorithms.

As SBF and LibFuzzer are in-process fuzzers, they require the

definition of an entry function, i.e., the run() function described in

Section 3, that calls the tested functionality. This typically means

invoking the main parser function on the provided input buffer.

Such functions were already available for our targets due to OSS-

Fuzz. For testing with AFL and KLEE, we also linked a thin main()
function to the targets. This takes a file as a command line argument,

reads its contents and calls run() with it.

We used AFL and LibFuzzer with their default options and KLEE

with the suggested set of flags provided on the tool’s website, which

were used for the coreutils experiments as well in their paper [7].

While the coreutils experiment used different symbolic input

sizes for different targets, we set the symbolic input size to 64

bytes for all experiments. To match KLEE’s input size, we set the

maximum input size to 64 for the other three tools as well. Further,

as KLEE cannot be provided with seed inputs, we started the test

generation with an empty test suite with all tools.

We measured the coverage using gcov. We modified all compet-

ing tools to produce the same timing log as SBF, capturing the exact

time of the generation of each new test case. We used this log to

replay the created test cases on the gcov instrumented program,

measuring the branch and line coverage as a function of time.

Figure 4 shows branch coverage for each tool normalized to the

coverage reached by CGF
base

at the given time. The x-axis shows

9

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Br

an
ch

 co
ve

ra
ge

 re
lat

ive
 to

 cg
f_b

as
e

libxml

sbf
sbf_targeted
sbf_blind
libfuzzer
afl
klee
cgf_base

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00
libpng

sbf
sbf_targeted
klee
sbf_blind
libfuzzer
cgf_base
afl

2 4 6 8 10 12
Time (h)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Br
an

ch
 co

ve
ra

ge
 re

lat
ive

 to
 cg

f_b
as

e

libjpeg

sbf
sbf_targeted
sbf_blind
libfuzzer
afl
cgf_base
klee

2 4 6 8 10 12
Time (h)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

pcre

afl
sbf
libfuzzer
sbf_targeted
sbf_blind
cgf_base
klee

Figure 4: Coverage growth on four benchmarks, relative to base coverage guided fuzzing algorithm CGFbase.

the time the test generation tools ran, starting from 5 minutes

to 12 hours. During the first five minutes, the relative behavior

of different tools had not stabilized, so omit this period from the

graph. On the y-axis 1 represents the coverage reached by CGF
base

.

The lines represent the mean of the four executions, while the

shadows around the lines mark the area between the minimum and

maximum values, to show variability.

In libxml2 (a library for parsing XML documents) SBF obtains

approximately twice as much coverage as the other tools. Note that

it reaches significantly higher coverage in the first few minutes

than what is achieved in 12 hours by the other tools. The three

competing tools reach similar levels of coverage as CGF
base

, with

AFL and KLEE taking several hours to get there. SBF
blind

, with

only the inflation/deflation switched on, already outperforms all

three competing tools. SBF
targeted

, switching on focused mutation,

further improves coverage by 50% after 12 hours. Finally with full-

featured SBF, we can see the effect of the guided local search, with

which we reach high coverage in a just few minutes. The XML

format has a complex grammar, but SBF creates XML files with a

wide variety of XML tokens and keywords in them.

On libpng, which is the official reference library for the Portable

Network Graphics (PNG) format, CGF
base

, AFL, LibFuzzer, and

KLEE saturate after just a few minutes. They stop making progress

at slightly different coverage levels. AFL gets stuck covering very

little, LibFuzzer reaches the exact same coverage as CGF
base

, while

KLEE saturates somewhat higher. On the other hand, SBF reaches

6 times more coverage than the base algorithm and LibFuzzer, after

less than two hours. The libpng library is a relatively hard target,

as PNG is a complex file format. Still, SBF generates the proper

header, with the necessary signatures and also internal “chunks”

identified by different four letter codes, without any initial seed

input. Considering the contribution of the SBF features, switching

on the targeted, focused mutation already improves a lot on the ef-

fectiveness. As in libxml, the graph shows that adding the feedback
of the stochastic local search has a major impact on effectiveness.

The libjpeg benchmark implements JPEG image handling func-

tions, including image encoding, decoding, transforming, etc. The

benchmark program runs the JPEG decode/decompression function

on the input. The two coverage-guided fuzzers perform very simi-

larly to CGF
base

, while KLEE saturates with half of the coverage

reached by the fuzzers. SBF reaches significantly higher coverage

than the competing fuzzers in a few minutes, and around 1.8× as

much coverage in a few hours.

10

All tools perform very similarly on the last benchmark, the Perl

Compatible Regular Expressions (v2) library, or PCRE2 in short.

SBF leads during the first hours, AFL and LibFuzzer catch up in the

long run and they saturate at around the same level as SBF. KLEE

progresses slower and covers less than the other tools. We believe

the reason there is not much difference between the performance of

the three fuzzers on this benchmark, is because the target is easily

discoverable even with completely blind and random fuzzing. The

tokens of a regular expression are typically single characters, which

means that it is easy to generate a wide variety of expressions, just

through random byte mutations.

4.2 Bug Finding Ability
Measuring the number of bugs found in programs with only a few

bugs in them is not statistically robust. To directly evaluate the bug

finding ability of tools, we need targets with a large numbers of

bugs in them. LAVA [12] is a tool that enables such evaluation by

automatically adding many realistic vulnerabilities to existing code.

In order to evaluate SBF’s and the other tool’s bug finding power,

we used one of the LAVA benchmarks, namely the LAVA modified

base64 utility that has 44 injected vulnerabilities in it. We ran all

four tools on this target for 5 hours (same as the experiment in the

LAVA paper [12]), and as before, we repeated the experiment four

times, in order to get an average performance.

In order to make the base64 utility testable with SBF and Lib-

Fuzzer, we replaced the original main of the program (that parses

command line arguments) with a run() entry function that calls

the Base64 decode function on the provided input buffer. With

AFL and KLEE we tested the same code, linked with an additional

main() function to read the input from a file and pass it to run().
We ran two experiments, one where we ran the tools with an

empty initial test suite, and one where a seed file was provided. The

results are shown in Figure 5. We plot the percentage of the found

bugs growing with time. Note that the time axis is in logarithmic

scale. Without a seed input, only SBF and KLEE found bugs. SBF

found all bugs in around 15 seconds in each run, while KLEE found

5 to 6 bugs each time, in 19 minutes on the average.

In the second experiment we provided the fuzzers with an initial

Base64 encoded seed input (the one provided by the benchmark).

KLEE is not shown on this plot as it does not accept seed inputs.

This time both AFL and LibFuzzer were able to find bugs. AFL found

5 bugs in one of the runs, but no more than one in the other runs.

On average, this is 2 bugs in 4 hours. LibFuzzer did better with

an average of 22 bugs in 3 hours and 15 minutes. SBF performed

similarly with or without a seed input, and found all injected bug

in a matter of seconds.

The reason why SBF is so much more effective in finding bugs

is that LAVA introduces a new edge for each vulnerability it injects.

SBF targets each of these, and the directed local search algorithm

can modify the relevant input bytes to trigger the targeted bug very

quickly. In contrast, blind fuzzers do not target any particular edge

and they carry out their mutations randomly, therefore it is only a

matter of luck and time whether bugs are found.

5 RELATEDWORK
Fuzzing. Black-box fuzzers [28, 34, 42, 45] run the target with

randomly mutated or generated inputs without any feedback. If

we already have a test suite with high coverage, these fuzzers can

trigger bugs along the paths covered by this test suite, but they

are not effective in increasing coverage. For this reason, modern

fuzzers such as AFL [43] and LibFuzzer [37] are coverage-guided:

whenever a mutant happens to cover a new path, it is selected

for additional mutation. Using coverage to provide feedback in

this manner, these fuzzers are able to increase coverage. They may

even be able to operate without any initial test suite. Nevertheless,

mutations themselves are carried out blindly. SBF, in contrast, incor-

porates a directed approach based on light-weight instrumentation

to decide what to mutate, and how to mutate.

AFLFast [6] is a recent extension of AFL that finds new paths

faster by applying a heuristic on which files to fuzz more. The

intuition behind its strategy is that there is a better chance of

reaching new edges from inputs that exercise rare paths, so they

prioritize fuzzing those inputs more. This is a useful heuristic when

the fuzzer has no information on what exactly are the reachable

(touched) new edges from an input’s path. With SBF, due to the

target identification phase, we have this information, and we can

avoid fuzzing inputs that do not touch any uncovered edge. Our

targeting strategy inherently applies AFLFast’s prioritization even

more precisely, as we only fuzz inputs that have the potential to

reach a new edge. The more reachable edges there are, the more

we fuzz, as the number of identified edges determines the number

of local searches.

Taint-guided fuzzers [5, 16, 23, 41] use data-flow tracking to

decide which parts of a given input to mutate more than others.

These tools use taint-tracking to identify what parts of the input

flow into potentially dangerous operations, such as library function

calls (e.g., malloc or strcpy), and fuzz those parts of the input more.

This can help in triggering a bug earlier along a path covered by

an existing test suite, but does not help in finding new paths. More

importantly, they do not address the problem of how to mutate.

Dynamic Symbolic Execution. Dynamic symbolic execution [7–

9, 17, 36], also called white-box fuzzing [18], is a systematic testing

approach. It generates inputs in two steps. First, the program is run

symbolically in order to extract a path condition formula. Then, as

a second step, a constraint solver (SMT solver) is used to find in-

put assignments satisfying formulas representing alternative paths.

SBF achieves some of the directionality of DSE while avoiding the

(costly and complex) symbolic execution step. Recently, a stochastic

local search (SLS) based constraint solver [15] was shown to be com-

petitive with commonly used (systematic) constraint solvers [4, 11].

The SLS based SMT solver of Fröhlich et al. [15] even outperformed

the state-of-the-art CDCL based Z3 algorithm on some benchmark

formulas that were extracted by the SAGE [18] DSE system. These

results suggest that stochastic local search is up to the task of tack-

ling typical program execution path constraints, and justifies its

use in SBF to achieve directionality.

In the traditional DSE setting, a local-search based solver would

try to find a satisfying solution for a formula by searching the input

space with the guidance of a distance function, which is evaluated

on the formula. SBF carries out a similar search too, but instead

11

10 2 10 1 100 101 102 103 104

Time (s)

0

20

40

60

80

100
Bu

g c
ov

era
ge

 (%
)

LAVA base64 with empty test suite

sbf
klee

10 2 10 1 100 101 102 103 104

Time (s)

LAVA base64 with seed input

sbf
libfuzzer
afl

Figure 5: Bugs found in the LAVA base64 benchmark. Time is in logarithmic scale.

of evaluating the distance of an input assignment on an extracted

formula, the distance is computed by executing the instrumented

program. Moreover, while the constraint solver would try to sat-

isfy the entire path constraint, we focus on just the last condition.

This means that our approach is incremental in generating new

inputs: it reuses the part of the existing input that is not influencing

the targeted edge and mutates only the part that does. Although

these mutations can sometimes cause the program to take an unin-

tended path, our results suggest that the trade-off we make is very

beneficial.

The main advantage of SBF, shared with fuzzers, is that it is not

fixated on taking a particular path. In particular, if a new mutant

that was intended to cover a certain edge ends up going down an

unintended path, SBF does not discard it. Instead, if the mutant

uncovers new behavior, then it is put back on the work list, and

serves as a basis to further increase coverage. In contrast, an external

constraint solver cannot make any use of solutions that may very

well be useful for discovering new behavior, but do not satisfy the

current constraint given to it.

Fuzzing+DSE hybrids. Hybrid approaches [24, 32, 40] can com-

bine some of the benefits of fuzzing and DSE. In these systems,

cheap and lightweight fuzzing is used to generate test cases until it

gets stuck and does not find new paths any more. DSE is used at

this point to “punch through” difficult conditions that the fuzzer

was unable to get through. Instead of relying on such an ad-hoc

approach for combining the benefits of fuzzing and DSE, SBF uses

a more systematic approach by building directionality into fuzzing.

Our results demonstrate that SBF’s directionality helps it increase

coverage at a much faster rate than existing systems.

Note, that SBF can also be used as component of a hybrid system

in addition to blind fuzzers and DSE. Adding SBF to an existing

Fuzzer+DSE hybrid will make the system as a whole more efficient,

as more coverage targets can be reached with cheaper input gen-

eration. Namely, most “hard” paths for which symbolic execution

was previously necessary, can be quickly covered by SBF.

Search-based software testing (SBST).. The idea of using local

search algorithms for generating test data has been investigated for

a long time [2, 26, 27, 29]. SBST has primarily been used for unit

test generation. These tools typically establish the set of paths or

branches that they want to reach statically and then target them

individually. AUSTIN [21, 22] is one of the most advanced SBST

based unit testing tool for C. It targets edges in functions using

local search, but uses different scoring function and different search

algorithm than SBF. For each edge in the function’s control flow

graph a new search is initiated. Searches are independent from

each other, so the information we gained by generating an input

that reaches one edge is lost or unused for generating input to

reach another edge along the same path. In contrast, SBF targets

edges incrementally, similarly to SAGE’s generational search. Also,

AUSTIN’s search is intra-procedural, meaning that only the nodes

inside the function are considered for evaluating the score, while

SBF does not have such limitation.

Another example of a real-world tool using SBST is EvoSuite [14].

It is a unit test case generator for Java, using evolutionary algorithm.

EvoSuite mutates and scores the entire test suite in one iteration,

instead of trying to reach specific coverage targets with individual

test cases. The test suite is scored based on the total number of

covered edges. In each iteration step, the genetic algorithm treats

the entire test suite as the population, and mutates it towards a

better (population) score, instead of improving individual test cases.

Vuzzer [33] is a recent fuzzer that also uses evolutionary algo-

rithm to prioritize its input mutation and uses coverage as a scoring

function. It also assigns weights to basic blocks using a prior static

analysis, and the score (fitness) is calculated using the weights of

the covered blocks. This way it operates as a coverage-guided fuzzer

but with more detailed coverage information feedback. SBF differs

from these tools by targeting potentially reachable new edges using

a local search.

6 CONCLUSION
In this paper we introduced search-based fuzzing, a new test gener-

ation technique that incorporates some of the directionality of sym-

bolic execution with the simplicity and scalability of fuzzers. Our

target identification algorithm lets us collect which nodes/edges

are affected by which inputs so we can target those edges with

stochastic local search effectively, with a reduced search space. We

thoroughly explored the design space of local search algorithms, and

12

devised an algorithm that works well on broad set of benchmarks.

Finally, our comparison based coverage metric and test suite infla-

tion and deflation technique eliminates many of the limitations of

the edge coverage metric used by existing coverage-guided fuzzers.

SBF is an available tool that bridges the gap between directed and

scalable test generators.

ACKNOWLEDGMENTS
REFERENCES
[1] Mike Aizatsky, Kostya Serebryany, Oliver Chang, Abhishek Arya, and Meredith

Whittaker. 2016. Announcing OSS-Fuzz: Continuous Fuzzing for Open Source

Software. Google Testing Blog. (December 2016). https://testing.googleblog.

com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

[2] S. Ali, L.C. Briand, H. Hemmati, and R.K. Panesar-Walawege. 2010. A Systematic

Review of the Application and Empirical Investigation of Search-Based Test Case

Generation. Software Engineering, IEEE Transactions on 36, 6 (Nov 2010), 742–762.
https://doi.org/10.1109/TSE.2009.52

[3] Thanassis Avgerinos, David Brumley, John Davis, Ryan Goulden, Tyler Nigh-

swander, and Alex Rebert. 2016. Unleashing the Mayhem CRS. https://blog.

forallsecure.com/2016/02/09/unleashing-mayhem/. (2016).

[4] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In

International Conference on Computer Aided Verification. Springer, 171–177.
[5] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier. 2012. A Taint Based Approach for

Smart Fuzzing. In Software Testing, Verification and Validation (ICST), 2012 IEEE
Fifth International Conference on. 818–825. https://doi.org/10.1109/ICST.2012.182

[6] Marcel Bohme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-

based Greybox Fuzzing as Markov Chain. In Proceedings of the 23nd ACM SIGSAC
Conference on Computer and Communications Security, 2016.

[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and

Automatic Generation of High-coverage Tests for Complex Systems Programs.

In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209–224.

http://dl.acm.org/citation.cfm?id=1855741.1855756

[8] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Software Testing:

Three Decades Later. Commun. ACM 56, 2 (February 2013), 82–90. https://doi.

org/10.1145/2408776.2408795

[9] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.

Unleashing Mayhem on Binary Code. In Proceedings of the 2012 IEEE Symposium
on Security and Privacy (SP ’12). IEEE Computer Society, Washington, DC, USA,

380–394. https://doi.org/10.1109/SP.2012.31

[10] Codenomicon. 2014. Heartbleed. http://http://heartbleed.com/. (2014).

[11] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.

In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340. http://dl.
acm.org/citation.cfm?id=1792734.1792766

[12] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,

Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-scale

Automated Vulnerability Addition. In In IEEE Symposium on Security and Privacy
(S&P).

[13] Joshua Drake. 2015. Stagefright: Scary Code in the Heart of Android. In BlackHat
USA.

[14] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Gen-

eration for Object-oriented Software. In Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of Soft-
ware Engineering (ESEC/FSE ’11). ACM, New York, NY, USA, 416–419. https:

//doi.org/10.1145/2025113.2025179

[15] Andreas Frohlich, Armin Biere, Christoph M. Wintersteiger, and Youssef Hamadi.

2015. Stochastic Local Search for Satisfiability Modulo Theories. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015). AAAI
- Association for the Advancement of Artificial Intelligence. http://research.

microsoft.com/apps/pubs/default.aspx?id=238374

[16] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based Directed White-

box Fuzzing. In Proceedings of the 31st International Conference on Software
Engineering (ICSE ’09). IEEE Computer Society, Washington, DC, USA, 474–484.

https://doi.org/10.1109/ICSE.2009.5070546

[17] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed Au-

tomated Random Testing. SIGPLAN Not. 40, 6 (June 2005), 213–223. https:

//doi.org/10.1145/1064978.1065036

[18] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated

Whitebox Fuzz Testing. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2008, San Diego, California, USA, 10th February -
13th February 2008. http://www.isoc.org/isoc/conferences/ndss/08/papers/10_

automated_whitebox_fuzz.pdf

[19] Peter Goodman. 2016. A fuzzer and a symbolic execu-

tor walk into a cloud. https://blog.trailofbits.com/2016/08/02/

engineering-solutions-to-hard-program-analysis-problems. (2016).

[20] Holger H Hoos and Thomas Stützle. 2004. Stochastic local search: Foundations &
applications. Elsevier.

[21] Kiran Lakhotia. 2009. Search-Based Testing. Ph.D. Dissertation. King’s College
London.

[22] Kiran Lakhotia, Mark Harman, and Hamilton Gross. 2013. AUSTIN: An Open

Source Tool for Search Based Software Testing of C Programs. Inf. Softw. Technol.
55, 1 (January 2013), 112–125. https://doi.org/10.1016/j.infsof.2012.03.009

[23] Guangcheng Liang, Lejian Liao, Xin Xu, Jianguang Du, Guoqiang Li, and Heng-

long Zhao. 2013. Effective Fuzzing Based on Dynamic Taint Analysis. In Com-
putational Intelligence and Security (CIS), 2013 9th International Conference on.
615–619. https://doi.org/10.1109/CIS.2013.135

[24] Rupak Majumdar and Koushik Sen. 2007. Hybrid Concolic Testing. In Proceedings
of the 29th International Conference on Software Engineering (ICSE ’07). IEEE
Computer Society, Washington, DC, USA, 416–426. https://doi.org/10.1109/ICSE.

2007.41

[25] Felipe Andres Manzano. 2010. The Symbolic Maze! Feliam’s Blog. (October

2010). https://feliam.wordpress.com/2010/10/07/the-symbolic-maze/

[26] Phil McMinn. 2004. Search-based Software Test Data Generation: A Survey:

Research Articles. Softw. Test. Verif. Reliab. 14, 2 (June 2004), 105–156. https:

//doi.org/10.1002/stvr.v14:2

[27] P. McMinn. 2011. Search-Based Software Testing: Past, Present and Future. In

Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE Fourth
International Conference on. 153–163. https://doi.org/10.1109/ICSTW.2011.100

[28] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of

the Reliability of UNIX Utilities. Commun. ACM 33, 12 (December 1990), 32–44.

https://doi.org/10.1145/96267.96279

[29] W. Miller and D. L. Spooner. 1976. Automatic Generation of Floating-Point Test

Data. IEEE Transactions on Software Engineering SE-2, 3 (Sept 1976), 223–226.

https://doi.org/10.1109/TSE.1976.233818

[30] Ducson Nguyen. 2013. Hybrid Concolic Execution. http://blogs.grammatech.

com/hybrid-concolic-execution-part-1. (2013).

[31] P. Oehlert. 2005. Violating assumptions with fuzzing. IEEE Security Privacy 3, 2

(March 2005), 58–62. https://doi.org/10.1109/MSP.2005.55

[32] Brian S. Pak. 2012. Hybrid Fuzz Testing: Discovering Software Bugs via Fuzzing
and Symbolic Execution. Master’s thesis. Carnegie Mellon University.

[33] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In

NDSS. https://www.vusec.net/download/?t=papers/vuzzer_ndss17.pdf

[34] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David

Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection

for Fuzzing. In 23rd USENIX Security Symposium (USENIX Security 14). USENIX
Association, San Diego, CA, 861–875. https://www.usenix.org/conference/

usenixsecurity14/technical-sessions/presentation/rebert

[35] Eric Schkufza, Rahul Sharma, andAlex Aiken. 2013. Stochastic Superoptimization.

SIGPLAN Not. 48, 4 (March 2013), 305–316. https://doi.org/10.1145/2499368.

2451150

[36] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit

Testing Engine for C. In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-13). ACM, New York, NY, USA,

263–272. https://doi.org/10.1145/1081706.1081750

[37] Kostya Serebryany. 2015. Simple guided fuzzing for libraries using LLVM’s new

libFuzzer. http://blog.llvm.org/2015/04/fuzz-all-clangs.html. (2015).

[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
ATC 2012. https://www.usenix.org/conference/usenixfederatedconferencesweek/

addresssanitizer-fast-address-sanity-checker

[39] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

AndrewDutcher, JohnGrosen, Siji Feng, ChristopheHauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In IEEE Symposium on Security and Privacy.
[40] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In

NDSS.
[41] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-

Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In

Security and Privacy (SP), 2010 IEEE Symposium on. 497–512. https://doi.org/10.
1109/SP.2010.37

[42] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.

Scheduling Black-boxMutational Fuzzing. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (CCS ’13). ACM, New

York, NY, USA, 511–522. https://doi.org/10.1145/2508859.2516736

13

https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://doi.org/10.1109/TSE.2009.52
https://blog.forallsecure.com/2016/02/09/unleashing-mayhem/
https://blog.forallsecure.com/2016/02/09/unleashing-mayhem/
https://doi.org/10.1109/ICST.2012.182
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1109/SP.2012.31
http://http://heartbleed.com/
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
http://research.microsoft.com/apps/pubs/default.aspx?id=238374
http://research.microsoft.com/apps/pubs/default.aspx?id=238374
https://doi.org/10.1109/ICSE.2009.5070546
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/1064978.1065036
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
http://www.isoc.org/isoc/conferences/ndss/08/papers/10_automated_whitebox_fuzz.pdf
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems
https://blog.trailofbits.com/2016/08/02/engineering-solutions-to-hard-program-analysis-problems
https://doi.org/10.1016/j.infsof.2012.03.009
https://doi.org/10.1109/CIS.2013.135
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41
https://feliam.wordpress.com/2010/10/07/the-symbolic-maze/
https://doi.org/10.1002/stvr.v14:2
https://doi.org/10.1002/stvr.v14:2
https://doi.org/10.1109/ICSTW.2011.100
https://doi.org/10.1145/96267.96279
https://doi.org/10.1109/TSE.1976.233818
http://blogs.grammatech.com/hybrid-concolic-execution-part-1
http://blogs.grammatech.com/hybrid-concolic-execution-part-1
https://doi.org/10.1109/MSP.2005.55
https://www.vusec.net/download/?t=papers/vuzzer_ndss17.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://doi.org/10.1145/2499368.2451150
https://doi.org/10.1145/2499368.2451150
https://doi.org/10.1145/1081706.1081750
http://blog.llvm.org/2015/04/fuzz-all-clangs.html
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1145/2508859.2516736

[43] Michal Zalewski. 2014. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl.

(2014).

[44] Michal Zalewski. 2014. Bash bug: the other two RCEs, or how we

chipped away at the original fix. https://lcamtuf.blogspot.com/2014/10/

bash-bug-how-we-finally-cracked.html. (2014).

[45] Mingyi Zhao and Peng Liu. 2016. Empirical Analysis and Modeling of Black-Box

Mutational Fuzzing. In Engineering Secure Software and Systems: 8th International
Symposium, ESSoS 2016, London, UK, April 6-8, 2016. Proceedings. Springer Interna-
tional Publishing, Cham, 173–189. https://doi.org/10.1007/978-3-319-30806-7_11

14

http://lcamtuf.coredump.cx/afl
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
https://lcamtuf.blogspot.com/2014/10/bash-bug-how-we-finally-cracked.html
https://doi.org/10.1007/978-3-319-30806-7_11

	Abstract
	1 Introduction
	1.1 Approach Overview

	2 Search-based Fuzzing Design
	2.1 Coverage Map and Distance Map
	2.2 Main Fuzzing Cycle
	2.3 Search Target Identification
	2.4 Stochastic Local Search
	2.5 Coverage Metric
	2.6 Test Suite Inflation and Deflation

	3 Implementation
	3.1 Instrumentation for Coverage Maps
	3.2 Instrumentation to Identify Search Targets
	3.3 Compiler Optimizations
	3.4 The SBF Library

	4 Evaluation
	4.1 Coverage Increasing Ability
	4.2 Bug Finding Ability

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

