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Software written in low-level languages like C or C++ is prone to memory corruption bugs that allow 
attackers to access machines, extract information, and install malware. Real-world exploits show that all 
widely deployed protections can be defeated.

M ost soft ware we use every day, such as brows-
ers, offi  ce suites, PDF viewers, and operating 

systems, are writt en in low-level languages such as C or 
C++. Th ese languages give programmers explicit and 
fi ne-grained control over memory, making writing very 
effi  cient code possible. However, they can introduce 
memory-related bugs that let att ackers alter a program’s 
behavior and take full control over a program or system.

In this article, we give an overview of the “eternal war 
in memory,” providing a model of memory errors and 
identifying the diff erent general security policies that 
can mitigate the att acks. Because of the limited space, 
we mention only a few concrete mechanisms imple-
menting and enforcing these policies. Our paper, “SoK: 
Eternal War in Memory,” provides more complete cov-
erage of the tools as well as more technical details.1

Background
Clearly, the best way to get rid of memory corrup-
tion bugs is to fi x them. Unfortunately, fi nding these 
bugs is hard, and fi xing them requires a lot of manual 
work. Another option is to avoid low-level languages 

and rewrite all vulnerable applications in type-safe 
languages. Th is is unrealistic as well, owing to the bil-
lions of lines of C and C++ code in use today. Th ere-
fore, we focus on automatic solutions that prevent 
exploitation without modifying source code. Th ere’s a 
tradeoff  between fi xing a bug and using an automatic 
mechanism to prevent exploitation: when a security 
mechanism detects an att ack, it terminates the program, 
whereas when performing a manual fi x, a programmer 
can handle the error and recover from it.

Th e war in memory is fought by researchers devel-
oping defense mechanisms and att ackers fi nding new 
ways around these protections. Th is 30-year-old arms 
race between off ense and defense continues today. Each 
year, hackers demonstrate how systems can be compro-
mised in contests such as Pwn2Own or Pwnium. For 
example, in 2013, hackers successfully exploited mem-
ory bugs in Adobe Reader, Adobe Flash, Oracle Java, 
and Windows 8 in the latest releases of Chrome, Inter-
net Explorer, and Firefox.

Researchers have developed defense mecha-
nisms protecting applications from diff erent forms of 
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attacks—some widely deployed in commodity systems 
and compilers. Stack cookies, exception handler valida-
tion, data execution prevention (DEP or W⊕X), and 
address space layout randomization (ASLR) make suc-
cessful exploitation of memory corruption bugs much 
harder. Unfortunately, several attack vectors are still 
effective under all currently deployed protection set-
tings, including return-oriented programming (ROP),2 
information leaks, and just-in-time ( JIT) code reuse.3 
New defense mechanisms have been proposed but 
aren’t widely deployed, often owing to high perfor-
mance overhead, incompatibility with legacy code, and 
nonrobust protection.

Attacks
To analyze and compare protection mechanisms, we 
first need to understand the attack process. Here, we set 
up a model of all memory corruption exploits, break-
ing them into simple steps. Later, we discuss policies 
obstructing the steps in these attacks as well as the pro-
tection mechanisms enforcing each policy. 

In Figure 1, each beige rectangular node represents 
a step of an exploit that leads to a successful attack—
code corruption, control-flow hijacking, data-only, or 
information leak—represented by red nodes. Each dia-
mond represents a decision between paths to the goal. 
Control-flow hijacking is often the primary attack goal, 
but memory corruption can be used to carry out other 
types of attacks, such as information leaks and data-
only attacks.

Memory Corruption
The first two steps of an exploit cover the initial mem-
ory error (see Figure 1). The first step makes a pointer 
invalid, and the second dereferences the pointer, thereby 
triggering the error. We consider a pointer invalid when 
it goes out of the bounds of its target object or when the 
object is deallocated. A pointer that points to a deleted 
object is called a dangling pointer. Dereferencing an out-
of-bounds pointer causes a spatial error, whereas deref-
erencing a dangling pointer causes a temporal error.

Attackers can execute these first two steps using typi-
cal programming bugs in low-level languages, such as

 ■ buffer overflow/indexing bug: an attacker controls 
the index into an array but the bounds check is miss-
ing or faulty, leading to a spatial error (this bug might 
result from an integer overflow or faulty type conver-
sion); and 

 ■ use-after-free bug: a pointer is used after its pointed 
object has been freed, causing a temporal error. 

When read or written, out-of-bounds or dangling 
pointers can cause corruption or leakage of internal 

data (step 3). When an out-of-bounds pointer is deref-
erenced to read a value into a register, the value is cor-
rupted. Consider the following jump table in which the 
function pointer defining the next function call is read 
from an array without a bounds check:

func_ptr jump_table[3] = 
   {fn0,fn1,fn2};
   jmp_table[user_input](); 
// call *(jmp_table+user_input).

By providing an invalid index as user_input, attack-
ers can alter the target pointer to a location under their 
control and thus read an unintended value, which 
diverts the control flow. Besides corrupting data, read-
ing memory through an attacker-specified pointer can 
leak information if that data is included in the output. 
A classic example of this attack is a format string bug. By 
specifying the format string, attackers can create unex-
pected pointers that the printf function will use:

printf (user_input); 
    // input "%3$x" creates an invalid  

// pointer and prints the third 
// integer on the stack.

When attackers use an out-of-bounds pointer to 
write, they can overwrite anything in memory, includ-
ing regular data, other pointers, and executable code. 
Attackers often exploit buffer overflows and indexing 
bugs to overwrite internal data such as a return address 
or an object’s virtual table (vtable) pointer. Vtable 
pointer corruption is an example of the backward loop 
in step 3 of Figure 1. Suppose an array pointer is made 
out of bounds (step 1) so that when it’s dereferenced 
to write (step 2), it points to a vtable pointer (step 
3) that attackers forge to point to a location that they 
control (step 4). When the corrupted vtable pointer is 
later dereferenced to look up a called virtual function 
(step 5), a bogus function pointer is loaded (step 3 of 
the control-flow hijack attack). With a single memory 
error, attackers can trigger a cascade of follow-up mem-
ory errors by corrupting other pointers. Attackers can 
also exploit write dereferences to leak information. For 
example, they can leak arbitrary memory contents in 
this line of code by corrupting the err_msg pointer, 
similarly to format string bugs:

printf("%s\n",err_msg);

Temporal errors—caused by a dereferenced dan-
gling pointer (step 2)—can be exploited similarly 
to spatial errors. In temporal errors, the deallocated 
object’s memory space is, at least partially, reused by 
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another object. A type mismatch between the old and 
new object also lets attackers access otherwise inacces-
sible memory locations.

Let’s first consider reading through a dangling 
pointer with the old object’s type but pointing to some 
newly allocated buffer holding untrusted user input. 
When a virtual function of the old object is called, that 
object’s vtable pointer loads from a location that’s now 
under an attacker’s control; the attacker-provided data 
will be interpreted as the old object’s vtable pointer. 
This is comparable to exploiting a spatial write error to 
overwrite the vtable pointer inside an object, but in this 
case, only a read dereference is exploited. In addition, 
sensitive information inside the newly allocated object 

can be leaked when read through the dangling pointer 
of the old object’s type.

Attackers can exploit writing through a dangling 
pointer in a similar fashion, especially when there’s a 
type mismatch. A pointer pointing to the stack can also 
become dangling, for instance, if a function returns a 
pointer to a local variable. When the local variable is 
later written through the dangling pointer, it might point 
to a saved return address in a different, newly allocated 
stack frame. Double-free is a special case of a use-after-
free vulnerability, when free() is called on a dangling 
pointer. This can lead to corruption of the memory 
manager’s internal data structures, which attackers can 
exploit to corrupt more pointers.

Figure 1. Memory corruption attacks and policies mitigating them. Each beige rectangular node represents a step of an exploit that leads 
to a successful attack, represented by red nodes. Each diamond represents a decision between alternative paths to the goal. The policy that 
mitigates a given set of attack steps is represented by a dark purple area surrounding the beige boxes. Policies surrounded by a light purple box 
are enforced by current protections. 

Memory Safety

Data Space
Randomization

Data Integrity

Output
data

... to the attacker-
specified value

Use corrupted
data variable

Modify a data
variable ...

Data-Flow Integrity

Code corruption attack Control-flow hijack attack Data-only attack Information leak

Code Pointer Integrity

Modify a
code pointer ...

Make a pointer go out of bounds Make a pointer become dangling

Use pointer to write Use pointer to read

... to the address of
shellcode or gadget

Code Integrity

Use pointer by
indirect call or jump

Use pointer by
return instruction

Modify
code ...

Modify a
data pointer ...

... to the attacker-
specified code

Instruction Set
Randomization

Address Space
Randomization

... to the attacker-
specified address

Address Space
Randomization

Data Space
Randomization

Control-Flow IntegrityReturn Integrity

Execute available
gadgets or functions

Execute injected
shellcode

Nonexecutable Data

Use pointer to
read or write

6

5

4

3

2

1

Interpret the
output data

j3sze.indd   47 5/9/14   10:42 AM



48 IEEE Security & Privacy May/June 2014

IEEE S&P SYMPOSIUM

Attackers can use any combination of the first two 
steps in the model to both corrupt internal data and leak 
sensitive information. Furthermore, they can trigger 
additional memory errors with other corrupted point-
ers. In general, memory corruption lets attackers read 
and modify a program’s internal state in unintended 
ways. The errors we described are a violation of the 
Memory Safety policy (see Figure 1).

C and C++ are inherently memory-unsafe because 
they don’t prohibit these errors. Bounds checking and 
memory management are the programmers’ responsi-
bility. According to the C and C++ standards, writing an 
array beyond its bounds, dereferencing a null pointer, or 
reading an uninitialized variable doesn’t necessarily have 
to raise an exception or error, but the result is undefined.

Code Corruption 
The most obvious way to modify a program’s execu-
tion is to use a bug to overwrite the program code in 
memory. The Code Integrity policy ensures that pro-
gram code can’t be modified and is typically enforced 
by setting all code pages to read-only after the program 
is loaded into memory. All modern processors support 
this feature.

Control-Flow Hijacking
Most often, attackers exploit memory corruption to 
control program execution by diverting its control flow. 
Control-flow hijack attacks use memory errors to cor-
rupt a code pointer (step 3). The Code Pointer Integ-
rity policy prevents code pointer corruption. It can’t 
be enforced as easily as Code Integrity because most 
code pointers, such as return addresses, must be stored 
in writable memory, for instance, on the stack or heap. 
Furthermore, even if all code pointers are read-only, 
they might be corrupted when being read into a regis-
ter through a corrupted pointer. The example we gave 
for reading through an out-of-bounds pointer demon-
strates this. Currently, no published protection tech-
nique enforces this policy.

Suppose attackers carry out step 3 and modify a 
saved return address. To hijack the control flow, they 
also need to know where to divert it—that is, the tar-
get’s location (step 4). The Address Space Random-
ization (ASR) policy randomizes the potential targets’ 
locations. An attack fails if the attacker can’t guess the 
correct address. 

Suppose attackers successfully corrupt a code 
pointer, such as a function pointer, in the first four steps. 
Step 5 is to load the pointer into the program counter 
register. In most architectures, the program counter or 
instruction pointer is updated only indirectly with the 
execution of an indirect control-flow transfer instruc-
tion, such as an indirect function call, indirect jump, or 

function return. Diverting the execution from the con-
trol flow defined by the source code violates the Con-
trol-Flow Integrity (CFI) policy. 

The final step of a control-flow hijack exploit 
is the execution of malicious code (step 6). Clas-
sic attacks inject shellcode into memory and divert 
execution to this piece of code. The Nonexecutable 
Data policy prevents such code injection. Combin-
ing Nonexecutable Data and Code Integrity results 
in the W⊕X policy: a page can be either writable or 
executable, but not both. Most modern CPUs sup-
port nonexecutable page permissions, and enforcing 
W⊕X is cheap and practical. 

To bypass the Nonexecutable Data policy, attackers 
reuse existing code in memory. The reused code can 
be existing functions, as in the case of a return-to-libc 
attack, or gadgets—small instruction sequences found 
anywhere in the code that can be chained together to 
carry out useful operations. This approach is called 
return-oriented programming because functions or 
gadgets are often chained by return instruction. 
Attackers can use other indirect jump instructions 
for this purpose, and sometimes no chaining is neces-
sary—for instance, calling system() with an arbi-
trary command. At this point, the attack is successful: 
attacker-specified code is executed. We don’t cover 
higher-level policies, such as sandboxing, system call 
interposition, and file permissions, which only con-
fine attackers’ power or capabilities. Although limiting 
the damage that attackers can cause after compromis-
ing a program is important, we focus on preventing 
the compromise.

Data-Only
Control-flow hijacking isn’t the only way to carry out an 
attack. In general, attackers want to maliciously modify 
program logic to gain more control, gain privileges, or 
leak information. They can achieve these goals without 
modifying data explicitly related to the control flow. For 
instance, consider the modification of the isAdmin 
variable via a buffer overflow:

bool isAdmin = false;
...
if (isAdmin) // do privileged operations.

These are called non-control-data attacks because neither 
code nor code pointers (control data) are corrupted.4 
The target of corruption is any security-critical data in 
memory, for example, configuration data, user IDs, or 
cryptographic keys.

The steps for this attack are comparable to control-
data attacks. Here, the goal is to corrupt a security- 
critical variable in step 3. Because any data could be 

j3sze.indd   48 5/9/14   10:42 AM



www.computer.org/security 49

security critical, the integrity of all variables must be 
protected to prevent an attack. We call this policy Data 
Integrity, generalizing Code Integrity and Code Pointer 
Integrity. Data Integrity approaches prevent the corrup-
tion of data in memory by enforcing an approximation 
of the Memory Safety policy.

As with code pointers, attackers must know the cor-
rupted data’s new value. Introducing entropy into the 
representation of all data using the Data Space Ran-
domization (DSR) policy can prevent attackers from 
knowing the correct values. DSR techniques general-
ize and extend ASR by introducing entropy in not only 
memory addresses (pointers) but also data variables.

Similar to code pointer corruption, data-only attacks 
succeed only when the corrupted variable is used. In our 
running example, the if (isAdmin) statement must 
successfully execute without detecting the corruption. 
As a generalization of the CFI policy, using any cor-
rupted data (not only corrupted pointers) violates the 
Data-Flow Integrity (DFI) policy. 

Information Leak
Any type of memory error can be exploited to leak 
memory contents that are otherwise excluded from 
the output. Information leaks are most often used to 
circumvent probabilistic defenses. In a threat model in 
which attackers have complete access to the memory 
due to memory corruption, the only policy beyond 
Memory Safety that might mitigate information leakage 
is full DSR, which encrypts data in memory. 

Control-Flow Protections
Here, we cover techniques enforcing the policies that 
mitigate the steps contributing to control-flow hijack 
attacks—Return Integrity, Code Integrity and Non-
executable Data, ASR, and CFI. Stack cookies, W⊕X, 
and ASLR are currently the only widely deployed pro-
tection mechanisms. In Figure 1, the policies enforced 
by these mechanisms are depicted with a light purple 
box. No widely used technique enforces CFI, but the 
ongoing research is promising.

Return Integrity
Stack cookies, also called canaries, were the first defense 
against “stack smashing” attacks wherein attackers 
exploit a buffer overflow on the stack to overwrite a 
return address. The defense aims to enforce the integ-
rity of return addresses and other control data, such as 
saved base pointers, by placing a secret value, or cookie, 
between the return address and local variables. The 
return address can only be overwritten by a contiguous 
buffer overflow if the cookie is overwritten as well. By 
checking whether the cookie value has changed before 
returning, the attack can be detected. 

Return Integrity is weaker than CFI because it doesn’t 
protect indirect calls and jumps (step 5). Furthermore, 
stack cookie protection is limited even for returns: 
return addresses are vulnerable to direct overwrites—
for example, exploiting an indexing error—and cook-
ies are vulnerable to information leaks. However, stack 
cookies are popular and widely deployed because the 
performance overhead is negligible (typically less than 
1 percent), and no compatibility issues are introduced.

Code Integrity and Nonexecutable Data
W⊕X—the combination of Code Integrity and Non-
executable Data—protects against code corruption 
and code injection but doesn’t protect against code 
reuse like ROP in step 6. This protection is widely used 
and has negligible overhead due to hardware support. 
Unfortunately, W⊕X isn’t compatible with self-modify-
ing code or JIT compilation. Every major browser and 
office application includes a JIT compiler for JavaScript, 
ActionScript, or VBScript. The dynamic code’s integrity 
can’t be enforced because there’s a time window dur-
ing which the generated code is on a writable page. But 
more important, the code is generated from an attacker-
provided source (for example, in JavaScript), which can 
be exploited to produce useful gadgets for code reuse.5

Address Space Randomization 
ASLR is the most prominent memory ASR tech-
nique. It randomly arranges the position of each code 
and data memory area. If the payload’s address in the 
virtual memory space isn’t fixed, attackers can’t divert 
control flow reliably. ASLR is the most comprehensive 
deployed protection against hijacking attacks. It also 
mitigates other attack types that involve corrupting 
more data pointers in memory, because attackers don’t 
know what to change the pointer to (see the backward 
loop in Figure 1).

Many implementations have serious weaknesses. 
Often, some memory segments aren’t randomized, and 
attackers can use gadgets from fixed segments. Other 
times, the introduced entropy (for example, in 32-bit 
address spaces) isn’t effective against brute-force or 
heap-spray attacks in which the memory is filled with 
copies of the payload. Several proposed enhancements 
make randomization more fine grained and increase 
entropy in both data and code locations by permuting 
functions, basic blocks, and instructions.

Information leaks—the fundamental attack vector 
against all probabilistic techniques—can completely 
undermine ASR.6 The prevalence of user scripting and 
JIT compilation makes exploiting information leaks 
much easier. An attacker-specified script can exploit an 
information leak to circumvent ASR, use the informa-
tion to dynamically discover or produce useful code 
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gadgets, and launch a code-reuse exploit on the fly.3 

ASLR results in less than 10 percent performance over-
head on average.

Control-Flow Integrity
CFI enforces control-flow transfers’ integrity by check-
ing their targets’ validity, as opposed to Return Integ-
rity, which checks only function returns. CFI relies on 
prior knowledge of all valid targets for each control-
flow transfer, including calls, jumps, and returns. For 
instance, we can use static pointer analysis to establish 
the valid targets, or points-to sets, of indirect func-
tion calls and returns. By assigning different IDs to 
distinct points-to sets, we mark target locations with 
the IDs and check the marks before the control trans-
fer instruction. In the first CFI solution, Martin Abadi 
and his colleagues proposed placing the IDs inside the 
code to protect them through Code Integrity.7 The 
IDs are encoded into instructions that don’t affect 
the code semantics. All indirect calls and returns are 
instrumented to check whether the target address has 
the correct ID before jumping there. This mechanism 
relies on Nonexecutable Data to prevent attackers from 
forging valid targets by simply placing an ID before an 
injected shellcode.

This method overapproximates programs’ original 
control-flow graph. First, because of the conservative-
ness of any pointer analysis, the resulting points-to sets 
are overapproximations. Second, to have unique IDs, 
points-to sets that include a common target must be 
merged. Furthermore, all exported functions in shared 
libraries must be marked with the same ID because of 
potential external aliasing. 

A weaker but more practical policy restricts indi-
rect control transfers to the union of all their points-
to sets. The original CFI implementation and newer, 
more practical solutions, such as CCFIR8 and binCFI,9 
use this approach. All indirectly callable functions are 
marked with the same ID. The advantage of this policy 
is that it doesn’t need pointer analysis; enumerating all 
functions whose addresses are taken is sufficient.

The main drawback of the original and many other 
CFI solutions is that they’re incompatible with untrans-
formed libraries. If the library functions aren’t marked 
as valid targets, calling them will raise false positives. 
Performance overhead for CFI implementations is 
between 5 and 45 percent for most programs.

Generic Protections
Here, we discuss some of the protection mechanisms 
enforcing policies that provide more comprehensive 
protection mitigating more than one attack type in our 
model: Memory Safety, Data Integrity, DSR, and DFI. 
Currently, none of these techniques is used in practice.

Memory Safety
Memory Safety mitigates memory corruption by pre-
venting both spatial and temporal errors. Type-safe 
languages enforce this policy by disallowing pointer 
arithmetic, checking object bounds at array accesses, 
and using automatic garbage collection instead of man-
ual memory management. To enforce a similar policy 
for C and C++, which allow pointer arithmetic and 
manual memory management, the objects’ bounds 
and allocation information must be tracked. This 
meta information is associated with either pointers or 
objects; perfect Memory Safety can be achieved only in 
the former case.

To enforce spatial safety, some C alternatives such as 
CCured and Cyclone use fat pointers. They extend the 
pointer representation to a structure that includes the 
lowest and highest valid values—that is, the pointed 
object’s start and end address—along with the pointer’s 
current value. The primary problem with this approach 
is that fat pointers break binary compatibility, so pro-
tected programs can’t use unmodified libraries.

SoftBound addresses this problem by splitting the 
metadata from the pointer.10 The pointers are mapped 
to their bounds information using a hash table or 
shadow memory, a simple linear mapping of the original 
address space. The code is instrumented to propagate 
the metadata and check the bounds whenever a pointer 
is de referenced. At pointer initialization, the bounds 
are set to the pointed object’s start and end address. 
Dereference checks ensure that each pointer is inside its 
bounds. Pointer-based bounds checking stops all spatial 
errors in step 2 of our exploit model. SoftBound is for-
mally proven to provide this protection.

Maintaining not only bounds but also allocation 
information with the pointers allows enforcing tempo-
ral safety and thus full Memory Safety. Allocation infor-
mation indicates when referenced objects are still valid. 
Keeping an extra bit associated with each pointer indicat-
ing the object’s validity isn’t sufficient because all point-
ers referencing that object must be found and updated 
when the object is freed. Compiler Enforced Temporal 
Safety (CETS) extends SoftBound and solves this prob-
lem by storing an object’s validity in a global dictionary. 
New objects get a unique ID as the key to the dictionary, 
and pointers are associated with this ID. A special data 
structure for the dictionary allows quick and easy object 
invalidation and fast lookups to check object validity.

CETS is formally proven to enforce temporal safety 
if spatial safety is enforced. Therefore, combining Soft-
Bound and CETS enforces Memory Safety. These guar-
antees have a performance price: the SoftBound/CETS 
instrumentation slows programs by 100 to 300 per-
cent. Alternative techniques mitigate temporal errors’ 
exploitability by ensuring the deallocated objects’ 
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memory space is reused only by objects of the same 
type (SafeCode and Cling) or by finer-grained heap 
randomization (DieHard(er)).

Data Integrity
Data Integrity is an approximation of Memory Safety, 
enforced by associating metainformation with objects 
instead of pointers. Knowing an object’s address isn’t 
enough to determine whether a pointer dereference 
targets the correct object. Therefore, some object-based 
techniques (for example, Jones and Kelly’s) check 
pointer arithmetic (step 1) instead of dereferences (step 
2) to check bounds. The checks ensure that a pointer 
referencing an object stays in the object’s bounds during 
pointer arithmetic.

Tools such as Valgrind’s Memcheck, Light-weight 
Bounds Checker (LBC),11 and Google’s Address-
Sanitizer (ASAN) also track objects, but they don’t 
check pointer arithmetic. They mark the active object’s 
location in a shadow memory space and ensure that 
dereferenced pointers point to valid objects. By leav-
ing space between objects, they can detect contiguous 
buffer overflows but not indexing bugs or corruption 
inside objects. 

Even with pointer arithmetic checks, these ap-
proaches typically don’t detect data corruption inside 
objects; thus, spatial safety isn’t fully enforced. They 
can’t enforce full temporal safety either. They detect ac-
cesses to currently deallocated locations, but if another 
object reuses the location, use-after-free bugs remain un-
detected. Although these techniques can and do mitigate 
the exploitation of use-after-free bugs—for example, by 
delaying the reuse of freed memory regions—provable 
temporal safety needs a pointer-based approach.

The performance overhead for such tools can often 
be more than 100 percent. To decrease the overhead and 
increase the precision of object-based techniques with-
out pointer arithmetic checking, some researchers lever-
age static analysis. First, many unnecessary checks can be 
eliminated statically. Second, by using points-to analysis, 
each pointer dereference can be restricted to access only 
objects in its own points-to set. Write integrity testing 
(WIT) calculates distinct points-to sets for every pointer 
dereferenced for a write and associates an ID with its 
point-to set.12 These IDs mark the objects in the shadow 
memory area and are checked before each indirect write.

A drawback to enforcing different points-to sets is 
that this approach is incompatible with shared librar-
ies. The established points-to sets depend on the whole 
program, which means that different programs would 
need, for instance, different C libraries using different 
IDs. The only way to remain compatible is to use a sin-
gle ID (for “marked”), which degenerates to the policy 
enforced by Memcheck or ASAN. Because WIT doesn’t 

protect reads, data—including function pointers—can 
be corrupted when read into a register through a cor-
rupt pointer. To compensate for this limitation, WIT 
statically establishes and checks indirect calls’ targets 
to properly enforce CFI. Because WIT doesn’t deal 
with temporal errors, overwriting a return address via 
an escaped dangling pointer is possible; however, such 
bugs are rare in practice. WIT’s reported performance 
overhead is between 10 and 25 percent.

Data Space Randomization
Pointer encryption falls between ASR and DSR. Point-
Guard encrypts all pointers in memory and decrypts 
them before they’re loaded into registers.13 This has 
similar effect as ASLR, as it introduces entropy in 
addresses, but it does so in the “data space,” encrypting 
the stored address—that is, the pointer value. Point-
ers are decrypted using XOR with the same key for all 
pointers. Because it uses only one key, attackers can 
recover the key if one encrypted pointer is leaked from 
memory.6 PointGuard isn’t widely adopted because it’s 
neither binary nor source code compatible.

Full DSR overcomes PointGuard’s limitations and 
provides stronger protection.14 It encrypts every variable, 
not just pointers, and uses different keys. For a variable v, 
a key or mask mv is generated. The code is instrumented 
to mask and unmask variables, using XOR, when they’re 
stored and loaded from memory. Because different 
variables can be stored and loaded by the same pointer 
dereference, variables in equivalent points-to sets must 
use the same key. Therefore, DSR uses the same pointer 
analysis as WIT to compute points-to sets. The protec-
tion DSR offers is stronger than PointGuard, because 
encrypting all variables protects against not only control-
flow hijacks but also data-only exploits. Using multiple 
keys makes DSR much more robust against information 
leaks, yet they remain possible.6

As in case of CFI and WIT, establishing the points-to 
sets depends on the whole program’s static knowledge. 
Because of potential aliasing, we’re forced to use only 
one key or ID to instrument an independent shared 
library. In this case, the robustness is reduced to the 
same guarantees that PointGuard offers. Protected bina-
ries are also incompatible with unmodified libraries. 
Variables encrypted by the transformed module won’t 
be decrypted by the untransformed libraries. DSR’s 
average overhead is 15 to 25 percent.

Data-Flow Integrity
DFI detects data corruption before the data is used by 
checking memory read targets.15 DFI restricts reads 
based on the last instruction that wrote the read loca-
tion. In program analysis terms, DFI enforces reaching 
definition sets. An instruction’s reaching definition set 
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is the set of instructions that might have last written 
the value used by the given instruction based on the 
control- flow graph.

For instance, the DFI policy ensures that the 
 isAdmin variable was last written by the write instruc-
tion that the source code defines—and not by a rogue 
attacker-controlled write—and that the return address 
used by a return was last written by the corresponding 
call instruction. DFI builds on static points-to analy-
sis to compute the global reaching definition sets. The 
resulting reaching definition sets are assigned a unique 
ID. Each written memory location is marked in the 
shadow memory with the writing instruction ID. For 
each read, DFI checks that the ID is valid.

Similar to all solutions relying on pointer analysis, 
independent transformation of shared libraries is an 
issue for this policy. DFI isn’t binary compatible either, 
because the lack of metadata maintenance in unpro-
tected libraries can cause false alarms. DFI’s perfor-
mance overhead can be 100 to 200 percent.

Dynamic taint analysis is a simplified version of DFI 
and doesn’t require static analysis. A written memory 
location is marked in the shadow area if the written 
data is derived from untrusted user input. Upon read-
ing sensitive data, such as a function pointer, the taint 
analysis instrumentation can check the mark to ensure 
it doesn’t explicitly depend on user data. However, 
taint analysis often suffers from false positives, and the 
performance cost can be even higher than DFI without 
hardware support.

Approach Summary
Table 1 summarizes the approaches we covered, indi-
cating their performance cost, compatibility issues, and 
weaknesses. The upper half of the table covers protec-
tions against control-flow hijack attacks only, and the 
lower half covers approaches that mitigate memory cor-
ruption exploits in general, including the four attacks 
we identified in our model.

The indicated performance overheads are rough 
estimates for the worst case. They’re based on reported 
results measured with the SPEC CPU 2000/2006 
benchmarks. The judgment of performance overheads 
is subjective; we categorize overhead as unacceptable 
only if it doubles the runtime.

The first three approaches in the table show the 
widely deployed protection mechanisms. They have 
practically no performance overhead or compatibility 
issues, but they have significant security weaknesses. 
Attackers can divert the control flow at an indirect call 
or jump, unprotected by stack cookies; reuse exist-
ing code with W⊕X enforced; and circumvent ASLR 
by exploiting information leaks. Information leaks are 
easier to exploit today due to the prevalence of user 
scripting, which makes the effectiveness of newer, even 
finer-grained, randomization techniques unclear. 

None of the other techniques are perfect regarding 
robustness, except enforcing complete Memory Safety 
with pointer-based techniques. Data Integrity solu-
tions, such as object-based techniques, don’t provide 
perfect protection against sub object and use-after-free 

Table 1. Protection policies and their techniques’ performance impact, compatibility issues, and robustness problems.*

Policy Technique Performance 
overhead (%)

Compatibility Weakness

Hijack

Return Integrity Stack cookies < 5 Good Direct overwrite and 
information leaks

Code Integrity and 
Nonexecutable Data

Page flags < 1 Good Just-in-time compilation

Address Space 
Randomization

Address space layout 
randomization (ASLR)

< 10 Good Information leaks

Control-Flow Integrity Control-Flow Integrity (CFI) 10–45 Libraries Overapproximation

Generic

Memory Safety SoftBound and Compiler 
Enforced Temporal Safety 
(Softbound+CETS)

100–300 Good None

Data Integrity Write integrity 
testing (WIT)

10–25 Libraries Overapproximation, sub objects, 
use-after-free bugs, and reads

Data Space 
Randomization

Data Space 
Randomization (DSR)

15–25 Libraries Overapproximation and 
information leaks

Data-Flow Integrity Data-Flow Integrity (DFI) 100–200 Libraries Overapproximation

*The colors express positive and negative properties: green means favorable, yellow indicates an acceptable shortcoming, and red indicates an issue likely 
preventing deployment in production environments.
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corruption. Furthermore, these techniques often check 
only writes—not reads—to decrease performance 
overhead. For instance, WIT allows corrupting a value 
when it’s read into a register through an invalid pointer. 
Tools such as LBC and ASAN are even less precise—
as they can be considered single ID versions of WIT—
and they have even higher performance costs. Similar 
to ASLR as a hijack protection, DSR provides the most 
comprehensive solutions as a generic protection, but 
both can be circumvented by information leaks.

The robustness of solutions relying on static pointer 
analysis—that is, CFI, WIT, DSR, and DFI—is bounded 
by the conservative approximation of points-to sets. 
However, the bigger problem with these solutions is their 
issues with shared libraries. Independent transformation 
of shared libraries is supported only if the overapproxi-
mation goes to the extreme, for example, using only one 
ID/key. Another problem is the incompatibility with 
unmodified shared libraries that don’t maintain the meta-
data that the transformed code uses and requires. These 
problems prevent the deployment of CFI and Data Integ-
rity solutions, despite their acceptable overhead.

N one of the current solutions solve this 30-year-
old problem with low overhead or without 

compatibility issues. We expect newer, more practical 
techniques enforcing stronger policies in the future. In 
other words: the war is not over. 
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