
1540-7993/14/$31.00 © 2014 IEEE Copublished by the IEEE Computer and Reliability Societies May/June 2014 45

IEEE S&P SYMPOSIUM

László Szekeres | Stony Brook University
Mathias Payer | University of California, Berkeley
Lenx Tao Wei | FireEye
R. Sekar | Stony Brook University

Software written in low-level languages like C or C++ is prone to memory corruption bugs that allow
attackers to access machines, extract information, and install malware. Real-world exploits show that all
widely deployed protections can be defeated.

M ost soft ware we use every day, such as brows-
ers, offi ce suites, PDF viewers, and operating

systems, are writt en in low-level languages such as C or
C++. Th ese languages give programmers explicit and
fi ne-grained control over memory, making writing very
effi cient code possible. However, they can introduce
memory-related bugs that let att ackers alter a program’s
behavior and take full control over a program or system.

In this article, we give an overview of the “eternal war
in memory,” providing a model of memory errors and
identifying the diff erent general security policies that
can mitigate the att acks. Because of the limited space,
we mention only a few concrete mechanisms imple-
menting and enforcing these policies. Our paper, “SoK:
Eternal War in Memory,” provides more complete cov-
erage of the tools as well as more technical details.1

Background
Clearly, the best way to get rid of memory corrup-
tion bugs is to fi x them. Unfortunately, fi nding these
bugs is hard, and fi xing them requires a lot of manual
work. Another option is to avoid low-level languages

and rewrite all vulnerable applications in type-safe
languages. Th is is unrealistic as well, owing to the bil-
lions of lines of C and C++ code in use today. Th ere-
fore, we focus on automatic solutions that prevent
exploitation without modifying source code. Th ere’s a
tradeoff between fi xing a bug and using an automatic
mechanism to prevent exploitation: when a security
mechanism detects an att ack, it terminates the program,
whereas when performing a manual fi x, a programmer
can handle the error and recover from it.

Th e war in memory is fought by researchers devel-
oping defense mechanisms and att ackers fi nding new
ways around these protections. Th is 30-year-old arms
race between off ense and defense continues today. Each
year, hackers demonstrate how systems can be compro-
mised in contests such as Pwn2Own or Pwnium. For
example, in 2013, hackers successfully exploited mem-
ory bugs in Adobe Reader, Adobe Flash, Oracle Java,
and Windows 8 in the latest releases of Chrome, Inter-
net Explorer, and Firefox.

Researchers have developed defense mecha-
nisms protecting applications from diff erent forms of

Eternal War in Memory

j3sze.indd 45 5/9/14 10:42 AM

46 IEEE Security & Privacy May/June 2014

IEEE S&P SYMPOSIUM

attacks—some widely deployed in commodity systems
and compilers. Stack cookies, exception handler valida-
tion, data execution prevention (DEP or W⊕X), and
address space layout randomization (ASLR) make suc-
cessful exploitation of memory corruption bugs much
harder. Unfortunately, several attack vectors are still
effective under all currently deployed protection set-
tings, including return-oriented programming (ROP),2
information leaks, and just-in-time (JIT) code reuse.3
New defense mechanisms have been proposed but
aren’t widely deployed, often owing to high perfor-
mance overhead, incompatibility with legacy code, and
nonrobust protection.

Attacks
To analyze and compare protection mechanisms, we
first need to understand the attack process. Here, we set
up a model of all memory corruption exploits, break-
ing them into simple steps. Later, we discuss policies
obstructing the steps in these attacks as well as the pro-
tection mechanisms enforcing each policy.

In Figure 1, each beige rectangular node represents
a step of an exploit that leads to a successful attack—
code corruption, control-flow hijacking, data-only, or
information leak—represented by red nodes. Each dia-
mond represents a decision between paths to the goal.
Control-flow hijacking is often the primary attack goal,
but memory corruption can be used to carry out other
types of attacks, such as information leaks and data-
only attacks.

Memory Corruption
The first two steps of an exploit cover the initial mem-
ory error (see Figure 1). The first step makes a pointer
invalid, and the second dereferences the pointer, thereby
triggering the error. We consider a pointer invalid when
it goes out of the bounds of its target object or when the
object is deallocated. A pointer that points to a deleted
object is called a dangling pointer. Dereferencing an out-
of-bounds pointer causes a spatial error, whereas deref-
erencing a dangling pointer causes a temporal error.

Attackers can execute these first two steps using typi-
cal programming bugs in low-level languages, such as

 ■ buffer overflow/indexing bug: an attacker controls
the index into an array but the bounds check is miss-
ing or faulty, leading to a spatial error (this bug might
result from an integer overflow or faulty type conver-
sion); and

 ■ use-after-free bug: a pointer is used after its pointed
object has been freed, causing a temporal error.

When read or written, out-of-bounds or dangling
pointers can cause corruption or leakage of internal

data (step 3). When an out-of-bounds pointer is deref-
erenced to read a value into a register, the value is cor-
rupted. Consider the following jump table in which the
function pointer defining the next function call is read
from an array without a bounds check:

func_ptr jump_table[3] =
 {fn0,fn1,fn2};
 jmp_table[user_input]();
// call *(jmp_table+user_input).

By providing an invalid index as user_input, attack-
ers can alter the target pointer to a location under their
control and thus read an unintended value, which
diverts the control flow. Besides corrupting data, read-
ing memory through an attacker-specified pointer can
leak information if that data is included in the output.
A classic example of this attack is a format string bug. By
specifying the format string, attackers can create unex-
pected pointers that the printf function will use:

printf (user_input);
 // input "%3$x" creates an invalid

// pointer and prints the third
// integer on the stack.

When attackers use an out-of-bounds pointer to
write, they can overwrite anything in memory, includ-
ing regular data, other pointers, and executable code.
Attackers often exploit buffer overflows and indexing
bugs to overwrite internal data such as a return address
or an object’s virtual table (vtable) pointer. Vtable
pointer corruption is an example of the backward loop
in step 3 of Figure 1. Suppose an array pointer is made
out of bounds (step 1) so that when it’s dereferenced
to write (step 2), it points to a vtable pointer (step
3) that attackers forge to point to a location that they
control (step 4). When the corrupted vtable pointer is
later dereferenced to look up a called virtual function
(step 5), a bogus function pointer is loaded (step 3 of
the control-flow hijack attack). With a single memory
error, attackers can trigger a cascade of follow-up mem-
ory errors by corrupting other pointers. Attackers can
also exploit write dereferences to leak information. For
example, they can leak arbitrary memory contents in
this line of code by corrupting the err_msg pointer,
similarly to format string bugs:

printf("%s\n",err_msg);

Temporal errors—caused by a dereferenced dan-
gling pointer (step 2)—can be exploited similarly
to spatial errors. In temporal errors, the deallocated
object’s memory space is, at least partially, reused by

j3sze.indd 46 5/9/14 10:42 AM

www.computer.org/security 47

another object. A type mismatch between the old and
new object also lets attackers access otherwise inacces-
sible memory locations.

Let’s first consider reading through a dangling
pointer with the old object’s type but pointing to some
newly allocated buffer holding untrusted user input.
When a virtual function of the old object is called, that
object’s vtable pointer loads from a location that’s now
under an attacker’s control; the attacker-provided data
will be interpreted as the old object’s vtable pointer.
This is comparable to exploiting a spatial write error to
overwrite the vtable pointer inside an object, but in this
case, only a read dereference is exploited. In addition,
sensitive information inside the newly allocated object

can be leaked when read through the dangling pointer
of the old object’s type.

Attackers can exploit writing through a dangling
pointer in a similar fashion, especially when there’s a
type mismatch. A pointer pointing to the stack can also
become dangling, for instance, if a function returns a
pointer to a local variable. When the local variable is
later written through the dangling pointer, it might point
to a saved return address in a different, newly allocated
stack frame. Double-free is a special case of a use-after-
free vulnerability, when free() is called on a dangling
pointer. This can lead to corruption of the memory
manager’s internal data structures, which attackers can
exploit to corrupt more pointers.

Figure 1. Memory corruption attacks and policies mitigating them. Each beige rectangular node represents a step of an exploit that leads
to a successful attack, represented by red nodes. Each diamond represents a decision between alternative paths to the goal. The policy that
mitigates a given set of attack steps is represented by a dark purple area surrounding the beige boxes. Policies surrounded by a light purple box
are enforced by current protections.

Memory Safety

Data Space
Randomization

Data Integrity

Output
data

... to the attacker-
specified value

Use corrupted
data variable

Modify a data
variable ...

Data-Flow Integrity

Code corruption attack Control-flow hijack attack Data-only attack Information leak

Code Pointer Integrity

Modify a
code pointer ...

Make a pointer go out of bounds Make a pointer become dangling

Use pointer to write Use pointer to read

... to the address of
shellcode or gadget

Code Integrity

Use pointer by
indirect call or jump

Use pointer by
return instruction

Modify
code ...

Modify a
data pointer ...

... to the attacker-
specified code

Instruction Set
Randomization

Address Space
Randomization

... to the attacker-
specified address

Address Space
Randomization

Data Space
Randomization

Control-Flow IntegrityReturn Integrity

Execute available
gadgets or functions

Execute injected
shellcode

Nonexecutable Data

Use pointer to
read or write

6

5

4

3

2

1

Interpret the
output data

j3sze.indd 47 5/9/14 10:42 AM

48 IEEE Security & Privacy May/June 2014

IEEE S&P SYMPOSIUM

Attackers can use any combination of the first two
steps in the model to both corrupt internal data and leak
sensitive information. Furthermore, they can trigger
additional memory errors with other corrupted point-
ers. In general, memory corruption lets attackers read
and modify a program’s internal state in unintended
ways. The errors we described are a violation of the
Memory Safety policy (see Figure 1).

C and C++ are inherently memory-unsafe because
they don’t prohibit these errors. Bounds checking and
memory management are the programmers’ responsi-
bility. According to the C and C++ standards, writing an
array beyond its bounds, dereferencing a null pointer, or
reading an uninitialized variable doesn’t necessarily have
to raise an exception or error, but the result is undefined.

Code Corruption
The most obvious way to modify a program’s execu-
tion is to use a bug to overwrite the program code in
memory. The Code Integrity policy ensures that pro-
gram code can’t be modified and is typically enforced
by setting all code pages to read-only after the program
is loaded into memory. All modern processors support
this feature.

Control-Flow Hijacking
Most often, attackers exploit memory corruption to
control program execution by diverting its control flow.
Control-flow hijack attacks use memory errors to cor-
rupt a code pointer (step 3). The Code Pointer Integ-
rity policy prevents code pointer corruption. It can’t
be enforced as easily as Code Integrity because most
code pointers, such as return addresses, must be stored
in writable memory, for instance, on the stack or heap.
Furthermore, even if all code pointers are read-only,
they might be corrupted when being read into a regis-
ter through a corrupted pointer. The example we gave
for reading through an out-of-bounds pointer demon-
strates this. Currently, no published protection tech-
nique enforces this policy.

Suppose attackers carry out step 3 and modify a
saved return address. To hijack the control flow, they
also need to know where to divert it—that is, the tar-
get’s location (step 4). The Address Space Random-
ization (ASR) policy randomizes the potential targets’
locations. An attack fails if the attacker can’t guess the
correct address.

Suppose attackers successfully corrupt a code
pointer, such as a function pointer, in the first four steps.
Step 5 is to load the pointer into the program counter
register. In most architectures, the program counter or
instruction pointer is updated only indirectly with the
execution of an indirect control-flow transfer instruc-
tion, such as an indirect function call, indirect jump, or

function return. Diverting the execution from the con-
trol flow defined by the source code violates the Con-
trol-Flow Integrity (CFI) policy.

The final step of a control-flow hijack exploit
is the execution of malicious code (step 6). Clas-
sic attacks inject shellcode into memory and divert
execution to this piece of code. The Nonexecutable
Data policy prevents such code injection. Combin-
ing Nonexecutable Data and Code Integrity results
in the W⊕X policy: a page can be either writable or
executable, but not both. Most modern CPUs sup-
port nonexecutable page permissions, and enforcing
W⊕X is cheap and practical.

To bypass the Nonexecutable Data policy, attackers
reuse existing code in memory. The reused code can
be existing functions, as in the case of a return-to-libc
attack, or gadgets—small instruction sequences found
anywhere in the code that can be chained together to
carry out useful operations. This approach is called
return-oriented programming because functions or
gadgets are often chained by return instruction.
Attackers can use other indirect jump instructions
for this purpose, and sometimes no chaining is neces-
sary—for instance, calling system() with an arbi-
trary command. At this point, the attack is successful:
attacker-specified code is executed. We don’t cover
higher-level policies, such as sandboxing, system call
interposition, and file permissions, which only con-
fine attackers’ power or capabilities. Although limiting
the damage that attackers can cause after compromis-
ing a program is important, we focus on preventing
the compromise.

Data-Only
Control-flow hijacking isn’t the only way to carry out an
attack. In general, attackers want to maliciously modify
program logic to gain more control, gain privileges, or
leak information. They can achieve these goals without
modifying data explicitly related to the control flow. For
instance, consider the modification of the isAdmin
variable via a buffer overflow:

bool isAdmin = false;
...
if (isAdmin) // do privileged operations.

These are called non-control-data attacks because neither
code nor code pointers (control data) are corrupted.4
The target of corruption is any security-critical data in
memory, for example, configuration data, user IDs, or
cryptographic keys.

The steps for this attack are comparable to control-
data attacks. Here, the goal is to corrupt a security-
critical variable in step 3. Because any data could be

j3sze.indd 48 5/9/14 10:42 AM

www.computer.org/security 49

security critical, the integrity of all variables must be
protected to prevent an attack. We call this policy Data
Integrity, generalizing Code Integrity and Code Pointer
Integrity. Data Integrity approaches prevent the corrup-
tion of data in memory by enforcing an approximation
of the Memory Safety policy.

As with code pointers, attackers must know the cor-
rupted data’s new value. Introducing entropy into the
representation of all data using the Data Space Ran-
domization (DSR) policy can prevent attackers from
knowing the correct values. DSR techniques general-
ize and extend ASR by introducing entropy in not only
memory addresses (pointers) but also data variables.

Similar to code pointer corruption, data-only attacks
succeed only when the corrupted variable is used. In our
running example, the if (isAdmin) statement must
successfully execute without detecting the corruption.
As a generalization of the CFI policy, using any cor-
rupted data (not only corrupted pointers) violates the
Data-Flow Integrity (DFI) policy.

Information Leak
Any type of memory error can be exploited to leak
memory contents that are otherwise excluded from
the output. Information leaks are most often used to
circumvent probabilistic defenses. In a threat model in
which attackers have complete access to the memory
due to memory corruption, the only policy beyond
Memory Safety that might mitigate information leakage
is full DSR, which encrypts data in memory.

Control-Flow Protections
Here, we cover techniques enforcing the policies that
mitigate the steps contributing to control-flow hijack
attacks—Return Integrity, Code Integrity and Non-
executable Data, ASR, and CFI. Stack cookies, W⊕X,
and ASLR are currently the only widely deployed pro-
tection mechanisms. In Figure 1, the policies enforced
by these mechanisms are depicted with a light purple
box. No widely used technique enforces CFI, but the
ongoing research is promising.

Return Integrity
Stack cookies, also called canaries, were the first defense
against “stack smashing” attacks wherein attackers
exploit a buffer overflow on the stack to overwrite a
return address. The defense aims to enforce the integ-
rity of return addresses and other control data, such as
saved base pointers, by placing a secret value, or cookie,
between the return address and local variables. The
return address can only be overwritten by a contiguous
buffer overflow if the cookie is overwritten as well. By
checking whether the cookie value has changed before
returning, the attack can be detected.

Return Integrity is weaker than CFI because it doesn’t
protect indirect calls and jumps (step 5). Furthermore,
stack cookie protection is limited even for returns:
return addresses are vulnerable to direct overwrites—
for example, exploiting an indexing error—and cook-
ies are vulnerable to information leaks. However, stack
cookies are popular and widely deployed because the
performance overhead is negligible (typically less than
1 percent), and no compatibility issues are introduced.

Code Integrity and Nonexecutable Data
W⊕X—the combination of Code Integrity and Non-
executable Data—protects against code corruption
and code injection but doesn’t protect against code
reuse like ROP in step 6. This protection is widely used
and has negligible overhead due to hardware support.
Unfortunately, W⊕X isn’t compatible with self-modify-
ing code or JIT compilation. Every major browser and
office application includes a JIT compiler for JavaScript,
ActionScript, or VBScript. The dynamic code’s integrity
can’t be enforced because there’s a time window dur-
ing which the generated code is on a writable page. But
more important, the code is generated from an attacker-
provided source (for example, in JavaScript), which can
be exploited to produce useful gadgets for code reuse.5

Address Space Randomization
ASLR is the most prominent memory ASR tech-
nique. It randomly arranges the position of each code
and data memory area. If the payload’s address in the
virtual memory space isn’t fixed, attackers can’t divert
control flow reliably. ASLR is the most comprehensive
deployed protection against hijacking attacks. It also
mitigates other attack types that involve corrupting
more data pointers in memory, because attackers don’t
know what to change the pointer to (see the backward
loop in Figure 1).

Many implementations have serious weaknesses.
Often, some memory segments aren’t randomized, and
attackers can use gadgets from fixed segments. Other
times, the introduced entropy (for example, in 32-bit
address spaces) isn’t effective against brute-force or
heap-spray attacks in which the memory is filled with
copies of the payload. Several proposed enhancements
make randomization more fine grained and increase
entropy in both data and code locations by permuting
functions, basic blocks, and instructions.

Information leaks—the fundamental attack vector
against all probabilistic techniques—can completely
undermine ASR.6 The prevalence of user scripting and
JIT compilation makes exploiting information leaks
much easier. An attacker-specified script can exploit an
information leak to circumvent ASR, use the informa-
tion to dynamically discover or produce useful code

j3sze.indd 49 5/9/14 10:42 AM

50 IEEE Security & Privacy May/June 2014

IEEE S&P SYMPOSIUM

gadgets, and launch a code-reuse exploit on the fly.3

ASLR results in less than 10 percent performance over-
head on average.

Control-Flow Integrity
CFI enforces control-flow transfers’ integrity by check-
ing their targets’ validity, as opposed to Return Integ-
rity, which checks only function returns. CFI relies on
prior knowledge of all valid targets for each control-
flow transfer, including calls, jumps, and returns. For
instance, we can use static pointer analysis to establish
the valid targets, or points-to sets, of indirect func-
tion calls and returns. By assigning different IDs to
distinct points-to sets, we mark target locations with
the IDs and check the marks before the control trans-
fer instruction. In the first CFI solution, Martin Abadi
and his colleagues proposed placing the IDs inside the
code to protect them through Code Integrity.7 The
IDs are encoded into instructions that don’t affect
the code semantics. All indirect calls and returns are
instrumented to check whether the target address has
the correct ID before jumping there. This mechanism
relies on Nonexecutable Data to prevent attackers from
forging valid targets by simply placing an ID before an
injected shellcode.

This method overapproximates programs’ original
control-flow graph. First, because of the conservative-
ness of any pointer analysis, the resulting points-to sets
are overapproximations. Second, to have unique IDs,
points-to sets that include a common target must be
merged. Furthermore, all exported functions in shared
libraries must be marked with the same ID because of
potential external aliasing.

A weaker but more practical policy restricts indi-
rect control transfers to the union of all their points-
to sets. The original CFI implementation and newer,
more practical solutions, such as CCFIR8 and binCFI,9
use this approach. All indirectly callable functions are
marked with the same ID. The advantage of this policy
is that it doesn’t need pointer analysis; enumerating all
functions whose addresses are taken is sufficient.

The main drawback of the original and many other
CFI solutions is that they’re incompatible with untrans-
formed libraries. If the library functions aren’t marked
as valid targets, calling them will raise false positives.
Performance overhead for CFI implementations is
between 5 and 45 percent for most programs.

Generic Protections
Here, we discuss some of the protection mechanisms
enforcing policies that provide more comprehensive
protection mitigating more than one attack type in our
model: Memory Safety, Data Integrity, DSR, and DFI.
Currently, none of these techniques is used in practice.

Memory Safety
Memory Safety mitigates memory corruption by pre-
venting both spatial and temporal errors. Type-safe
languages enforce this policy by disallowing pointer
arithmetic, checking object bounds at array accesses,
and using automatic garbage collection instead of man-
ual memory management. To enforce a similar policy
for C and C++, which allow pointer arithmetic and
manual memory management, the objects’ bounds
and allocation information must be tracked. This
meta information is associated with either pointers or
objects; perfect Memory Safety can be achieved only in
the former case.

To enforce spatial safety, some C alternatives such as
CCured and Cyclone use fat pointers. They extend the
pointer representation to a structure that includes the
lowest and highest valid values—that is, the pointed
object’s start and end address—along with the pointer’s
current value. The primary problem with this approach
is that fat pointers break binary compatibility, so pro-
tected programs can’t use unmodified libraries.

SoftBound addresses this problem by splitting the
metadata from the pointer.10 The pointers are mapped
to their bounds information using a hash table or
shadow memory, a simple linear mapping of the original
address space. The code is instrumented to propagate
the metadata and check the bounds whenever a pointer
is de referenced. At pointer initialization, the bounds
are set to the pointed object’s start and end address.
Dereference checks ensure that each pointer is inside its
bounds. Pointer-based bounds checking stops all spatial
errors in step 2 of our exploit model. SoftBound is for-
mally proven to provide this protection.

Maintaining not only bounds but also allocation
information with the pointers allows enforcing tempo-
ral safety and thus full Memory Safety. Allocation infor-
mation indicates when referenced objects are still valid.
Keeping an extra bit associated with each pointer indicat-
ing the object’s validity isn’t sufficient because all point-
ers referencing that object must be found and updated
when the object is freed. Compiler Enforced Temporal
Safety (CETS) extends SoftBound and solves this prob-
lem by storing an object’s validity in a global dictionary.
New objects get a unique ID as the key to the dictionary,
and pointers are associated with this ID. A special data
structure for the dictionary allows quick and easy object
invalidation and fast lookups to check object validity.

CETS is formally proven to enforce temporal safety
if spatial safety is enforced. Therefore, combining Soft-
Bound and CETS enforces Memory Safety. These guar-
antees have a performance price: the SoftBound/CETS
instrumentation slows programs by 100 to 300 per-
cent. Alternative techniques mitigate temporal errors’
exploitability by ensuring the deallocated objects’

j3sze.indd 50 5/9/14 10:42 AM

www.computer.org/security 51

memory space is reused only by objects of the same
type (SafeCode and Cling) or by finer-grained heap
randomization (DieHard(er)).

Data Integrity
Data Integrity is an approximation of Memory Safety,
enforced by associating metainformation with objects
instead of pointers. Knowing an object’s address isn’t
enough to determine whether a pointer dereference
targets the correct object. Therefore, some object-based
techniques (for example, Jones and Kelly’s) check
pointer arithmetic (step 1) instead of dereferences (step
2) to check bounds. The checks ensure that a pointer
referencing an object stays in the object’s bounds during
pointer arithmetic.

Tools such as Valgrind’s Memcheck, Light-weight
Bounds Checker (LBC),11 and Google’s Address-
Sanitizer (ASAN) also track objects, but they don’t
check pointer arithmetic. They mark the active object’s
location in a shadow memory space and ensure that
dereferenced pointers point to valid objects. By leav-
ing space between objects, they can detect contiguous
buffer overflows but not indexing bugs or corruption
inside objects.

Even with pointer arithmetic checks, these ap-
proaches typically don’t detect data corruption inside
objects; thus, spatial safety isn’t fully enforced. They
can’t enforce full temporal safety either. They detect ac-
cesses to currently deallocated locations, but if another
object reuses the location, use-after-free bugs remain un-
detected. Although these techniques can and do mitigate
the exploitation of use-after-free bugs—for example, by
delaying the reuse of freed memory regions—provable
temporal safety needs a pointer-based approach.

The performance overhead for such tools can often
be more than 100 percent. To decrease the overhead and
increase the precision of object-based techniques with-
out pointer arithmetic checking, some researchers lever-
age static analysis. First, many unnecessary checks can be
eliminated statically. Second, by using points-to analysis,
each pointer dereference can be restricted to access only
objects in its own points-to set. Write integrity testing
(WIT) calculates distinct points-to sets for every pointer
dereferenced for a write and associates an ID with its
point-to set.12 These IDs mark the objects in the shadow
memory area and are checked before each indirect write.

A drawback to enforcing different points-to sets is
that this approach is incompatible with shared librar-
ies. The established points-to sets depend on the whole
program, which means that different programs would
need, for instance, different C libraries using different
IDs. The only way to remain compatible is to use a sin-
gle ID (for “marked”), which degenerates to the policy
enforced by Memcheck or ASAN. Because WIT doesn’t

protect reads, data—including function pointers—can
be corrupted when read into a register through a cor-
rupt pointer. To compensate for this limitation, WIT
statically establishes and checks indirect calls’ targets
to properly enforce CFI. Because WIT doesn’t deal
with temporal errors, overwriting a return address via
an escaped dangling pointer is possible; however, such
bugs are rare in practice. WIT’s reported performance
overhead is between 10 and 25 percent.

Data Space Randomization
Pointer encryption falls between ASR and DSR. Point-
Guard encrypts all pointers in memory and decrypts
them before they’re loaded into registers.13 This has
similar effect as ASLR, as it introduces entropy in
addresses, but it does so in the “data space,” encrypting
the stored address—that is, the pointer value. Point-
ers are decrypted using XOR with the same key for all
pointers. Because it uses only one key, attackers can
recover the key if one encrypted pointer is leaked from
memory.6 PointGuard isn’t widely adopted because it’s
neither binary nor source code compatible.

Full DSR overcomes PointGuard’s limitations and
provides stronger protection.14 It encrypts every variable,
not just pointers, and uses different keys. For a variable v,
a key or mask mv is generated. The code is instrumented
to mask and unmask variables, using XOR, when they’re
stored and loaded from memory. Because different
variables can be stored and loaded by the same pointer
dereference, variables in equivalent points-to sets must
use the same key. Therefore, DSR uses the same pointer
analysis as WIT to compute points-to sets. The protec-
tion DSR offers is stronger than PointGuard, because
encrypting all variables protects against not only control-
flow hijacks but also data-only exploits. Using multiple
keys makes DSR much more robust against information
leaks, yet they remain possible.6

As in case of CFI and WIT, establishing the points-to
sets depends on the whole program’s static knowledge.
Because of potential aliasing, we’re forced to use only
one key or ID to instrument an independent shared
library. In this case, the robustness is reduced to the
same guarantees that PointGuard offers. Protected bina-
ries are also incompatible with unmodified libraries.
Variables encrypted by the transformed module won’t
be decrypted by the untransformed libraries. DSR’s
average overhead is 15 to 25 percent.

Data-Flow Integrity
DFI detects data corruption before the data is used by
checking memory read targets.15 DFI restricts reads
based on the last instruction that wrote the read loca-
tion. In program analysis terms, DFI enforces reaching
definition sets. An instruction’s reaching definition set

j3sze.indd 51 5/9/14 10:42 AM

52 IEEE Security & Privacy May/June 2014

IEEE S&P SYMPOSIUM

is the set of instructions that might have last written
the value used by the given instruction based on the
control- flow graph.

For instance, the DFI policy ensures that the
 isAdmin variable was last written by the write instruc-
tion that the source code defines—and not by a rogue
attacker-controlled write—and that the return address
used by a return was last written by the corresponding
call instruction. DFI builds on static points-to analy-
sis to compute the global reaching definition sets. The
resulting reaching definition sets are assigned a unique
ID. Each written memory location is marked in the
shadow memory with the writing instruction ID. For
each read, DFI checks that the ID is valid.

Similar to all solutions relying on pointer analysis,
independent transformation of shared libraries is an
issue for this policy. DFI isn’t binary compatible either,
because the lack of metadata maintenance in unpro-
tected libraries can cause false alarms. DFI’s perfor-
mance overhead can be 100 to 200 percent.

Dynamic taint analysis is a simplified version of DFI
and doesn’t require static analysis. A written memory
location is marked in the shadow area if the written
data is derived from untrusted user input. Upon read-
ing sensitive data, such as a function pointer, the taint
analysis instrumentation can check the mark to ensure
it doesn’t explicitly depend on user data. However,
taint analysis often suffers from false positives, and the
performance cost can be even higher than DFI without
hardware support.

Approach Summary
Table 1 summarizes the approaches we covered, indi-
cating their performance cost, compatibility issues, and
weaknesses. The upper half of the table covers protec-
tions against control-flow hijack attacks only, and the
lower half covers approaches that mitigate memory cor-
ruption exploits in general, including the four attacks
we identified in our model.

The indicated performance overheads are rough
estimates for the worst case. They’re based on reported
results measured with the SPEC CPU 2000/2006
benchmarks. The judgment of performance overheads
is subjective; we categorize overhead as unacceptable
only if it doubles the runtime.

The first three approaches in the table show the
widely deployed protection mechanisms. They have
practically no performance overhead or compatibility
issues, but they have significant security weaknesses.
Attackers can divert the control flow at an indirect call
or jump, unprotected by stack cookies; reuse exist-
ing code with W⊕X enforced; and circumvent ASLR
by exploiting information leaks. Information leaks are
easier to exploit today due to the prevalence of user
scripting, which makes the effectiveness of newer, even
finer-grained, randomization techniques unclear.

None of the other techniques are perfect regarding
robustness, except enforcing complete Memory Safety
with pointer-based techniques. Data Integrity solu-
tions, such as object-based techniques, don’t provide
perfect protection against sub object and use-after-free

Table 1. Protection policies and their techniques’ performance impact, compatibility issues, and robustness problems.*

Policy Technique Performance
overhead (%)

Compatibility Weakness

Hijack

Return Integrity Stack cookies < 5 Good Direct overwrite and
information leaks

Code Integrity and
Nonexecutable Data

Page flags < 1 Good Just-in-time compilation

Address Space
Randomization

Address space layout
randomization (ASLR)

< 10 Good Information leaks

Control-Flow Integrity Control-Flow Integrity (CFI) 10–45 Libraries Overapproximation

Generic

Memory Safety SoftBound and Compiler
Enforced Temporal Safety
(Softbound+CETS)

100–300 Good None

Data Integrity Write integrity
testing (WIT)

10–25 Libraries Overapproximation, sub objects,
use-after-free bugs, and reads

Data Space
Randomization

Data Space
Randomization (DSR)

15–25 Libraries Overapproximation and
information leaks

Data-Flow Integrity Data-Flow Integrity (DFI) 100–200 Libraries Overapproximation

*The colors express positive and negative properties: green means favorable, yellow indicates an acceptable shortcoming, and red indicates an issue likely
preventing deployment in production environments.

j3sze.indd 52 5/9/14 10:42 AM

www.computer.org/security 53

corruption. Furthermore, these techniques often check
only writes—not reads—to decrease performance
overhead. For instance, WIT allows corrupting a value
when it’s read into a register through an invalid pointer.
Tools such as LBC and ASAN are even less precise—
as they can be considered single ID versions of WIT—
and they have even higher performance costs. Similar
to ASLR as a hijack protection, DSR provides the most
comprehensive solutions as a generic protection, but
both can be circumvented by information leaks.

The robustness of solutions relying on static pointer
analysis—that is, CFI, WIT, DSR, and DFI—is bounded
by the conservative approximation of points-to sets.
However, the bigger problem with these solutions is their
issues with shared libraries. Independent transformation
of shared libraries is supported only if the overapproxi-
mation goes to the extreme, for example, using only one
ID/key. Another problem is the incompatibility with
unmodified shared libraries that don’t maintain the meta-
data that the transformed code uses and requires. These
problems prevent the deployment of CFI and Data Integ-
rity solutions, despite their acceptable overhead.

N one of the current solutions solve this 30-year-
old problem with low overhead or without

compatibility issues. We expect newer, more practical
techniques enforcing stronger policies in the future. In
other words: the war is not over.

References
1. L. Szekeres et al., “SoK: Eternal War in Memory,” Proc.

2013 IEEE Symp. Security and Privacy, 2013, pp. 48–62.
2. H. Shacham, “The Geometry of Innocent Flesh on the

Bone: Return-into-libc without Function Calls (on the
x86),” Proc. 14th ACM Conf. Computer and Communica-
tions Security, 2007, pp. 552–561.

3. K.Z. Snow et al., “Just-in-Time Code Reuse: On the Effec-
tiveness of Fine-Grained Address Space Layout Random-
ization,” Proc. 2013 IEEE Symp. Security and Privacy, 2013,
pp. 574–588.

4. S. Chen et al., “Non-Control-Data Attacks Are Realistic
Threats,” Proc. 14th Conf. Usenix Security Symp., vol. 14,
2005, p. 12.

5. D. Blazakis, “Interpreter Exploitation,” Proc. 4th Usenix
Conf. Offensive Technologies, 2010, pp. 1–9.

6. R. Strackx et al., “Breaking the Memory Secrecy Assumption,”
Proc. 2nd European Workshop System Security, 2009, pp. 1–8.

7. M. Abadi et al., “Control-Flow Integrity,” Proc. 12th ACM Conf.
Computer and Communications Security, 2005, pp. 340–353.

8. C. Zhang et al., “Practical Control Flow Integrity and
Randomization for Binary Executables,” Proc. 2013 IEEE
Symp. Security and Privacy, 2013, pp. 559–573.

9. M. Zhang and R. Sekar, “Control Flow Integrity for COTs

Binaries,” Proc. 22nd Usenix Security Symp., 2013, pp.
337–352.

10. S. Nagarakatte et al., “SoftBound: Highly Compatible
and Complete Spatial Memory Safety for C,” SIGPLAN
Notices, vol. 44, no. 6, 2009, pp. 245–258.

11. N. Hasabnis, A. Misra, and R. Sekar, “Light-Weight
Bounds Checking,” Proc. 10th Int’l Symp. Code Generation
and Optimization, 2012, pp. 135–144.

12. P. Akritidis et al., “Preventing Memory Error Exploits
with WIT,” Proc. 2008 IEEE Symp. Security and Privacy,
2008, pp. 263–277.

13. C. Cowan et al., “PointGuard: Protecting Pointers from
Buffer Overflow Vulnerabilities,” Proc. 12th Conf. Usenix
Security Symp. vol. 12, 2003, p. 7.

14. S. Bhatkar, R. Sekar, and D.C. DuVarney, “Efficient Tech-
niques for Comprehensive Protection from Memory
Error Exploits,” Proc. 14th Conf. Usenix Security Symp.,
vol. 14, 2005, p. 17.

15. M. Castro, M. Costa, and T. Harris, “Securing Software by
Enforcing Data-Flow Integrity,” Proc. 7th Symp. Operating
Systems Design and Implementation, 2006, pp. 147–160.

László Szekeres is a PhD candidate in the Secure Systems
Laboratory at Stony Brook University. His research
interests include automated bug finding and software
hardening via program analysis and compiler and
language-based techniques. Szekeres received an MS
from the Budapest University of Technology and Eco-
nomics. Contact him at lszekeres@cs.stonybrook.edu.

Mathias Payer is a postdoctoral researcher in the Bit-
Blaze group at University of California, Berkeley. His
research interests include system security, binary anal-
ysis, user-space software-based fault isolation, binary
translation, application virtualization, and compiler-
based enforcement of security policies. Payer received
a DSc in computer science from ETH Zurich. Con-
tact him at mathias.payer@nebelwelt.net.

Lenx Tao Wei is senior staff research scientist at FireEye.
His research interests include mobile security, soft-
ware analysis and system protection, Web trust and
privacy, and programming languages. Wei received
a PhD in computer science from Peking University.
Contact him at lenx.wei@gmail.com.

R. Sekar is a professor of computer science and director
of the Secure Systems Laboratory and the Center for
Cyber Security at Stony Brook University. His research
interests include software exploit detection and miti-
gation, malware and untrusted code defense, and secu-
rity policies and their enforcement. Sekar received a
PhD in computer science from Stony Brook Univer-
sity. Contact him at sekar@seclab.cs.stonybrook.edu.

j3sze.indd 53 5/9/14 10:42 AM

