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ABSTRACT
Given a program where none of our fuzzers finds any bugs, how do
we know which fuzzer is better? In practice, we often look to code
coverage as a proxy measure of fuzzer effectiveness and consider
the fuzzer which achieves more coverage as the better one.

Indeed, evaluating 10 fuzzers for 23 hours on 24 programs, we
find that a fuzzer that covers more code also finds more bugs. There
is a very strong correlation between the coverage achieved and the
number of bugs found by a fuzzer. Hence, it might seem reasonable
to compare fuzzers in terms of coverage achieved, and from that
derive empirical claims about a fuzzer’s superiority at finding bugs.

Curiously enough, however, we find no strong agreement on
which fuzzer is superior if we compared multiple fuzzers in terms
of coverage achieved instead of the number of bugs found. The
fuzzer best at achieving coverage, may not be best at finding bugs.
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1 INTRODUCTION
In the recent decade, fuzzing has found widespread interest. In
industry, we have large continuous fuzzing platforms employing
100k+ machines for automatic bug finding [23, 24, 46]. In academia,
in 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62].

Imagine, we have several fuzzers available to test our program.
Hopefully, none of them finds any bugs. If indeed they don’t, we
might have some confidence in the correctness of the program.
Then again, even a perfectly non-functional fuzzer would find no
bugs in our program. So, how do we know which fuzzer has the
highest “potential” of finding bugs? A widely used proxy measure
of fuzzer effectiveness is the code coverage that is achieved. After
all, a fuzzer cannot find bugs in code that it does not cover.

Indeed, in our experiments we identify a very strong positive
correlation between the coverage achieved and the number of bugs
found by a fuzzer. Correlation assesses the strength of the associa-
tion between two random variables or measures. We conduct our
empirical investigation on 10 fuzzers × 24 C programs × 20 fuzzing
campaigns of 23 hours (≈ 13 CPU years). We use three measures of
coverage and two measures of bug finding, and our results suggest:
As the fuzzer covers more code, it also discovers more bugs.
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(a) 1 hour fuzzing campaigns (𝜌 = 0.38).
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(b) 1 day fuzzing campaigns (𝜌 = 0.49).

Figure 1: Scatterplot of the ranks of 10 fuzzers applied to 24
programs for (a) 1 hour and (b) 23 hours, when ranking each
fuzzer in terms of the avg. number of branches covered (x-
axis) and in terms of the avg. number of bugs found (y-axis).

Hence, it might seem reasonable to conjecture that the fuzzer
which is better in terms of code coverage is also better in terms
of bug finding—but is this really true? In Figure 1, we show the
ranking of these fuzzers across all programs in terms of the average
coverage achieved and the average number of bugs found in each
benchmark. The ranks are visibly different. To be sure, we also
conducted a pair-wise comparison between any two fuzzers where
the difference in coverage and the difference in bug finding are
statistically significant. The results are similar.

We identify no strong agreement on the superiority or ranking
of a fuzzer when compared in terms of mean coverage versus mean
bug finding. Inter-rater agreement assesses the degree to which
two raters, here both types of benchmarking, agree on the superi-
ority or ranking of a fuzzer when evaluated on multiple programs.
Indeed, two measures of the same construct are likely to exhibit a
high degree of correlation but can at the same time disagree sub-
stantially [41, 55]. We evaluate the agreement on fuzzer superiority
when comparing any two fuzzers where the differences in terms of
coverage and bug finding are statistically significant. We evaluate
the agreement on fuzzer ranking when comparing all the fuzzers.

Concretely, our results suggest a moderate agreement. For fuzzer
pairs, where the differences in terms of coverage and bug finding
is statistically significant, the results disagree for 10% to 15% of
programs. Only when measuring the agreement between branch
coverage and the number of bugs found and when we require the
differences to be statistically significant at 𝑝 ≤ 0.0001 for coverage
and bug finding, do we find a strong agreement. However, statistical
significance at 𝑝 ≤ 0.0001 only in terms of coverage is not sufficient;
we again find only weak agreement. The increase in agreement
with statistical significance is not observed when we measure bug
finding using the time-to-error. We also find that the variance of the
agreement reduces as more programs are used, and that results of
1h campaigns do not strongly agree with results of 23h campaigns.

https://doi.org/10.1145/3510003.3510230
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In summary, this paper makes the following contributions:
★ We introduce a novel methodology to evaluate proxy measures

of fuzzer (or test suite) effectiveness. Specifically, we suggest
evaluating agreement instead of correlation, and propose a bug-
based evaluation without pre-determined ground-truth.

★ We provide the first evidence on the reliability of coverage-based
benchmarking for the evaluation of fuzzer effectiveness. We
confirm a very strong correlation and a moderate agreement.

★ We explore an interpretation of our results for reaching a fault
versus exposing a bug (Section 6) and discuss our results in the
larger context of fuzzer benchmarking, where we make concrete
recommendations for future evaluations (Section 7).

★ We publish all data, the analysis, and the virtual experimental
infrastructure. We provide precise instructions to reproduce and
extend our experiments: https://doi.org/10.5281/zenodo.6045830

2 RELATEDWORK
Code coverage has long been used as a proxy measure of the bug
finding ability of a test suite. Fortunately, in practice the most com-
mon situation is that the test suite detects no bugs. Now, if all test
cases pass, how do we assert whether the test suite is effective?
Practitioners often rely on code coverage instead [33]. Underpin-
ning coverage as a proxy measure is the insight that a test suite
cannot find bugs in code that it does not cover. However, recent
empirical studies on the correlation between code coverage and
bug finding identify different degrees of correlation [9].

The code coverage of a test suite or fuzzer can be measured, e.g.,
as the number of program branches that are exercised by the test
suite or fuzzer, respectively. The bug finding ability of a test suite
(or fuzzer) can be measured, e.g., as the number of bugs found or
the time it took to find the first bug. The correlation between two
random variables measures the strength of their association and
the direction of their relationship.

Using artificially injected bugs and developer-generated test
suites, Inozemtseva andHolmes [32] find aweak correlation between
coverage and test suite effectiveness when the size of the test suite
is controlled for (and a moderate to strong correlation if test suite
size is ignored). However, Chen et al. [9] raise concerns about the
experimental methodology (i.e., the stratification of test set size)
posing a significant threat to the validity of the results. Gopinath
et al. [26] identified a strong correlation between code coverage and
test suite effectiveness for developer-provided test suites and found
the impact of test suite size neglible. For auto-generated test suites
the correlation was moderate to strong; however, the majority of
auto-generated test suites covered less than 20% of code while the
coverage values for developer-generated test suites had a much
wider spread, and they might have been written specifically for
detecting these bugs. Gligoric et al. [22] find a very strong correlation
between coverage and bug finding using different measures of
correlation. In contrast to this line of work, we use real bugs instead
of artificially injected bugs (i.e., mutants). Mutants may or may
not be representative of real bugs [9, 35, 50]. Instead of developer-
provided test suites, our study is concerned with "test suites" that
were auto-generated by various fuzzers. In our study, test suite size
is not a concern, either, as we explicitly control for the method by
which the test suite (i.e., seed corpus) is generated.

Using real bugs and auto-generated test suites (generated by one
fuzzer), Wei et al. [61] observe that the majority of bugs (>50%) are
found in the last two thirds of the campaign when branch cover-
age increases only slightly from 90% to 94%. Along this qualitative
reasoning, they conclude that "there is weak correlation between
number of faults found and coverage". Kochhar et al. [37] find a
strong correlation between coverage and bug finding for one pro-
gram and a moderate correlation for another. However, Chen et al.
[9] raise concerns about the correlation measure that was used and
note that the association is likely stronger than indicated. More
generally, Chen et al. expose several flaws in experimental method-
ologies of previous work and highlight common pitfalls in the
statistical evaluation. Their own experiments indicate a very strong
correlation between coverage and bug finding.

In our study, we can confirm a very strong correlation. However,
in contrast to all previous work, we suggest the use of agreement
instead of correlation for empirical investigations of test suite ef-
fectiveness. The agreement between two measures quantifies the
degree to which both measures would agree on the relative perfor-
mance of fuzzers. We define two types of agreement: agreement on
superiority, which concerns two fuzzers; and agreement on ranking,
which concerns more than two fuzzers. We say that two measures
agree on superiority if both measures consider the same fuzzer bet-
ter performing than the other, and the difference is statistically
significant. We say that two measures agree on ranking if both
measures order more than two fuzzers according to their average
performance the same way, not considering statistical significance.
Counterintuitively to the strong correlation result, we find that the
agreement, both on superiority and ranking, is moderate.

Benchmarking bug finding tools is difficult. For static analysis
tools, Dwyer, Person, and Elbaum [14] show that even small varia-
tions in the tool’s configuration can give rise to a very large varia-
tion in the tool’s bug finding effectiveness. For fuzzing, Gavrilov et
al. [19] start from the observation that "bug-based metrics are im-
practical because (1) the definition of ‘bug’ is vague, and (2) mapping
bug-revealing inputs to bugs requires extensive domain knowledge".
In fact, we will elaborate on the challenges of bug-based evaluation
in Section 7. Instead of counting the number of bugs, Gavrilov et
al. [19] propose to measure the number of changes in program
behavior over time that a fuzzer can detect.

To the best of our knowledge, our work is the first to evaluate
whether coverage-based fuzzer benchmarking is reliable: Does the
ranking of two or more fuzzers in terms of coverage agree with
their ranking in terms of bug finding? The current guideline on
sound fuzzer evaluation suggests that coverage-based benchmark-
ing alone may be insufficient (referring to the contentious study
[9] by Inozemtseva and Holmes [32] which suggests a weak cor-
relation). Our study provides the first empirical evidence on the
reliability of coverage-based fuzzer benchmarking.

3 EXPERIMENTAL SETUP
3.1 Research Questions
Our objective is to evaluate the degree to which a coverage-based
and a bug-based benchmarking agree on fuzzer performance. We
aim to answer the following research questions.

https://doi.org/10.5281/zenodo.6045830
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RQ.1 Correlation. How strong is the association between the cov-
erage achieved by a fuzzer and its ability to find bugs?

RQ.2 Agreement. How strong is the agreement on the ranks or
the superiority of the fuzzers in coverage-based versus a bug-
based benchmarking?

RQ.3 Campaign Length. Does the agreement between coverage-
based and bug-based benchmarking increase with the length
of the fuzzing campaign? (Our default is 23 hours).

RQ.4 Campain Trials. Does agreement between coverage- and
bug-based benchmarking increase with the number of cam-
paigns per {fuzzer × program})? (Our default is 20 campaigns
per combination).

RQ.5 Extrapolation Within one type of benchmarking, how strong
is the agreement on the ranks or superiority of the fuzzers
running 23 hour campaigns versus shorter campaigns?

RQ.6 Mitigation of Threats to Validity. (a) How strong is the
agreement between two randomized rounds of coverage-
based benchmarking? (b) How strong is the agreement be-
tween different measures of bug finding or between different
measures of coverage? (c) How does agreement vary as the
number of available programs increases?

3.2 Experimental Design
We evaluate these research questions using a post hoc bug identifi-
cation instead of a pre-determined ground truth. While it requires
substantially more effort, the post hoc identification allows us to
avoid some of the pitfalls of ground-truth based benchmarking, as
discussed in Section 7.1 In our design, after conducting the fuzzing
campaigns, we employ a process of automatic and manual dedu-
plication to identify the unique bugs that each fuzzer discovered.
Fuzzing campaigns may produce many bug reports, some of which
actually pertain to the same unique bug. So, we sorted them out.

Our experiments generated 341,595 bug reports; too many for
us to manually deduplicate. We used a variant of the Clusterfuzz
deduplication approach to automatically group bug reports. After
that, we manually deduplicated the 409 automatically deduplicated
bugs to get 235 unique bugs. Two professional software engineers
labeled the bugs to find duplicates. We note that our experimental
design is indeed not very economically. Our fuzzers did not find a
single bug in 30% (7/24) of the selected programs despite substantial
fuzzing effort (Fig. 2). However, it allows us to mitigate a number
of threats to validity of a ground-truth based evaluation (Sec. 7).

3.3 Fuzzers and Programs
Benchmark Details. The 24 benchmark programs we used are
listed in Figure 2. Many of the programs are popular and well-
maintained open-source software libraries that are widely used
to support critical services in the internet. For instance, libxml2
is a popular parser library for XML-documents, php is the inter-
preter for websites written in the PHP programming language,
and wireshark is a popular network protocol analyzer. The set of
benchmark programs ranges from parser libraries, protocol imple-
mentations, and implementations of compression algorithms all
the way to OS service managers, interpreters, and platforms for
1Examples are survivorship bias, observer-expectancy bias, and selection bias.

Name Size Harness Name #Branches #Known Bugs
libhevc 252.3k LoC hevc_dec_fuzzer 54.7k 11
ndpi 58.0k LoC fuzz_ndpi_reader 42.9k 15
libhtp 19.3k LoC fuzz_htp 10.2k 1
aspell 28.1k LoC aspell_fuzzer 28.4k 1
grok 26.6k LoC grk_decompress_fuzzer 45.0k 4
matio 35.0k LoC matio_fuzzer 46.7k 49
stb 70.2k LoC stbi_read_fuzzer 6.7k 11
njs 89.0k LoC njs_process_script_fuzzer 34.0k 10
zstd 93.2k LoC stream_decompress 22.6k 1
openh264 140.1k LoC decoder_fuzzer 39.3k 22
libgit2 224.9k LoC objects_fuzzer 114.2k 3
poppler 225.6k LoC pdf_fuzzer 184.7k 17
libxml2 505.1k LoC xml_reader_file_fuzzer 101.8k 3
arrow 769.4k LoC parquet-arrow-fuzz 473.9k 34
php 2.6M LoC fuzz-execute 324.5k 9
php 2.6M LoC fuzz-parser-2020-07-25 436.8k 8
wireshark 4.3M LoC fuzzshark_ip 526.3k 10
proj4 168.2k LoC standard_fuzzer 92.2k 36
tpm2 48.6k LoC execute_command_fuzzer 20.8k 11
file 16.7k LoC magic_fuzzer 8.6k 1
muparser 34.2k LoC set_eval_fuzzer 7.6k 0
usrsctp 92.0k LoC fuzzer_connect 53.6k 0
libarchive 166.5k LoC libarchive_fuzzer 38.7k 10
systemd 588.4k LoC fuzz-varlink 63.1k 1
Total 13.2M LoC 2.7M 268

Figure 2: Details about benchmark programs. In our data
analysis, we excluded programs below the line because no
more than two (of ten) fuzzers found a least one bug in at
least one campaign.

AFL [63] AFL++ [15] AFLSmart [53] AFLFast [4]
FairFuzz [38] Eclipser [10] MOPT [40] Honggfuzz [58]

LibFuzzer [56] Entropic [3]

Figure 3: The fuzzers available in Fuzzbench, that we used in
our experiments.

in-memory analytics. Out of these 24 benchmark programs, there
are seven (7) programs containing bugs that could not be found by
any fuzzer, four (4) programs where bugs were very hard to find,
and three (3) programs where no more more than two fuzzers could
find bugs in at least one campaign.

Benchmark selection. Our benchmark programs have been
randomly selected from programs in OSS-Fuzz that have histori-
cally contained a relative high number of bugs. OSS-Fuzz [24] is a
service that provides fuzzing for 500 open source projects. Integra-
tions are usually performed by project maintainers and/or security
researchers who write fuzz targets and compile seed corpora and
dictionaries for the projects. This means that our benchmark pro-
grams have been prepared for fuzzing by the maintainers and not
by us, which reduces experimenter bias. OSS-Fuzz automatically
reports each bug it finds together with the first and last program
version in which the bug exists. Most program versions do not
contain any bugs, which is why a random selection of program
versions from OSS-Fuzz would be prohibitively expensive. Most
fuzzers would not find any bugs. Hence, we use the information
from OSS-Fuzz to randomly chose our benchmark programs from
program versions which are known to have an increased number of
bugs. Similarly to OSS-Fuzz, all programs are instrumented with Ad-
dressSanitizer [57] as oracle to detect bugs. All fuzzing campaigns
are started from an initial seed corpus provided from OSS-Fuzz.
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Fuzzers. Figure 3 shows the list of fuzzers we used. We chose
these fuzzers based on their importance and ease-of-use. Entropic,
libFuzzer, Honggfuzz, AFL, and AFL++ are widely-used in industry
while AFLSmart, AFLFast, FairFuzz, Eclipser, and MOpt-AFL are
important academic works and extensions of AFL.

3.4 Variables and Measures
Our objective is to evaluate the degree to which a coverage- and a
bug-based benchmarking agree on fuzzer performance. We have
one main and two supplementary measures of coverage plus two
main and one supplementary measure of bug finding.

Measures of Coverage. Ourmainmeasure of coverage is branch
coverage, i.e., the number of branches in the program that the fuzzer
has exercised until this point in the campaign. Branch coverage
captures the control-flow in a program, subsumes statement cover-
age [22], is considered to be the most effective proxy measure of
bug finding [20, 22], and is the conventional measure of coverage
to evaluate coverage-guided greybox fuzzing [36]. Fuzzbench mea-
sures "region coverage" [12] in 15-minute intervals on a dedicated
measurer instance2 using clang compiler flags -fprofile-instr-
generate and -fcoverage-mapping and the llvm-cov tool [12].

As supplementary measures of coverage, we also analyze the
number of unique paths and the number of unique edges as mea-
sured by the AFL-fuzzer. The number of unique paths (#paths) con-
tinues to be a common performance measure for greybox fuzzers
[17, 18, 68] despite its obvious flaws [36, 38]. The number of unique
edges (#edges), reported as map size by AFL-based fuzzers, is often
used as a proxy for branch coverage. AFL maintains a fixed-size
hashmap containing an entry for every tuple of conditional jumps
that are sequentially exercised in the program. For all measures of
coverage, we directly evaluate coverage on the buggy program to
avoid the clean program assumption [8].

Measures of Bug Finding. Our main measures of bug finding
are bug coverage, i.e., the number of bugs that the fuzzer has found
until a given point in the trial, and the time-to-error, i.e., the length
of the fuzzing campaign when the first bug was found. In order
to count the number of bugs (#bugs) at a particular point in time,
we execute all bug-revealing inputs and remove all duplicates. Our
method of deduplicating bugs is similar to ClusterFuzz’s. For each
crash reported in a trial, we take the crash type (e.g., “Heap-buffer-
overflow”) and the top three symbolized stack frames reported
by AddressSanitizer or UndefinedBehaviorSanitizer. Crashes with
the same type and stack frames are considered duplicates, and
only one of them is counted. To further improve the quality of the
deduplication, we manually removed the remaining duplicates. In
order to measure the time-to-error (TTE), we report the length of
the fuzzing campaign when the first crashing input was generated.

As supplementary measure of bug finding, we also count the
number of unique crashes (#crashes), i.e., the number of "unique
paths" that are exercised by crashing inputs. The number of unique
crashes, similar to the number of unique paths, is a standard but
contentious measure of bug finding. Crashes are flagged as such
by standard code sanitizers, such as ASAN [57]. For both mea-
sures of bug finding, we directly evaluate bug finding on programs
containing real bugs to mitigate threats to construct validity.

2Each fuzzing campaign runs on separate compute instance, called runner.

Spearman’s 𝜌 Interpretation
0.00 - 0.09 Neglible correlation
0.10 - 0.39 Weak correlation
0.40 - 0.69 Moderate correlation
0.70 - 0.89 Strong correlation
0.90 - 1.00 Very strong correlation

(a) Taken from Schober et al. [55]

Cohen’s 𝜅 Interpretation
0.00 - 0.20 No agreement
0.21 - 0.39 Minimal agreement
0.40 - 0.59 Weak agreement
0.60 - 0.79 Moderate agreement
0.80 - 0.90 Strong agreement
0.91 - 1.00 Almost perfect agreement

(b) Taken from McHugh [42].

Figure 4: Interpretation of Spearman’s 𝜌 and Cohen’s 𝜅.

3.5 Statistical Analysis
In order to investigate the relationship between coverage-based and
bug-finding based measures of fuzzer performance, we compute
correlation and agreement.

Correlation [55] assesses the strength of the association and
the direction of the relationship between two random variables.
We assess the correlation between a measure of coverage and a
measure of bug finding using Spearman’s rank correlation. We use
Spearman’s instead of the more common Pearson’s correlation
as Pearson’s assumes a linear relationship while our scatter plots
in Figure 6 indicate an exponential one. Since both variables are
continuous, represent paired observations, and their relationship is
monotonic, the assumptions for Spearman’s correlation are met.
The interpretation of Spearman’s 𝜌 is shown in Figure 4.a.

Inter-rater Agreement [59] assesses the degree of agreement
between two raters of the same phenomenon. In our case, we mea-
sure the agreement between a coverage-based measure of fuzzer
performance and a bug-finding-based measure of fuzzer perfor-
mance on the ranking or superiority of a fuzzer. Since coverage and
bug finding measure the same construct, i.e., fuzzer performance,
the assumption for assessing agreement is met. Schober et al. [55]
note that "two variables can exhibit a high degree of correlation
but can at the same time disagree substantially". Bland and Altman
[41] suggest that any two measures of the same construct should
necessarily be strongly correlated, but may not strongly agree.

Agreement on Rank. In order to benchmark multiple fuzzers
simultaneously, it might seem reasonable to establish a ranking,
where the best fuzzer according to some measure is ranked highest
(cf. Fig. 1). A fuzzer’s ranking for a program and time stamp is based
on the corresponding average for that measure across all (twenty)
trials. We measure the agreement on the coverage-based and bug-
finding-based ranks of a fuzzer using Spearman’s correlation [55].

Agreement on Superiority. Unlike a pair-wise comparison, a
ranking does not consider the statistical significance of the differ-
ence between any two fuzzers. Hence, we also measure the agree-
ment on the superiority of a fuzzer over another when superiority
is established according to a measure of coverage versus a measure
of bug finding. Using Cohen’s kappa 𝜅 and disagreement propor-
tion 𝑑 , we measure agreement on superiority for pairs of fuzzers
only where the difference in terms of both measures is statistically
significant (𝑝 ≤ {0.05, 0.001, 0.0001}) for at least 10% of the pro-
grams (>= 3). We believe there is insufficient evidence for fuzzer
pairs where differences are statistically significant for the less than
10% of programs. Given a fuzzer pair, the coverage- and bug-based
evaluation each "rates" which fuzzer is superior. We measure the
agreement on these ratings across (at least three) benchmark pro-
grams. We also consider a third method using Spearman’s 𝜌 .
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Disagreement proportion 𝑑 is easy to interpret. Given a pair of
fuzzers where the differences in terms of coverage and bug finding
are statistically significant for at least 10% of the programs, the
disagreement proportion 𝑑 gives the proportion of programs where
both fuzzers are considered superior according to coverage or bug
finding, respectively: 𝑑 = (1 − 𝑝𝑜 ).

Cohen’s kappa 𝜅 a standard, more robust measure of inter-
rater agreement which also takes into account the possibility of
the agreement occurring by chance [42, 59]. Given the same pair
of fuzzers, Cohen’s kappa 𝜅 is computed as the difference between
the relative observed agreement on the superiority of a fuzzer 𝑝𝑜
and the hypothetical probability of chance agreement 𝑝𝑒 divided
by the complement of the probability of chance agreement: 𝜅 =

(𝑝𝑜 − 𝑝𝑒 )/(1 − 𝑝𝑒 ). Cohen’s interpretation is shown in Figure 4.b.
Spearman’s rho 𝜌 allows us to use all data points using an ordi-

nal rather than a binary variable for superiority: 1 for the superior
fuzzer, -1 for the inferior fuzzer, and 0 where the difference is not
statistically significant according to the given 𝑝-value.

Statistical Significance. The evaluate the statistical significance
of the difference between two fuzzers, we report Mann–Whitney
𝑈 test—following the recommendations by Arcuri et al. [1] on the
evaluation of randomized algorithms and Klees et al. [36] on the
evaluation of fuzzers. Mann-Whitney 𝑈 is a nonparametric test of
the null hypothesis that, for randomly selected values𝑋 and𝑌 from
two populations, the probability of 𝑋 being greater than 𝑌 is equal
to the probability of 𝑌 being greater than 𝑋 .

3.6 Experiment Infrastructure
We used the FuzzBench fuzzer evaluation platform [45] to conduct
our experiments. The system consists of a dispatcher (the “brain”
of an experiment) and workers. The dispatcher dispatches jobs
(a) to build fuzzers and benchmarks, (b) to start separate worker
machines, each of which runs one fuzzing campaign for one {fuzzer
× program} combination, (c) to measure the results of the fuzzing
campaigns and save results to a central SQL database, and (d) to
generate reports based on the measurement results.

Ameasurement consists of measuring code coverage and crashes.
Many crashing inputs may reveal essentially the same bug. For this
reason, we employ a simple deduplication strategy to assign crash-
ing inputs to bugs they reveal (cf. Section 3.4). For more details on
FuzzBench, we refer the interested reader to the article by Metzman
et al. [45] which introduces the FuzzBench infrastructure.

Each fuzzing campaign is run inside an Ubuntu 16.04 docker
container on an n1-standard-1 virtual machine instance running
on Google Cloud. Each instance has 1 virtual CPU core, 3.75 GB of
RAM, and 30 GB of disk space available to use. By default, we run
20 campaigns of 23 hours for each {fuzzer × program}-combination.

3.7 Reproducibility
The FuzzBench fuzzer evaluation platform was designed to facili-
tate open science, rigorous evaluation, and reproducibility. Figure 5
shows the identifiers of the FuzzBench experiments for this paper.
We also link the exact commit hash (i.e., version) of FuzzBench
which fixes the exact versions of all fuzzers, all benchmark pro-
grams, and the entire experimental platform that was used for our
experiments. Each FuzzBench report (available at the link below)
describes precisely how our empirical analysis can be reproduced.

Experiment FuzzBench
Identifier Commit Description
2021-02-17-bug-paper 38e344fe 20 runs of 23 hours, all fuzzers, all subjects
2021-08-19-crash-s db192b60 30 runs of 23 hours, all fuzzers, 11 subjects
2021-08-19-crash-s2 db192b60 30 runs of 23 hours, all fuzzers, 11 subjects

Figure 5: Reproducibility. Our experiments can be repro-
duced using the exact same settings and version of our ex-
periment infrastructure.

Data Availability. The data used for our evaluation can be
downloaded at from the corresponding FuzzBench reports at

• https://www.fuzzbench.com/reports/<experiment-id>
where the experiment identifier is given in Figure 5.

Data Analysis. We make our data analysis script available as
Jupyter notebook together with all generated tables and images at:

• https://github.com/icse22data
Archival. For long-term archival, we also publish the data and

analysis script at the Zenodo research artifact archival platform.
• https://doi.org/10.5281/zenodo.6045830

4 EXPERIMENTAL RESULTS
RQ1. Correlation
We investigate whether a fuzzer that covers more code is also better
at bug finding. We ask whether the coverage that a fuzzer achieves
is also a good predictor of the number of bugs found.

Methodology.3 To assess the correlation between coverage and
bug finding, we prepare a scatter plot of the mean branch coverage
over the mean number of bugs found across all fuzzing campaigns
for each program at any point in time (Fig. 6). For all three measures
of coverage, we also compute Spearman’s rank correlation between
the mean coverage achieved and the mean number of bugs found
during the average fuzzing campaign for each {program x fuzzer}
combination at any point in time (Fig. 7).

Results. Figure 6 visually depicts the relationship between both
coverage and bug finding. The scatter plots often show an al-
most straight line, suggesting a very strong correlation. In fact, the
strength of the association between coverage and bug finding is
confirmed in Figure 7. For all three measures, we see an average
Spearman’s rank correlation above 0.90, which we interpret as a
very strong correlation (cf. Figure 4).

There is a strong correlation between the coverage a fuzzer
achieves and the number of bugs it finds in a program. As a
fuzzer covers more code, it also finds more bugs.

The scatter plot in Figure 6 also provides hints as to the functional
relationship. The linear increase with the log-scale y-axis seems
to suggests an exponential relationship: A linear increase in branch
coverage yields an exponential increase in the number of bugs
found. While counterintuitive at first, it is not actually surprising if
we consider that most of the code has already been covered even at
the start of the campaign. Each fuzzing campaign starts with a seed
corpus that already covers much of the program, and we measure
3The exact procedure can be found in our data analysis script which we have made
publically available.

https://www.fuzzbench.com/reports/<experiment-id>
https://github.com/icse22data
https://doi.org/10.5281/zenodo.6045830
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Figure 6: Scatter plot of the mean number of bugs found
(on the log-scale) as the mean number of covered branches
increases in the average fuzzing campaign for a benchmark.

the first data point after the first 15-minute interval, when most
of the "shallow" branches have already been covered. This can be
verified by looking at the start of the x-axis for each benchmark. We
can see that the majority of branches which are covered in 23 hours
have already been covered in the first 15 minutes. Covering a new
branch gets harder over time. Even if coverage is fully saturated
and not a single new branch can be covered, a fuzzer might still
find new bugs. This interpretation agrees with the observation by
Wei et al. [61] who found, for random testing, that the majority of
bugs (>50%) were discovered in the last two thirds of the campaign,
when branch coverage increased only slightly from 90% to 94%.

In our study, there appears to be an exponential relationship
between branch coverage and the number of bugs found.

RQ2. Agreement: Coverage versus Bug Finding
A strong correlation between two variables does not necessarily
imply that they strongly agree [41, 55]. We investigate the degree
to which the results of coverage-based benchmarking agree with
the results of bug-based benchmarking.

Methodology (Ranking). For every {program × fuzzer × time
stamp}-combination, we have twenty data points / trials. For every
measure and for every {program × time stamp}-combination, we
compute the fuzzer ranks by ordering all ten fuzzers according
to the average measured value across all twenty trials. For every
measure of coverage and every measure of bug finding, respectively,
we compute the agreement between the coverage-based and bug-
based ranking (in terms of Spearman’s 𝜌).

#Branches #Paths #Edges
arrow 0.999269 0.999276 0.999277
matio 0.990898 0.990896 0.990892
ndpi 0.888853 0.888625 0.888602
njs 0.918627 0.918636 0.918627

openh264 0.969526 0.969552 0.969522
poppler 0.949209 0.949217 0.949210

wireshark 0.888212 0.888212 0.888212
aspell 0.988724 0.988689 0.988703
grok 0.880887 0.880876 0.880710

libgit2 0.605309 0.600231 0.602031
libhevc 0.959148 0.959149 0.959147
libhtp 0.974873 0.965578 0.975135

libxml2 0.932176 0.932191 0.932172
php-execute 0.834285 0.834286 0.834285
php-parser 0.989402 0.989377 0.989400

stb 0.951317 0.951294 0.951250
zstd 0.830236 0.830244 0.830233

Average 0.914762 0.913902 0.914553

Figure 7: Average correlation (𝜌) between coverage and #bugs
found for all programs where at least one bug was found.

Methodology (Superiority). From ten fuzzers, we can construct
45 unique pairs of fuzzers. For each fuzzer pair, each program, and
every measure, we determine effect size and statistical significance
between both fuzzers in terms of mean and median of that measure
across 20 trials of 23h. For each fuzzer pair, if the difference in
terms of the coverage and in terms of bug finding is statistically
significant at 𝑝 < {0.05, 0.001, 0.0001}, for at least 10% of programs,
we compute the agreement on superiority for this pair.

Results. Figure 8.a shows the agreement on ranking and supe-
riority of a fuzzer in 23 hours campaigns. In terms of ranking, we
observe a moderate agreement between coverage and bug finding.4
In Figure 1 the moderate agreement is illustrated by the large spread.
In terms of superiority, for Cohen’s 𝜅 we observe a weak to moder-
ate agreement for the average pair of fuzzers where the superiority
along both measures is statistically significant. Across all measures,
if we benchmark the average fuzzer pair using a coverage- versus
bug-based approach, results disagree for 10% to 20% of programs.
Figure 15 in the appendix shows a much lower agreement if we use
the difference inmedian instead of the mean to establish superiority.

Only if the difference in terms of branch coverage and the differ-
ence in terms of the number of bugs found is statistically significant
at 𝑝 ≤ 0.0001 (i.e., for 11 of 45 fuzzer pairs [24%]), we observe a
strong agreement on the superiority of a fuzzer (𝜅 = 0.872). In this
case, a coverage-based and a bug-based evaluation of those eleven
fuzzer pairs disagrees only for one benchmark (4.3%), on average.
However, statistical significance at 𝑝 ≤ 0.0001 only of the difference
in coverage is insufficient, we again only observe a weak agreement
(see Figure 14 and Figure 9.d). The increase in agreement with sta-
tistical significance is not observed when we measure bug finding
using the time-to-error (TTE).

We observe amoderate agreement between a coverage-based and
a bug-based benchmarking of fuzzer performance. For fuzzer
pairs, where the differences in terms of coverage and bug find-
ing is statistically significant, the results usually disagree for
10% to 20% of programs. Only for #branches versus #bugs, the
agreement on superiority increases as the statistical significance
for both differences increases.

4The interpretation of these values can be found in Figure 4.
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#Bugs Time-to-Error
#Branches #Edges #Paths #Branches #Edges #Paths

Ranking 𝜌 = 0.498 0.376 0.376 0.373 0.313 0.329
Superiority (𝑝 ≤ 0.05) 𝜅 = 0.533 (33%) 0.323 (27%) 0.535 (38%) 0.488 (31%) 0.322 (36%) 0.154 (33%)
Superiority (𝑝 ≤ 0.001) 𝜅 = 0.327 (24%) 0.450 (24%) 0.235 (24%) 0.612 (24%) 0.542 (22%) 0.485 (24%)
Superiority (𝑝 ≤ 0.0001) 𝜅 = 0.872 (24%) 0.428 (20%) 0.239 (24%) 0.553 (20%) 0.630 (22%) 0.496 (22%)
Superiority (𝑝 ≤ 0.05) 𝑑 = 0.113 (33%) 0.213 (27%) 0.162 (38%) 0.211 (31%) 0.201 (36%) 0.360 (33%)
Superiority (𝑝 ≤ 0.001) 𝑑 = 0.141 (24%) 0.144 (24%) 0.246 (24%) 0.177 (24%) 0.146 (22%) 0.166 (24%)
Superiority (𝑝 ≤ 0.0001) 𝑑 = 0.043 (24%) 0.150 (20%) 0.262 (24%) 0.204 (20%) 0.082 (22%) 0.183 (22%)
Superiority (𝑝 ≤ 0.05) 𝜌 = 0.524 0.374 0.424 0.367 0.421 0.274
Superiority (𝑝 ≤ 0.001) 𝜌 = 0.437 0.397 0.319 0.375 0.376 0.379
Superiority (𝑝 ≤ 0.0001) 𝜌 = 0.448 0.384 0.253 0.366 0.412 0.314

(a) Agreement on the rank (first row) and superiority of a fuzzer in 23hr campaigns in terms of Cohen’s kappa (following three rows), disagreement
proportion (middle three rows), and Spearman’s correlation (last three rows). Each cell shows the measure of agreement and some cells, in parenthesis,
the proportion of fuzzer pairs where the differences are statistically significant at the corresponding p-value (𝑝 ≤ {0.05, 0.001, 0.0001}).
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(b) Agreement on ranks between measures of bug
finding and #branches after a campaign of 𝑥 hours.

Figure 8: Agreement on ranking and superiority: Coverage versus Bug Finding

We also observe that the agreement on superiority is smallest
for path coverage versus the number of bugs found, particularly
for high significance thresholds. Path coverage has been a common
performance measure for greybox fuzzers [17, 18, 68] despite its
obvious flaws [36, 38]. Theminimal agreement suggests abandoning
path coverage as performance measure.

RQ3. Agreement Over Campaign Length
We investigate whether there is a suitable campaign length where
a coverage-based and a bug-based evaluation maximally agree.

Methodology. To compute the agreement on ranking and supe-
riority of a fuzzer over time, we followed the same methodology
specified in the discussion for RQ2 for every of the 92 time stamps.

Results. Figures 8.b and 9 show the agreement on ranks and
superiority over time, respectively. In terms of ranking, the agree-
ment remains moderate over the entire duration. In the first nine
hours, we observe an increase in agreement between an evaluation
based on branch coverage versus one based on the number of bugs.
However, the agreement on ranks decreases again, remaining mod-
erate overall. In terms of superiority, we do not observe an increase
in agreement (or a decrease in disagreement) over time for all three
levels of statistical significance. The agreement between coverage-
and bug-based benchmarking appears to decrease slightly. The
differences are statistically significant for 20-30% of fuzzer pairs.

In our study, we do not observe an increase in agreement (nor
a decrease in disagreement) over time.

RQ4. Agreement Over Campaign Trials
We investigate whether there is a suitable number of campaigns
per {fuzzer × program}-combination where the a coverage-based
and a bug-based evaluation maximally agree.

Methodology. All results reported above are derived from our
default setup where we run 20 campaigns of twenty three hours for
each {fuzzer × program}-combination. In order to investigate, the
agreement as the number of trials increases, we run an additional
40 campaigns for a subset5 of the benchmark programs for a total

5Benchmark programs with 60 trials for each of the 10 fuzzers: arrow, libarchive, matio,
ndpi, njs, openh264, poppler, proj4, tpm2, and wireshark.

of 60 campaigns of twenty three hours for each {fuzzer × program}-
combination. From this set of 60 trials, we randomly sample 𝑛 trials
without replacement for each combination, where 𝑛 ∈ (1, 59), and
compute agreement for those trials using the methodology specified
in RQ2. To account for the randomness in the sampling, we repeat
this experiment 50 times.

Results. Figure 10 shows the agreement on fuzzer ranking as the
number of trials increases. For the first 20 trials in Figure 10.a, we
can clearly see an increasing trend. As the number of trials increases,
the agreement increases as well. However, from Figure 10.b, it seems
that there is not much benefit in running more than 20 trials as the
agreement increases only ever so slightly.

The agreement between coverage-based and bug-based bench-
marking increases as the number of campaigns increases. How-
ever, there does not seem to be much benefit in running more
than 20 campaigns per {fuzzer × program}-combination.

RQ5. Agreement with Shorter Trials
We investigate the degree to which the results of (coverage-based
or bug-based) benchmarking using shorter campaigns (say 1 hour)
agree with the results of benchmarking using 23 hour campaigns.

Methodology. We measure the agreement on the ranking of a
fuzzer when ranked at the end of the campaign versus earlier in
the campaign, following the methodology we specified for RQ3.

Results. As we can see in Figure 11, there is a substantial dif-
ference in ranking when we rank fuzzers in a 1 hour campaign
versus a 23 hour campaign. In fact, there is only moderate agree-
ment between the results of a bug-based benchmarking at 1 hour
versus those of a bug-based benchmarking at 23 hours. However,
as we expect, the agreement increases with campaign length. In
the bottom left of Figure 11.b, we can see that 15 minutes before
the end of the 23 hour campaign, the ranks very strongly agree.

The benchmarking results for rather short fuzzing campaigns
may not strongly agree with results of sufficiently long cam-
paigns. However, in our study, the benchmarking results for 12
hour campaigns do already very strongly agree with benchmark-
ing results of 23 hour campaigns.
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(a) Agreement on superiority between measures
of bug finding and #branches after a campaign
of 𝑥 hours. Difference significant at 𝑝 < 0.05.
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(b) Agreement on superiority between measures
of bug finding and #branches after a campaign
of 𝑥 hours. Difference significant at 𝑝 < 0.001.
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(c) Agreement on superiority between measures
of bug finding and #branches after a campaign
of 𝑥 hours. Difference significant at 𝑝 < 0.0001.
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(d) Agreement on superiority when we only require
the difference in coverage (but not bug finding) to

be statistically significant at 𝑝 < 0.0001.
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Figure 9: Agreement on superiority over campaign length. We show agreement when evaluating fuzzer performance based
on branch coverage versus the number of bugs (solid line) and branch coveraged versus the time-to-error (dashed line). The
color shows the percentage of fuzzer pairs for which the differences are statistically significant at the corresponding 𝑝-value
(𝑝 ≤ {0.05, 0.001, 0.0001}).
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(a) Agreement over 20 trials for all programs.
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(b) Agreement over 60 trials for a subset.

Figure 10: Agreement as the number of trials increases. The
solid line shows the average agreement on the ranking of a
fuzzer when ranked using branch coverage versus the num-
ber of bugs found. The dashed line shows the average agree-
ment on the ranking of a fuzzer when ranked using branch
coverage versus the time it takes to find the first bug (TTE).

RQ6. Mitigations of Threats to Validity
We investigate several possible concerns and threats to validity.

(a) Baseline Agreement. A valid concern is that the results of
coverage- and those of bug-based benchmarking may not agree
simply because of some randomness in the measurement or bro-
ken measures of agreement. To investigate this concern, we check
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(a) Agreement on ranks between a campaign of
length𝑥 hours and one of length 23 hours. For in-
stance, in terms of the number of bugs found, the
rank of a fuzzer after 1 hour moderately agrees
with the rank of that fuzzer after 23 hours.
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(b) Scatter plot of fuzzer ranks by #branches be-
tween a campaign of length {0.25, 1, 6, 22.75}
hours (facets) and a campaign of length 23 hours.
Here, 𝑥 are the ranks at the given campaign
length and 𝑦 are the ranks at 23 hours.

Figure 11: Agreement within coverage- or bug-based bench-
marking as campaign length increases.

the baseline agreement between two random rounds of coverage-
based benchmarking. From the 60 trials per {fuzzer × program}-
combination generated for RQ4, we randomly sample 2 × 20 trials
without replacement and compute agreement on ranks as specified
in RQ2. To account for randomness, we repeat this experiment
50 times. To discharge the concern, we expect a high agreement.
As we can see in Figure 12.a, we observe a very strong agreement
on the rank of a fuzzer between two rounds of coverage-based
benchmarking for every campaign length.
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(a) Agreement between two randomized rounds
of coverage-based benchmarking.
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(b) Agreement as the number of benchmark
programs increases.

Figure 12: Investigating threats to validity.

#Bugs
Time-to-Error #Crashes

Ranking 𝜌 = 0.671 0.645
Superiority (𝑝 ≤ 0.05) 𝜅 = 0.868 (31%) 0.893 (38%)
Superiority (𝑝 ≤ 0.001) 𝜅 = 0.875 (18%) 1.000 (20%)
Superiority (𝑝 ≤ 0.0001) 𝜅 = 0.833 (13%) 1.000 (20%)
Superiority (𝑝 ≤ 0.05) 𝑑 = 0.040 (31%) 0.030 (38%)
Superiority (𝑝 ≤ 0.001) 𝑑 = 0.042 (18%) 0.000 (20%)
Superiority (𝑝 ≤ 0.0001) 𝑑 = 0.056 (13%) 0.000 (20%)
Superiority (𝑝 ≤ 0.05) 𝜌 = 0.663 0.757
Superiority (𝑝 ≤ 0.001) 𝜌 = 0.634 0.658
Superiority (𝑝 ≤ 0.0001) 𝜌 = 0.556 0.647

#Branches
#Edges #Paths

𝜌 = 0.735 0.647
𝜅 = 0.785 (44%) 0.647 (42%)
𝜅 = 0.746 (40%) 0.786 (38%)
𝜅 = 0.666 (33%) 0.721 (33%)
𝑑 = 0.094 (44%) 0.083 (42%)
𝑑 = 0.096 (40%) 0.065 (38%)
𝑑 = 0.114 (33%) 0.067 (33%)
𝜌 = 0.666 0.670
𝜌 = 0.670 0.703
𝜌 = 0.626 0.669

Figure 13: Agreement among measures of bug finding (Col-
umn #Bugs) and measures of coverage (Column #Branches).

(b) Agreement betweenMeasures. As discussed in Section 3.4,
we have several measures of bug finding and several (supplemen-
tary) measures of code coverage. For a sound empirical analysis,
we would expect that all measures of bug finding strongly agree
and also that all measures of code coverage strongly agree along
all our measures of agreement. As we can see in Figure 13, there
is a strong agreement on superiority and ranking of a fuzzer when
comparing fuzzers in terms of time-to-error versus counting the
number of bugs found. Between measures of coverage, we identify
a strong correlation in most cases, as well.

(c) Agreement Over Programs. Despite this being one of the
largest empirical studies on the relationship between coverage and
bug finding, a valid concern might be that the number of bench-
mark programs is relatively small. To investigate this concern, we
randomly chose 𝑛 programs without replacement out of the 17
programs where our fuzzers find bugs, and we compute agreement
according to the methodology specified in RQ3, for 𝑛 ∈ (1, 17). To
account for randomness, we repeat this experiment 50 times. Fig-
ure 12.b shows the scatter plot for the agreement on the randomly
chosen programs as the number 𝑛 of programs increases (grey dots
and triangles), and the average agreement on fuzzer rank (solid
and dashed line). As expected the average agreement is approxi-
mately constant as the number of programs increases. However, the
variance is substantial, ranging between neglible and very strong
agreement when only 𝑛 = 5 benchmarks are chosen. However, at
𝑛 = 16 benchmarks, the agreement ranges only within the moderate
agreement band. Repeating this experiment by chosing programs
with replacement gives similar results.

(a) The effect of randomness on the ranking within coverage-
based benchmarking is neglible. (b) Even though measures of
coverage do not agree with measures of bug finding, the mea-
sures agree within coverage-based and within bug-based bench-
marking, respectively. (c) The number of benchmark programs
has a substantial impact on our result. However, the variance in
agreement is reasonably small for our benchmark size to sup-
port our conclusion, we would suggest. We do not recommend
using less than 10 benchmark programs for coverage-based
fuzzer evaluation.

5 THREATS TO VALIDITY
As for any empirical study, there are various threats to the validity
of our results and conclusions.

One concern is internal validity, i.e., the degree to which our
study minimizes systematic error. For our selection of fuzzers and
benchmark programs there is a risk of experimenter bias, selec-
tion bias, survivorship bias, and confirmation bias. To minimize
experimenter and confirmation bias, fuzzers and programs were pre-
pared by independent developers. We picked programs randomly
from the largest publicly available collection of fuzzer harnesses
for 500 open source projects. Each harness was prepared by the
corresponding maintainer. Each fuzzer was developed and added to
FuzzBench either by the fuzzer developer or the FuzzBench team
long before our study started. However, a possible cause of survivor-
ship and selection bias is that – to keep experiment cost reasonable –
the benchmark programs were selected from OSS-Fuzz such that a
large number of bugs can be found. Many of those bugs were found
by a subset of the evaluated fuzzers (e.g., AFL, AFL++, libFuzzer,
Honggfuzz). However, our study is not concerned with establishing
the state-of-the-art (finding which fuzzer is the best). Instead, we
are investigating the reliability of coverage-based benchmarking,
which mitigates most risk of selection and confirmaion bias.

Another concern is external validity, i.e., the degree to which
our study can be generalized to and across other programs, fuzzers,
bugs, and measures. To the best of our knowledge, ours is the
largest study across all these dimensions. We chose a large variety
of widely-used open-source C programs from different domains.
Given the resuls in RQ6, we are confident that our results generalize
to many more open-source C programs. We conduct our evaluation
on a large number of actual bugs that these program contained
organically some time in the past. We chose various, very successful
greybox fuzzers which are used at Google [23, 24], Microsoft [46],
other companies and many independent security researchers [15].
However, there is no guarantee that our results extend to (bugs in)
programs written in other programming languages or fuzzers that
are fundamentally different from greybox fuzzers. Even though our
benchmark programs contain more known bugs than any other
bug-based benchmark to-date, the number of bugs however is still
low compared to e.g., the millions of branches in our benchmark
programs (Figure 2). The sensitivity analysis in RQ6 on the impact
of the number of programs chosen for the evaluation provides some
confidence that our result extends to other, similar bugs. Therefore,
it will be useful to replicate this study with other set of subject
programs with real-bugs in them, preferably with an even larger
and more diverse set of bugs.
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A third concern is construct validity, i.e., the degree to which our
study measures what it purports to be measuring. In this paper, we
are interested in “fuzzer effectiveness”, and one of the main ques-
tions we would like to answer is whether code coverage is a good
metric for assessing it. We do this by comparing coverage metrics to
bug-finding metrics, i.e., two of them: “number of bugs found” and
“time to first bug found”. Our assumption is that these bug based
metrics are the ones that really capture fuzzer effectiveness. Among
these two we believe that number of bugs is the more robust metric,
as it is a more granular, give that it considers multiple bug data
points, not just a single one. It is still possible, however, that due
to our limited benchmark program set, which contains a limited
set of bugs, the number of bugs that a fuzzer finds in this set is an
imperfect metric (as discussed for the threat of the number of bugs
on external validity). More specifically we measure “number of
unique bugs found”, where “unique” does not have an operational
or universal definition. We rely on the OSS-Fuzz crash deduplica-
tion algorithm for this, which has been successfully field tested
over many years. Our results for RQ6, where we assess baseline
agreement and the agreement between measures provide further
confidence in construct validity. We do not make the Clean Program
Assumption [8] since coverage-based and bug-based benchmarking
are conducted on the same program version.

Finally, conclusion validity relates to the reliability of our mea-
surements and the validity of our statistical tests.We have addressed
these issues by using well established standard methods to compute
correlation, agreement and statistical significance. To triangulate,
we use multiple measures (Section 3.4). We also carried out various
sanity checks regarding agreement in Section 4 under RQ6.

6 DISCUSSION: REACHING A LOCATION
VERSUS EXPOSING A BUG

The underpinning assumption of coverage-based benchmarking is
that bugs that live in code that is not covered can also not be exposed.
However, we find that the results of coverage-based benchmarking
may not reliably indicate the results of bug-based benchmarking.
So, how is reaching a certain location related to exposing a bug?

In our experiments, we use code sanitizers [11, 57] to detect bugs.
During compilation, a code sanitizer injects assertions into the pro-
gram binary that fail when, e.g., a memory safety issue occurs. So,
covering those locations should be enough, right? Indeed, as Zhang
and Mesbah [67] find that assertion coverage is strongly correlated
with test suite effectiveness. Österlund et al. [49] demonstrate that
a fuzzer that focusses on the coverage of sanitizer instrumenta-
tion outperforms existing fuzzers. Now, branch coverage subsumes
"sanitizer coverage". Then, why do we not see a strong agreement
between results of coverage-based and bug-based benchmarking?

If fuzzers were guaranteed to detect the bug when they reached
the corresponding code location, then evaluating fuzzers based on
code coverage would be equivalent to evaluating them based on
bugs found. However, simply reaching a given branch or statement
is often insufficient to trigger a bug. The root cause of a bug may
not be localized in a single statement, but a certain sequence of
statements may need to be executed throughout the code before
the bug is exposed [6]. On the other hand, triggering the bug may
be as hard as covering that program branch which reports that the

bug has been triggered. Like bugs that cannot be exposed upon
covering a branch, the coverage of that branch itself may already
require a certain program state.

One hypothesis [64] is that faults could be empirically distributed
in a non-uniform manner across the code base [47]. As future work,
it will be interesting to investigate this and other hypotheses. Maybe
we can find specific properties or differences between the typical
program location (or branch) and fault locations or error conditions
more generally. It would be interesting whether achieving these
error conditions (versus achieving code coverage) require different
capabilities from a fuzzer.

Yet, we still believe that code coverage is an excellent measurable
objective function for a fuzzer. Coverage guidance has been the key
to the recent success of greybox fuzzers [2]. Maximizing coverage
is the key measurable objective in search-based software testing
[43, 44]. Bugs are simply too rare to become an explicit objective
or to provide a reasonable signal during fuzzing.

In our results, we see that the fuzzer that is better in achieving
coverage may still be worse in finding bugs. The goal of this paper
is to investigate how often we can observe this “asymmetry”. If this
happens rarely, that means that fuzzers can be soundly evaluated
solely based on code coverage. If this happens often on the other
hand, then it is recommended to use both code coverage and bugs
to evaluate fuzzers.

7 FUZZER BENCHMARKING: CHALLENGES
AND RECOMMENDATIONS

In 2020 alone, almost 50 fuzzing papers were published in the top
conferences for Security and Software Engineering [62]. To ensure
a realistic assessment of progress in the field, we need sound mea-
sures of fuzzer effectiveness. Only if our measures reflect a fuzzer’s
true bug finding ability, can we properly evaluate new tools against
the state-of-the-art. Indeed, while improvements might seem rea-
sonable, only a rigorous evaluation will tell for sure. For instance,
ForAllSecure, the winning team at the DARPA Cyber Grand Chal-
lenge, burned one CPU-year every night to assess the previous
day’s improvements [48]. Nighswander adds that "many times ‘ob-
vious’ changes made things worse and stupid things helped. Stats
are vital". Towards this end, large benchmarking platforms have
been built [28, 39, 45]; e.g., FuzzBench [45] has facilitated rapid and
dramatic advances among the most successful fuzzers [31]. How-
ever, according to a recent survey of researchers and practitioners,
sound fuzzer benchmarking remains a key open challenge [2].

In this paper, we provide the first empirical evidence that the
results of a coverage-based evaluation are not strongly indicative
of the fuzzers’ relative bug finding ability. However, as we shall see
next, a rigorous bug-based evaluation is not without perils, either.

7.1 Challenges of Bug-Based Benchmarking
Economic considerations. The most effective fuzzer finds the
largest number of bugs. To evaluate the effectiveness of a fuzzer,
in the perfect world, we would select a random, representative
sample of programs (where we do not know whether any bugs can
be found). However, we would quickly find that bugs are sparse
in the typical program, and that the cost for experiments with a
reasonable statistical power would be prohibitive.
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Synthetic bugs. To make bug-based benchmarking more eco-
nomical, researchers have proposed to articially inflate the number
of bugs in these programs using synthetic bugs [7, 13, 51, 52, 54].
However, it is no final consensus on whether the synthetic bugs are
realisitic [7, 21, 25]. In fact, as future work, we suggest to conduct
a similar analysis of agreement, as proposed in this work, between
benchmarking based on artificial bugs versus real bugs.

Ground truth. Alternatively, researchers have been curating
real bugs that were historically found in programs [5, 6, 16, 27, 28,
34, 60]. While this approach is both economical and provides a
more representative, objective ground truth, it is subject to several
threats to validity that might not be obvious to the uninformed
experimenter. (a) Evaluating fuzzers based on previously discovered
bugs introduces a survivorship bias: Fuzzers that are better at finding
previously undiscovered bugs may appear worse than they are. On
the other hand, fuzzers that contributed to the original discovery
of some of the ground truth bugs may appear better than they are.
(b) To increase the number of bugs in a program (and to reduce the
benchmarking cost), curators may "front-port" several old bugs into
one version. This introduces artificial bug masking and interaction
effects, posing a threat to construct valdity. (c) To simplify bug
counting and to provide the same bug oracle to all fuzzers, curators
may manually translate each bug into a localized if-statement. This
introduces an observer-expectancy bias. For instance, in this work,
the relationship between coverage and bug finding is precisely the
subject of our study (Section 6)?

Overfitting. Given a ground truth benchmark, researchersmight
be enticed to iteratively and unknowingly tune their fuzzer imple-
mentation to the bugs in the benchmark. Zeller et al. [65, 66] identify
a particularly severe case of this confirmation bias which invalidates
some empirical evidence in a well-cited paper. They recommend
to augment bug-based evaluation with a coverage-based evalua-
tion: "During testing, executing a location is a necessary condition
for finding a bug in that very location. Since we are still far from
reaching satisfying results in covering functionality, improvements
in code coverage are important achievements regardless of bugs
being found" [65].

7.2 Recommendations
For future evaluations of fuzzer performance, based on these results
and our experience [45], we make the following recommendations.
In the order of their appearance in the benchmarking process:
R1 If possible, select at least 10 respresentative programs. For each

fuzzer-program combination, conduct at least 10 (better 20)
campaigns of at least 12 (better 24) hours. Increasing these
values improves generality and statistical power of the results.

R2 Select "real-world programs" that represent programs that are
typically fuzzed in practice. Select "real-world bugs" that rep-
resent the set of bugs which are typically found in programs
used in practice.6 Improving the representativeness of the
benchmark increases the external validity of the results. If ex-
periment cost are a concern, authors can prioritize programs
that (are likely to) contain a large number of bugs.

6As future work, we suggest to evaluate the representativeness of synthetic bugs using
a similar experimental setup as presented in Section 3.

R3 Select as baseline the fuzzer that was extended to implement
the technical contributions and make sure that the configura-
tions (parameters, initial seeds, dictionaries, etc.) are equiva-
lent. For instance, to demonstrate the advantages of structure-
aware fuzzing [53], we would implement structure-aware
fuzzing into a structure-unaware fuzzer and compare the ex-
tended against the baseline fuzzer. This improves construct
validity and allows to attribute precisely the observed perfor-
mance improvements to the proposed technical contributions.
A comparison to other fuzzers may be conducted optionally if
the authors wish to establish the new fuzzer as the new state-
of-the-art. However, note that the observed improvements
may be largely due to design and engineering differences (e.g.,
Honggfuzz versus AFL).

R4 Consider using a "training set" as benchmarks during the
fuzzer development and a "validation set" possibly using an
independent benchmarking platform for the actual empiri-
cal evaluation. This allows authors to reduce overfitting and
confirmation bias.

R5 Measure and report both, coverage- and bug-based metrics to
provide a holistic assessment of fuzzer performance. Use clas-
sical measures of coverage to facilitate (future) comparisons
across various fuzzers. Do not use fuzzer-specific measures
(such as AFL’s number of paths). Use the same measurement
tooling and procedure across all fuzzers and programs to
increase internal validity. Consider using a post hoc bug iden-
tification (Section 3.2) rather than ground truth bugs to reduce
threats to internal validity, such as survivorship bias.

R6 Assess and report various, non-parametric measures of effect
size and statistical significance, such as Vargha-Delaney’s𝐴12
and Mann–Whitney 𝑈 test, respectively [1]. This allows to
quantify the magnitude of the differences and the degree to
which the differences can be explained due to randomness.

R7 Discuss potential threats to validity and your strategies tomiti-
gate the identified threats. For instance, discuss your strategies
to mitigate selection, survivorship, observer-expectancy, and
confirmation bias. If indicated, conduct an empirical evalua-
tion of potential threats to validity.

R8 Report all specific parameters of the experimental setup (in-
cluding how the programs, bugs, and initial seed corpus were
chosen [30]), publish the tools (fuzzer and baseline) and the
benchmark (programs and bugs) to faciliate the reproducibil-
ity of the results. Publish data, analysis, and figures to facilitate
open access. Upload all artifacts to an open-access repository
like Zenodo for long-term archival [29]. Reproducibility is the
foundation of sound scientific progress.
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