Towards Self Adaptive Network Traffic Classification

Alok Tongaonkar?®, Ruben Torres?, Marios Iliofotou?, Ram Keralapura®, Antonio Nucci®

Narus Inc.

Abstract

A critical aspect of network management from an operator’s perspective is the ability to understand or classify all traffic that
traverses the network. The failure of port based traffic classification technique triggered an interest in discovering signatures based
on packet content. However, this approach involves manually reverse engineering all the applications/protocols that need to be
identified. This suffers from the problem of scalability; keeping up with the new applications that come up everyday is very
challenging and time-consuming. Moreover, the traditional approach of developing signatures once and using them in different
networks suffers from low coverage. In this work, we present a novel fully automated packet payload content (PPC) based network
traffic classification system that addresses the above shortcomings. Our system learns new application signatures in the network
where classification is desired. Furthermore, our system adapts the signatures as the traffic for an application changes. Based on
real traces from several service providers, we show that our system is capable of detecting (1) tunneled or wrapped applications, (2)
applications that use random ports, and (3) new applications. Moreover, it is robust to routing asymmetry, an important requirement
in large ISPs, and has high precision (> 97%). Finally, our system is easy to deploy and setup and performs classification in

real-time.

Keywords: Traffic Classification, Network Monitoring

1. Introduction

A critical aspect of network management from an operator’s
perspective is the ability to understand or classify all traffic that
traverses the network. This ability is important for traffic engi-
neering and billing, network planning and provisioning as well
as network security. Rather than basic information about the
ongoing sessions, all of the aforementioned functionalities re-
quire accurate knowledge of what is traversing the network in
order to be effective.

Network operators typically rely on deep packet inspection
(DPI) techniques for gaining visibility into the network traf-
fic. These techniques inspect packet content and try to identify
application-level protocols such as Simple Mail Transfer Pro-
tocol (SMTP) and RTP Control Protocol (RTCP). In this paper,
we refer to application-level protocols, with a distinct behavior
in terms of communication exchange, simply as applications
(or sometimes as protocol) for ease of understanding. In the
commercial world, DPI based techniques commonly use appli-
cation signatures in the form of regular expressions to identify
the applications. Signatures for each application are developed
manually by inspecting standards documents or reverse engi-
neering the application.

However, the use of DPI based approaches in large network
shows that the coverage or the fraction of traffic that is known,
is usually low (this statement will be substantiated with our
evaluation using an open source state-of-the-art traffic classifi-
cation tool). The main reason for the low coverage in commer-
cial solutions is the lack of signatures for many applications.
Many applications like online gaming and p2p applications do
not publish their protocol formats for general use. Reverse en-

Preprint submitted to COMCOM

gineering the several hundred new p2p and gaming applications
that have been introduced over the last 5 years requires a huge
manual effort. As a consequence, keeping a comprehensive and
up-to-date list of application signatures is infeasible.

Recent years have seen an increasing number of research
work that aims to automatically reverse engineer application
message formats. These techniques work well when they are
used for targeted reverse engineering i.e., they have access to
either the binaries for the application [1] or the network traf-
fic belonging to an application [2, 3]. There are two main
drawbacks of these approaches that severely limit the use of
these techniques for automatic application signature generation.
First, these techniques are unable to handle 0-day applications,
i.e., applications that are seen for the first time in the network.
Clearly, it is impractical for a network operator to obtain the bi-
naries belonging to all the applications that all the network users
ever install on their machines. On the other hand, network traf-
fic based techniques are also impractical for 0-day application
signature generation as they require the ability to identify the
application in the first place in order to group all the application
flows together.

The second problem that the automatic reverse engineering
techniques fail to deal with is the variations in the application
message formats. These variations may be due to the evolution
of applications which may lead to addition or modification of
features. For example, many SMTP servers now support newer
extensions such as the use of keyword EHLO instead of HELO.
If the signature for SMTP does not account for this, it will fail
to match flows originating from clients using the extensions.
Similarly, RTCP messages contain a version field. The latest

January 24, 2014

version is 2 but the field may contain the value 1 if the older
version is being used. The signature for RTCP needs to account
for these variations in the value of the version field. Another
common reason for the variation is the differences in the under-
lying OS. Many text-based network applications use newline as
a delimiter. However, newline is represented by carriage return
(CR) and linefeed (LF) on Windows and only by linefeed on
Unix. The signatures need to account for such differences as
well.

In this work, we present a novel approach for network traffic
classification that overcomes the above shortcomings by learn-
ing the application signatures on the network where the clas-
sifier is deployed. Our approach aims to eliminate the manual
intervention required to develop accurate payload based signa-
tures for various applications such that they can be used for real-
time classification. We built a Self Adaptive Network Traffic
Classification system, called SANTaClass, that combines novel
automated signature generation algorithms with real-time traf-
fic classifiers. Our system can be plugged into any network
where it can automatically learn application signatures tailored
to that network. The signature generation algorithm is based
on identifying invariant patterns and can handle text-based and
binary-based as well as encrypted applications in a uniform
way. Moreover, our system uses incremental learning to adapt
to the changing nature of the network traffic by generating sig-
natures for applications which were not seen before as well as
newer versions of applications for which we have already ex-
tracted signatures. The main contributions of this work are:

e We propose and evaluate a novel methodology that automati-
cally learns signatures for applications on any network without
any manual intervention. These signatures reflect the applica-
tions seen on the deployed link and the signature set evolves as
and when new applications traverse the link.

e We built an efficient system which combines automated sig-
nature generation with real-time traffic classification. The set
of signatures that are extracted is utilized to classify traffic in
the future in a transparent fashion.

e Our experiments with real traffic from multiple ISPs shows
that our methodology:

— increases coverage by identifying new applications. We
were able to increase coverage by up to 30% for TCP
flows and 23% for UDP flows in one of our datasets.

— handles variations in applications due to varying imple-
mentations or application evolution

— has high accuracy when compared to the state of the art
DPI systems

— adapts to changing network traffic without user interven-
tion

— can extract signatures for several encrypted applications

is robust to routing asymmetry.

e Finally, the learn-on-the-fly philosophy underlying our sys-
tem is a major paradigm shift from existing classification sys-
tems which use pre-loaded application signatures.

The rest of the paper is organized as follows. In Section 2
we describe the system design. Section 3 describes the com-
plete system implementation. We present the experimental re-
sults in Section 4. We discuss related work in Section 5. Finally,
we conclude the paper in Section 6.

2. System Overview

SANTaClass is a completely automated network traffic clas-
sification system that involves real-time classification and unsu-
pervised signature generation. The input to our system are full
packets.

2.1. Application Signatures

The key insight in generating signatures is that flows be-
longing to an application contain certain invariant parts such
as keywords in text-based applications and fields like session
identifiers in binary-based applications. These invariant parts
can form the building blocks of application signatures.

Text-based and binary-based protocols differ in how infor-
mation is encoded in the fields which necessitates developing
different kinds of signatures for them. In text-based protocols,
fields contain plain text which is human readable. Typically,
the fields can occur at different offsets within application flows
and may also have variable lengths. On the other hand, binary-
based protocols use fields with values which can be interpreted
as binary values by a machine. Typically, the fields occur at
fixed offset and usually are of fixed length. Below we describe
the signatures that we generate for text-based and binary-based
protocols respectively.

2.1.1. Text-based Applications

In this section we discuss the signature for SMTP which
is a text-based protocol. Consider the flows belonging to two
different sessions of SMTP shown in Figures 1 and 2. Client-
to-server payloads are indicated by CS and server-to-client ones
with SC. If we consider the client-to-server flow for session 1,
it consists of payloads in step 1 and 3 concatenated together.
Similarly, for session 2, client-to-server consists of payloads
from step 1 and 3. It is clear that they share some common
strings such as “EHLO” and “MAIL FROM:”. These common
parts may or may not contain application keywords. We are in-
terested in identifying such invariant parts and not necessarily
identifying all application keywords since our goal is not to re-
verse engineer the application message formats but to generate
signatures that can be used to identify the applications. We use
“term” to refer to strings of arbitrary length. Terms which are
present in multiple flows are referred to as “common terms”.
The question that we try to address in this work is “how can we
generate application signatures from common terms?”

A straightforward approach to using the terms as signatures
is to use the presence of common terms in flows for classifi-
cation. A simple scheme for weighting can reward terms that
occur frequently in an application term set and penalize terms
that are present in multiple term sets [4]. Such an approach is

CS: EHLO MAIL.LABSERVICE.IT

SC: 250-IMTA01. WESTCHESTER.COMCAST.NET HELLO ...
CS: MAIL FROM:<DAGA @LABSERVICE.IT> ...

SC: 250 2.1.0 <DAGA@LABSERVICE.IT> SENDER OK

B W -

Figure 1: SMTP Session 1

CS: EHLO QMTA03.COMCAST.NET

SC: 250-MAIL.LABSERVICE.IT SAYS EHLO TO ...
CS: MAIL FROM: <> ...

SC: 250 MAIL FROM ACCEPTED

BSOS SR

Figure 2: SMTP Session 2

light-weight and depends only on the weighted terms. How-
ever this approach introduces false positives [5]. The problem
of false-positives can be significantly reduced by providing ad-
ditional context in the signatures.

The signatures can be augmented with context by consid-
ering the sequence (or ordering) of terms in flow content in-
stead of considering the terms independently. This allows us
to reduce the false-positives due to overly general or loose sig-
natures. For example, the signature “application is X only if a
flow contains term A followed by term B” is tighter than the
signature “application is X if a flow contains terms A and B”.
The latter signature will match a flow content that has terms A
and B in the order B followed by A, which may not be possible
in application X. Such ordering relation can be represented as a
Prefix Tree Acceptor (PTA), which is a trie-like deterministic fi-
nite state automata, i.e., it has no back edges [6]. Figure 3 shows
the PTA for SMTP client-to-server. Note that each of the nodes
has a self loop which allows arbitrary characters to be matched
between terms. We omit these self loops from the figures in
this paper for ease of understanding. We can see that the start-
ing node in the PTA has two outgoing transitions corresponding
to “EHLO” and “HELO”. This is because some SMTP flows on
the network contain the older “HELO” keyword and others use
“EHLO” which is supported in extended SMTP. In this paper,
we use PTA and state machines interchangeably to refer to the
representation of signatures as shown in Figure 3.

MAH_FROM:> 2 RCPTTO:>

EHLO _ 1 3

0 HELO

~ 4 MAWFROM:»

5 RCPT TO:
>

Figure 3: PTA for SMTP c-to-s

2.1.2. Binary-based Applications

In this section we discuss the signature for RTCP which is
a binary-based protocol. The intuition for binary-based appli-
cation signatures is same as the one for the text-based cases,
i.e., we can construct signatures from the invariant parts of the
protocol flows.

Consider, for instance, the RTP Control Protocol (RTCP),
which is used to provide statistics and control information of
Real-time Transport Protocol (RTP) flows and runs over UDP.
The protocol header, obtained from RFC 3550 [7], is described

o] 1 2 3
01234567890123456789012345678901
Fot—t =ttt —t—t =ttt -ttt —F—t—F—F—F—F—F—F—F—F =t —F—F—F—F—F -+ —+—+

1v=2]P] RC | PT=SR=200 | Length

Fot—t—t ettt ettt ettt —F—F—t =ttt —F—F—F =t =t —F—F—F—F—F =+ -+
| SSRC of Sender
s ST U S S ST O S S

I
+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—-;-;-;-;+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+
Version (V): 2 bits. Current version is two (2).

Padding (P): 1 bit.

Reception Count (RC): 5 bits.

Packet Type (PT): 8 bits. Constant 200 for an RTCP SR packet.
Length: 16 bits.

Synchronization Source ID (SSRC): 16 bits.
NTP timestamp: 64 bits.

Figure 4: Header of the RTCP protocol

in Figure 4. We identified the following three types of fields in
the header. (i) Low entropy fields (i.e. fields where the value
rarely changes): In our datasets, the value of the packet type
(PT) field is always 200, which corresponds to the Sender Re-
port (SR) packet type. Similarly, the value of the version (V)
field is always two, since this is the latest version of the RTCP
protocol. (ii) Medium entropy fields (i.e. fields where the value
changes sometimes): In our datasets, the value of the padding
(P) field is zero most of the time, because padding is more
commonly used in some encryption algorithms. Similarly, the
reception count (RC) shows the number of reception reports
embedded in the packet, which as we will see later, is typi-
cally only one report per packet. Finally, the length field, which
represents the length of this packet content (i.e. RTCP header
and payload) in 32-bit words, is typically small and most of
the 16-bit values assigned to the higher order bits of this field
are zero. (iii) High entropy fields (i.e. fields where the value
changes very often): These cases include the timestamp and the
ID (SSRC) of the sender. Our intuition is that those fields with
values that rarely change can serve as the building blocks in our
signature.

A clear difference between binary-based and text-based ap-
plications is that the invariant parts for binary-based cases are
at a fixed offset within each flow. Moreover, the invariant parts
may be less than 8 bits whereas for the text-based protocols
typically they are in multiples of 8 bits. This is because of text-
based protocols using encodings like ASCII or UTF-16 which
have characters that are multiples of 8 bits. We call the off-
set within a payload and the value at the offset as feature. The
problem of generating binary signature then reduces to one of
finding the right size for features and then finding features that
are common across flows belonging to a protocol. We found
empirically that 4 bits is a good feature size that captures in-
variants across many different binary protocols. The question
that we try to address in this work is “how can we generate
application signatures from common features?”.

Figure 5 shows the most commonly occurring values for
the first 24 offsets (12 bytes of payload) in the client to server
direction of RTCP flows in a large ISP dataset. Note that since
we are using 4-bit features, the value of each feature will range
from O to 15. On the x-axis, we denote each feature as F; =

0.9

08 Threshold = 0.75
0.7

go6

3 0.5

= 04
0.3
0.2

0.1

o
3 —
D —

o
i

©
2

F0=8
F1=1
=12
F3-8
F4=0
F5=0
12
=0
=0
=0
0
19=0
0
=0
0

0

F2
F7=
F8
F9
0
1
2;
13;
4:
17;
18;
9
0
21
2
3

mmmmmmmmmmmmmm

Value with highest frequency for a feature

Figure 5: Frequency of features for RTCP c-to-s. In this example, any fea-
ture that repeats in more than 75% of the flows, is selected for the final RTCP
signature.

Figure 6: PTA for RTCP c-to-s

val, where ¢ represents the offset which varies from 0 to 23 and
val is the value at that offset. We draw several observations.
First, we notice that constant values from the protocol header
show up as dominant values for the offsets in the 4-bit groups
that we analyze. For instance Fj is 8, or in binary 1000. The
first two bits correspond to V' = 2 (i.e. the expected RTCP
version), the next bit to P = 0 (i.e. padding is not used) and the
last bit to the most significant bit of RC which equals zero (i.e.
small number of reception reports in this packet). Thus, Fy = 8
can be used as a feature in our signature for RTCP. We form the
binary signatures as vectors of features that occur commonly. In
Figure 5, features with frequency over 0.75 are selected for the
final RTCP signature. For ease of understanding, we represent
the binary signatures as state machines as shown in Figure 6.
Note that transitions in this state machines are on features which
are combination of offsets and the values at the offsets.

2.1.3. Handling Encrypted Traffic

Any payload content based classifier will face certain lim-
itations when the payload is encrypted. However, we observe
that this is not a severe limitation due to the way applications
use encryption. Typically, most applications have a clear-text
part at the start of a session for negotiating parameters and
such. This clear text contains invariant strings that helps us
generate signatures for applications that use encryption. Many
applications use certificates which are same for all communica-
tion. Since our technique relies on traffic from multiple com-
municating entities (explained in Section 3.3), these certificates
may show up as invariant parts of the communication and can
be used in generating application signatures for the application
using encryption. Moreover, the invariant bit patterns in en-
crypted payloads are captured as binary signatures. We note
that the combination of these factors does not guarantee that we
are be able to identify all the encrypted traffic but still allowed
us to identify a large fraction of real-world encrypted traffic in
many cases.

2.2. Design

Figure 7 shows the architecture of the system with blocks
having real-time constraint shown in lighter color (Green). When
SANTaClass receives full packets as input, the flow reconstruc-
tor module first reconstructs flows. Then the classifier tries to
label these flows using any existing packet content based signa-
tures. Since we have no way of identifying whether a flow be-
longs to text-based protocol or binary-based protocol, we first
use the text-based classifier. If it is not able to label the flow we
pass it to the binary classifier. If either of the classifiers success-
fully labels a flow, then the result is recorded in a database. The
classification process for the flow ends. However, if the clas-
sifiers cannot label the flow, then the flow is sent to the flow-
set constructor which tries to group together flows belonging
to each application into flow-sets. The signature generator ex-
tracts both signatures for each flow-set. The signature generator
tries to extract both text-based and binary-based signatures for
each flowset since it does not know a-priori the type of the pro-
tocol. Finally, the distiller module distills any newly extracted
signature by consolidating with existing signature for the appli-
cation, and eliminating redundancies.

Given the above design, we can see that the SANTaClass
system can easily tolerate false-negatives (flows that do not get
labeled despite having a signature), but cannot tolerate false-
positives (flows that are misclassified). The reason for this is the
following. The proposed signature generation is an incremental
process, i.e., the signature for an application is generated as and
when the signature generator sees the flows belonging to the ap-
plication. The system starts with no signatures in the database.
When the first set of application flows enter the system, a new
signature for the application is generated and populated in the
database. Now the system has one signature. Henceforth, all
the flows that belong to the application are classified and thus
do not enter the automated training phase. Now, if the signa-
ture is not very accurate, then several flows that do not belong
to the application may get misclassified as belonging to the ap-
plication. These misclassified flows (i.e. false-positives) will
never be available for training in the future and the errors in
classification will continue to increase. Hence, in the signature
generator, the goal is to ensure that if the system has to err then
it should err on the false negative side and not the false positive
side.

3. Implementation

In this section, we describe each of the system components
in detail. Table 1 summarizes the list of parameters used by our
system and the recommended values based on our evaluation.

3.1. Flow Reconstructor

Flow reconstructor captures all packets flowing through a
link and performs IP defragmentation and TCP reassembly. It
maintains session information for every session. Each session
is composed of two flows: client-to-server (henceforth referred
to as c-to-s) and server-to-client (s-to-c). We consider each flow
of the session independently since in the backbone one of the

Raw Unknown
Flows

Distilled
Signatures

Flow Labels

Flow-sets

Signatures

Distilled
Signatures

Figure 7: SANTaClass Architecture

Parameter Name | Value |
Min. Flows in a Flow-Set, nmin,, 50
Min. Num. of Servers, s¢p 5
Max. Num. of Flows Per Server, nmaxstn 200
Min. Num. of Total Flows 1000
Max. Num. of Total Flows 5000
Min. Term Length, Tjey, 4 bytes
Term Probability Threshold, P 0.8
Number of bytes considered, B 24
Feature size, fsize 4 bytes
Minimum Probability of Occurrence, ¢, 0.6
Minimum number of Features, fi,in
Minimum number of non-zero values, nz 1

Table 1: Parameter Settings for the SANTaClass System

two directions is often missing due to routing asymmetry. Each
flow is constructed by concatenating the transport layer pay-
load from all packets in the given direction. What this means is
that we ignore all headers up to and including transport layer
(TCP/UDP). Maintaining the complete payloads in all pack-
ets in a given direction causes dramatic increase in space re-
quirements as well as increases the latency in classification. To
overcome this, we store a specific number of bytes in each di-
rection. This is a reasonable compromise as we expect most
common terms to be present in the application layer headers,
which are present at the start of the flow. In our implementa-
tion, we store a maximum of 1024 bytes of application data in
each direction as we empirically found this value to be good
for extracting strong signatures without causing noticeable per-
formance degradation. Note that for the flows that terminate
before producing 1024 bytes of payload, all of the application
data will be stored. From here on, we refer to the contents of a
flow as payload. We convert the payload to upper case in order
to improve the efficiency of the classifier since case sensitive
string matching incurs space/time overhead compared to case
insensitive matching.

3.2. Classifier

The classifier is responsible for matching every incoming
payload against all signatures in the database and identifying
all the matching signatures. The classifier has two different

components: (i) text-based classifier (ii) binary-based classifier.
Any incoming payload is provided to the text-based classifier
and only if it does not match any signature, then it is provided
to the binary-based classifier.

3.2.1. Text-based Classifier

The classifier can naively match a payload by iterating over
the signatures and traversing the PTA by performing string searches
for the outgoing transitions in the payload. The above approach
is very inefficient as string search, which is an expensive op-
eration, may be performed multiple times. At each state in a
PTA, the payload is scanned multiple times for each of the terms
on the outgoing transitions. Moreover, this search is repeated
across multiple states (possibly belonging to different signa-
tures) even if the terms are same. To overcome these redun-
dancies, we developed a two phase classification system that
uses efficient multi-pattern search to identify all terms present
in a payload in a single scan and then use these terms to match
only the signatures which contain these terms.

In the first phase, we use Aho-Corasick [8] as follows. We
create a trie-like structure with failure links, called Aho-Corasick
Trie (ACT), from all the terms present in all the signatures. This
ACT helps us identify all the matching terms in a payload, or-
dered according to their offsets in the payload, and the set of
signatures that contain each term, in a single scan of the pay-
load. In the second phase, we iterate over each of the signatures
that have at least one term matched by ACT, and match their
PTA as follows. We maintain a pointer in the ordered list of
terms that matched in a payload, called current term pointer,
and a corresponding pointer to the current state, called current
state pointer. Starting from the current term pointer, we pick
the first term in the matched term list that has an outgoing tran-
sition in the current state. We move the current term pointer
to this term and take the transition by moving the current state
pointer to the end state of the transition. If the new current state
is a matching state, we can announce a match for the signature
but continue matching to see if we can get a stronger match (i.e.,
match at a state which has a longer path length from the start
state). If no such term is found, then we can make no progress
and stop this process. In this case, based on whether current
state is accepting (or not) we announce success (or failure). We

note that the ACT has to be reconstructed every time the sig-
natures in the database change. However, the new ACT can be
built in a background thread and hot-swapped with the old one
to prevent any performance degradation.

3.2.2. Binary-based Classifier

The binary classifier is quite straightforward. Each path
in the state machine representation of the binary signature is
treated as a vector of features. For each feature the classifier
checks whether it is present in the incoming flow. This involves
matching the value at the offset corresponding to the feature in
the payload against the value in the feature. If it matches then
we consider the feature to match and if all the features match
along a path, then the classifier considers the path, and corre-
spondingly the signature to match. The classifier iterates over
all the signatures and matches the payload against them. We
note here that this matching is restricted to the first 24 bytes
and involves simple equality test on 4 bits. Hence, the match-
ing is efficient and does not require sophisticated data structures
for matching as in the text-based case.

3.3. Flow-Set Constructor

A critical component in the overall system is the flow-set
constructor. The main goal of this component is to organize the
incoming flows into buckets (or flow-sets) such that each bucket
represents a particular application. The fact that an application
can run on multiple ports, and multiple applications can run on
the same port, make this problem hard to solve. If a bucket
contains flows from multiple applications, then the signature
extracted by the downstream component will result in inaccu-
rate classification. Hence, it is critical to devise a strategy to
accurately bucketize applications.

In this work, we perform bucketization in two steps. The
first step is to use DNS information corresponding to the data
flows that need to be bucketized. Most of the applications today
(except for some p2p applications) rely on DNS to provide the
name to ip-address resolution. In other words, a DNS query and
response precedes an actual application flow. In this approach,
we correlate the DNS information (i.e., the server-ip, client-ip,
and domain name) with the data flow to identify the correspond-
ing domain name. For example, a flow generated by Google
Mail will be correlated to the domain name mail.google.com or
gmail.com. We use the complete domain name as the “key” for
the bucket and place the application flow into the bucket. If the
bucket with the current “key” did not exist before, then we will
create a new bucket and put the application flow as the first el-
ement in the bucket. For more details about the algorithm and
the implementation, please refer to [9]. The bucket is consid-
ered full and sent to the signature generator based on a simple
threshold.

For a flow that comes into the flow-set constructor, we first
try to put it into a bucket based on the corresponding DNS do-
main name as described above. If we can successfully bucke-
tize the flow, then we are done. If not, we proceed to the second
step of bucketization. In the second step, we bucketize the flow
using the following three values as the “key”: the layer-4 pro-
tocol, the server port number, and the flow direction (i.e., s-to-c

or c-to-s). Obviously a strategy like this will introduce flows
from several applications into a single bucket. We counter this
by using two steps: (i) Ensuring that the bucket is a good sta-
tistical representation of the flows on the port, and (7¢) Sophis-
ticated clustering algorithm that groups various flows based on
the similarity of their payloads.

To ensure we have a good statistically diverse set of flows
inside a flow-set, we use several user configurable parameters
while constructing flow-sets. A valid flow set should satisfy the
following constraints: (a) Server Diversity. The total number
of server ip-addresses in the flow set should be greater than a
threshold (say, s¢n). This ensures that the signature extracted
is not specific to one server hosting a service. (b) Number
of Flows per Server. To help reduce the impact of one server
on the extracted signature, we bound the maximum number of
flows that we consider for each server IP-address by a threshold
(say nmax). (¢) Total Flows Per Flow-Set. The total num-
ber of flows in the flow set should be greater than a threshold
(say nmanyy,) to ensure that a flow set contains enough number
of flows to represent a statistically good subset of application
flows.

The flow-set formed using the above process is subject to
a two-dimensional clustering process based on the similarity
of the flow payloads. The algorithm that we use is similar to
[10]. We will omit the details of the algorithm here, but mention
that the output from this algorithm will result in a flow-set with
extremely cohesive set of flows.

3.4. Signature Generator

We have developed a novel system for extracting signatures
from the flow-sets. Our system extracts the text-based and the
binary-based signatures independently. In this section, we de-
scribe both the signature generation algorithms in detail.

3.4.1. Text-based Signature Generator

The text-based signature generator is composed of the fol-
lowing three components: (i) Common Term Set Extraction (ii)
Common Term Set Refinement (iii) PTA Generation.

Common Term Set Extraction. The input to this component is
a flow-set that contains the payload of each flow in the flow-
set. Extracting common terms requires pairwise comparisons
of the application payload content of all the flows in the flow-
set. In other words, if there are n flows in a flow-set, then this
operation requires O(n?) payload comparisons. To further in-
crease the complexity, each payload comparison involves all
common substring extraction - an operation that has the com-
plexity O(ab), where a and b are the lengths of the two payload
strings that are being compared. Hence, the overall complex-
ity of extracting all common substrings for a flow set has the
complexity O(n?m?), where n is the total number of flows in
the flow-set and m is the average length of the payload strings
in the flow-set. If we assume that a flow-set consists of a few
thousand flows and the average payload length is 1000 bytes,
the common substring extraction algorithm requires more than
a million string comparisons - an impractical operation.

Hence, we first split a given flow set, F', into several smaller
subsets!, and extract common terms in each of these subsets
independently. For every pair of payloads in each of the subsets
we extract all the common terms and insert them in common
term set C'T'S. Note that C'T'S contains only unique terms and
hence, duplicates are eliminated.

Common Term Set Refinement. As noted before, we extract
terms (i.e., the longest common substrings) by comparing two
flow payloads with each other. The quality of the extracted
terms could affect both the quality of final signatures and the
efficiency of real-time classification. To ensure a high quality
of extracted terms, we enforce a set of rules that accepts good
terms and rejects bad terms. Here we present these rules.

® Remove short terms. When multiple payloads are compared
with each other, many short terms are extracted. However, these
short terms add little value in determining whether a particular
flow belongs to given application or not. We eliminate all terms
that are shorter than a threshold, 7j.,,. In our experiments, we
found that a value of 4 for T}, is good for retaining important
terms while discarding shorter terms like O K +.

® Remove terms unrelated to applications. Typically, a flow
originating from any application has certain fields, such as the
date/time field, that always occur but do not have any rele-
vance to the application. Hence we remove strings that identify
day/month/year, such as “MON”, “MONDAY”, “JAN”, “20107,
“2011”, and those identifying specific domains on the Internet,
such as “.com”, “.edu”, etc.

o Identify and remove bad terms. Most of the flows that we see
in the data traces carry several different parameter values that
are usually numeric values. We eliminate any terms that does
not contain at least two alphabetic characters, such as “2E00”,
“/0/0/0/, ©0.001”, etc.

e Remove low frequency terms. If the number of terms in the
common term set is large it can potentially lead to PTAs with
a large number of states and paths. To reduce the number of
terms that we consider in the common term set, we define two
thresholds: term probability threshold, P and the number of
terms threshold, V. The term probability threshold selects only
those terms that occur with a probability greater than P in the
flow-set . The number of terms threshold selects at most the
top-/V terms with the highest probabilities. The terms that pass
both of the above constraints are retained in the common term
set and the rest are discarded.

e Handle substrings. If we find that one term is a substring of
another term, then we retain the term that has a higher proba-
bility and eliminate the other. If the probabilities happen to be
the same, then we retain the term that is longer.

o Add mutually exclusive terms. A problem that will be intro-
duced by the above thresholds is that several important terms
might be eliminated. For example, consider the popular HTTP
protocol. There are several methods that can be used in this
protocol like GET, POST, HEAD, PUT, DELETE, etc. Each

I'The upper bound on the number of flows in a sub-flow set can be controlled
using a user specified parameter.

of these methods might not have a high probability of occur-
rence; however when analyzing many http flows all of these
methods can occur in the flows. If we set the term probability
threshold, P to be high, then all of the terms representing these
methods will get eliminated. To counter this problem we in-
troduce mutually exclusive term grouping - a process by which
terms are grouped together when two conditions are satisfied:
(1) The terms that belong to the same group do not occur in the
same flow payload, i.e., the terms occur mutually exclusively
from each other, and (2) The combined probability of all the
terms in a group should be at least equal to the term probability
threshold, P. Note that the combined probability of a mutually
exclusive term group is simply the sum of the probabilities of
all the terms in the group. We add all the terms in the mutually
exclusive group into the set of eligible terms.

PTA Generation from Terms. The inputs to this component are
all the flows in a flow set and the common term set for the flow
set. First, for every flow in the training set, we sort the com-
mon terms in the order of occurrence in the payload. We iterate
through each of these terms in the order of occurrence in the
flow payload and build the state machine starting from state 0
every time. If the transitions (i.e. the terms) are already part of
the state machine, then the pointer to the current state is just for-
warded. However, if the transition and states do not exist, then
they are added to the existing state machine. If the term that
is being examined is the last one in the sorted sequence in the
flow payload, then we make the next state an accepting state.

3.4.2. Binary-based Signature Generator
In this section, we describe our algorithm for extraction of
signatures for binary protocols.

Common Feature Extraction. The input to this component is a
flow-set that contains the payload of each flow in the flow-set.
For binary signatures, we consider only the first B bytes from
the start of the payload. Empirically we found that 24 bytes
are sufficient to capture application headers. We fix feature size
to be fsize bits. If fsize is very small, then fields get bro-
ken into multiple features. On the other hand, large values of
fsize result in multiple fields being included in a feature. Both
cases result in the extraction of features which lead to poor ac-
curacy and recall. Empirically we found a value of 4 allows us
to capture many of the binary fields such as version number. We
consider fsize bits in the B byte payload for feature extraction.
For each offset, we find the most common value at that offset.
If the number of flows containing this value is above a certain
threshold, say ¢, we consider that feature as a common feature.

PTA Generation from Features. The ordered list of common
features forms a path in the PTA. The flows that match the path
completely are said to contribute to the PTA. All the flows that
do not contribute to the PTA are grouped together and the Com-
mon Feature Extraction step is applied to this group. The or-
dered list of new common features forms a new path in the PTA.
These two steps are repeated till a minimum threshold percent-
age of the flows from the flow-set contribute to the PTA. The

8.5 - _fffi
e — zero
i one
J/ o
8.4 three

four
five
8.3 sin
seven
eight
0.8 | nine
ten

eleven

tuelve

8.1 thirteen
fourteen

| Fifteen

CDF of signatures

a 8.2 8.4 8.6 8.8 1

Fraction of feature value in a signature

Figure 8: CDF of values that common terms can take in our dataset

reason for repeating these steps becomes clear if we consider
the example of version field in a protocol like RTCP which can
take a few different values. In the case of RTCP, the version
field can take one of two valuesi.e., 1 or 2. So in the first round
we may extract a feature F; = 8 which corresponds to version
being 2. Now assume that 60% of the flows contain this value
but 40% contain the value 1. If our signature only contains a
path with F; = 8, we will not be able to match 40% of the
flowset in this case. In the second round, since we consider
only the flows that did not contribute to the PTA in the previous
round, the feature F{y = 4 will show up 100% of the times and
hence, be picked up in a second path. Now the PTA can match
100% of the flows for the version field.

PTA Refinement. Finally we refine the PTA as follows: (i) We
discard paths that have a probability of occurrence of less than
a given threshold (¢,). These paths typically may be due to
noise or may belong to the mode of the application that is not
very commonly used. Pruning these paths may reduce recall,
but precision will not be affected which is consistent with our
design goals. (ii) We discard paths that don’t have enough de-
terministic features. We require signatures to have a minimum
number of features in them (f;,;,) to avoid weak signatures
which can lead to false positives. We require a minimum of 5
features in our experiments. (iii) Zero-valued terms are more
likely to occur than other terms for many protocols. Consider
Figure 8, where we show, for all signatures the fraction of zero
values, as well as the fraction of other values taken by com-
mon features. Note that for 50% of our signatures, more than
45% of the feature values in the signature are zero. This clearly
shows that zero values dominate the feature value space. Given
this fact, considering signatures with large fraction of zero val-
ues may lead to an increase in false positives. Therefore, we
drop signatures with very few non-zero values (i.e., less than a
threshold nz). In our experiments, we typically use nz = 1,
i.e., at least one feature must have a value different than zero.
The final PTA contains the paths that have not been pruned.
For example, Figure 6 shows the PTA generated for RTCP,

which we described in Section 2.1. Note that there is only one
path, with frequency of 96%. However, there is no second path
for the remaining 4% of the flows. This means that there isn’t
a frequent enough path to cover those flows and our system
prefers not to include any other path in the PTA.

3.5. Distiller

The signature generation module presented in previous sec-
tion generates signatures from a given flow-set independent of
other flow-sets, which may result in redundancies in the signa-
tures. We have developed a distiller module to distill all the cur-
rent signatures by resolving conflicts (i.e., overlaps), identify-
ing and eliminating duplicates, and optimizing state machines.
In the distiller module, we mainly accomplish the following
tasks:

3.5.1. Eliminate Redundancy

The distiller is responsible for eliminating redundancy in
the state machines as follows.
o [dentify and merge redundant state machines. Many appli-
cations, such as p2p, do not use a single standard port but can
run on any one (possibly user configured) of a range of port
numbers. This leads to the presence of same application in
different flow-sets. If the state machines that are extracted in
the signature generation module are identical, it indicates that a
particular application could be running on many different ports.
The distiller eliminates such duplicate state machines and tags
the first extracted one with a label that indicates the applica-
tion. Moreover, since our system may generate multiple state
machines for the same application in different iterations, the
distiller merges these state machines belonging to the same ap-
plication.
e Handle overlaps between state machines Several applications,
although significantly different from each other, can share paths
in their state machines. This typically occurs when different
applications share some common message formats, such as the
ones used for user authentication at the start of a session. These
paths, when traversed by a flow, could lead to multiple labels
which may or may not be conflicting with each other. The dis-
tiller identifies these overlaps and extracts them (i.e., the over-
lapping paths) to create new state machines with multiple la-
bels (concatenation of labels from all the overlapping state ma-
chines) associated with them.

3.5.2. Optimize PTA

Our signature algorithm generates a trie-like automaton. The
advantage of this is the ease of construction and sharing of
states whenever the prefix of two paths are common. A dis-
advantage of this approach is that there is redundancy when
paths share suffixes. In the distiller, we identify such redundan-
cies and merge suffixes to generate directed-acylic-graph-like
(DAG-like) automata that has the same matching semantics as
that of the trie-like automaton. This optimization reduces the
size of the automaton drastically for many of the signatures,
which translates to a large reduction in the memory footprint of
the classifier. Figure 9 shows the optimized PTA corresponding
to the PTA shown in Figure 3.

MAIL FROM:

> 2
MAIL FROM: o

EHLO 1

RCPT TO:
>

0 HELO 3

>~ g

Figure 9: Optimized PTA for SMTP

3.5.3. Assign Confidence Scores

A flow may match multiple state machines in the classifier.
We developed a metric, called confidence score, that helps us
resolve ambiguity and assign a unique label in case of conflicts.
Intuitively, confidence scores are values associated with the sig-
natures that represent the confidence that we have about how
good a given signature is for accurately identifying the applica-
tion. If a flow matches multiple state machines, we assign the
label of the state machine that has the higher confidence score.
Since not all the paths in a state machine are equally good for
identifying an application, we assign a confidence score for the
state machine and another for each path within the state ma-
chine. The state machine confidence score is directly propor-
tional to the number of flows considered for signature genera-
tion. The intuition here is that we can have a higher confidence
on state machines that are extracted from a higher number of
flows.

We have developed three confidence scores based on path
characteristics which can be used independently or in combina-
tion (along with the state machine confidence score). Here we
explain these confidence scores in more detail.

e Path lengths. Longer path lengths are typically better signa-
tures than shorter path lengths. One of the confidence scores
that the distiller module assigns is based on the path length
where longer paths get higher scores.

e Transition probabilities along a path. If a lot of flows in a
flow set matches a particular path in the state machine, then
we can consider the path to be a good path. To capture this
notion we use a confidence score based on transition probabil-
ities. The transition probabilities are computed after the state
machines are constructed using the percentage of flows from
the flow set that traverse a particular transition. The transition
probabilities are weakly decreasing along a path. Hence, we
consider the probability of the last transition on a path as the
representative (lowest) probability of the path being taken. We
assign a high confidence score for paths that have large values
of last transition probability.

o Term Frequency Inverse Document Frequency (TFIDF). Term
Frequency Inverse Document Frequency (tf-idf) is a weight com-
monly used in information retrieval and text mining to evaluate
how important a word is to a document in a collection. The
importance of a word increases with its frequency in a docu-
ment but reduces with an increase in the number of documents
containing that word. Intuitively, a high tf-idf word indicates
that the word is good for identifying a document in a collec-
tion. We use a similar notion in the distiller module to score
the term sets that we use for signature generation for text-based
protocols. Note that this confidence score is used only for the
text-based signatures. A state machine represents a document
and the set of all state machines represents the overall collec-

tion. We compute the tf-idf value of each term with respect to
a state machine. To compute the confidence score of a match
along a path, the distiller computes the maximum? tf-idf of all
terms along a path and assigns it to the accepting state. Using
this methodology, we assign a high score to paths which have
terms with high tf-idf values, thus helping us to distinguish an
application from the entire set of applications.

Note that none of the above measures will be very accurate
in all scenarios. For example, the signature for BitTorrent pro-
tocol, shown in Figure 10, has a path length of 1. If we only use
the path length based confidence score, then we will ignore it
whenever we have matches with other signatures of longer path
lengths. On the other hand if we use ¢ fidf confidence score,
then this is a very strong signature. Hence, we wish to point
out that an ideal approach is to use all the confidence scores
together and make a decision based on all the scores.

@ BITTORRENT[20]PROTOCOL

Figure 10: PTA for Bittorent

4. Evaluation

In this section we describe our evaluation results.

4.1. Datasets

In our evaluation we use three traces, which are described
in Table 2. Trace-1 and Trace-2 are collected from two large
ISPs, with residential ADSL users. The third trace, named
Trace-3, has traffic from a mobile service provider, mainly of-
fering 3G/4G services. The traces cover hundreds of thousands
of users, and tens of millions of TCP and UDP flows. Over-
all, the traces cover a diverse set of users, from different coun-
tries/continents, using different devices; desktops versus mobile
devices. One trace was collected in 2010 and two traces during
2011.

Name Date Duration | Total TCP UDP
Flows | Flows | Flows

Trace-1 | Aug2010 | 30 mins 3.4M 1.7M 1.7M
Trace-2 | Aug2011 1 day 15.2M 11M 4.2M
Trace-3 | Mar2011 3 hours 14M 5.7M 8.3M

Table 2: Data Traces Used in Experiments

4.2. Experimental Setup

In all our tests we used identical experimental setup. First,
we pass each trace through SANTaClass and automatically ex-
tract signatures. We populate the SANTaClass signature database

Note that we can use the average, median or any other metric feasible in
this context.

with these signatures and replay the same trace again. We let
our system decide which signature(s) match each flow in the
trace and store the results. Finally, we classify the same set of
traces using Tstat [11], a popular open source traffic classifier.
Once we have all the classification results from both classifiers,
we compare the results of SANTaClass with the Tstat in an oft-
line manner.

We face one challenge in comparing results between the two
classifiers. The labels from SANTaClass are very different from
the labels in Tstat. That is, we need to use the same set of
labels as the reference classifier in order to do a fair comparison.
To achieve this, we map each SANTaClass signature ID to an
application name (i.e., the label from the reference classifier).
Next, we describe the approach we use for mapping signatures
to application names.

4.2.1. Mapping Signatures to Application Classes

We assign an application name to each signature using the
following process. First, we take all the flows that match the
SANTaClass signature X;, referred to as Fx,, and search for
those flows in the results table for the reference classifier (Tstat).
If all flows in Fx, match the same protocol (say POP3), then
we set the label of X; to be protocol name (POP3 in this case).
In the case where the flows in F'y, match more than one pro-
tocol, we take the protocol with the largest number of matches.
By applying this process to all signatures, we have a mapping
X; — C;, where C; is the protocol/application name in the
reference classifier.

4.3. Evaluation Metrics

We use standard classification metrics to evaluate our sys-
tem. The set of classes in our classification problem is the set
of protocols/applications given by Tstat. First, we measure the
number of true positives (TP), the number of false positives
(FP), and the number of false negatives (FN) for each class. The
number of TP of a class C; is the number of flows that belong
to class C; and are correctly labeled to be of type C;. Its FP is
the number of flows that are not of type C; and are mistakenly
labeled to be of type C;. Finally, FN is the number of flows
of type C; that were not reported to be of the type C;. Using
the number of TP, FP, and FN we define the Precision (P) and
Recall (R) for each class as follows: P = TP/(TP + FP),
R=TP/(TP + FN), respectively.

In addition to precision and recall for each class, we use two
metrics that summarize the results for the entire trace: Cover-
age and Accuracy on Covered Set (AoC' for short). Coverage
is the ratio of the total number of flows that are given a classi-
fication label over the total number of flows in the trace. AoC
is the ratio of the correctly labeled flows over all the flows for
which we perform classification. A flow is set to be Unknown
by a classifier if it does not match any of its signatures. Note
that a large number of unknown flows will decrease the overall
Coverage of the classifier, but it will not affect its AoC'.

4.4. Results

The accuracy and coverage of SANTaClass for all three
traces are shown in Figure 11. First, we see that the AoC for

10

100
80
60
40
20

m Accuracy
Coverage

Trace-1 Trace-2 Trace-3
100

80
60
40
20

W Accuracy

Coverage

Trace-1 Trace-2 Trace-3

Figure 11: The accuracy and coverage of SANTaClass for TCP (top) and UDP
(bottom) traffic.

both TCP and UDP is high, with more than 97.5% of all labels
by SANTaClass are found to agree with the labels from Tstat.
The coverage is above 82% for all traces with the exception of
Trace-3 for TCP which has 64% coverage.

We make several observations regarding these results. First
of all, by further analyzing the data, we notice that for TCP, the
protocols that we are not able to identify include various P2P
protocols (e.g. BitTorrent and eDonkey), applications tunneled
over HTTP and encrypted traffic, the last of which even Tstat
is not able to identify. In particular, for Trace-3, encrypted traf-
fic accounts for 83% of all the flows for which we are not able
to produce a label. At the same time, we see from Figure 11,
the accuracy of Trace-3 is as high as in the other traces, which
shows that the all the encrypted traffic only affects the cover-
age for that trace and does not affect the classification accuracy.
Second, for UDP we observe similar patterns as for TCP where
the majority of the flows unlabeled by our system are either
P2P applications or encrypted traffic. Third, note that our over-
all coverage is high, considering that we are learning all these
protocol signatures automatically, while state-of-the-art traffic
classification systems, such as Tstat, have to write the protocol
signatures by hand. As a final observation, we want to highlight
the very high accuracy we achieve for UDP. In fact, the average
UDP accuracy over all three traces is significantly high, i.e.,
99.98%. Overall, the classification performance of our system,
both in terms of accuracy and coverage, for UDP traffic is very
good.

4.4.1. Precision and Recall for Popular Protocols

In Figure 12, we show the precision (left) and the recall
(right) for five different protocols. Three of the protocols use
TCP and the others use UDP. The detailed per protocol results
presented here are consistent with the high accuracy observa-
tion from Figure 11. As we see, the precision for all these pop-
ular protocols is also very high, i.e., above 0.97. In the bot-
tom plot of Figure 12, we see that the TCP protocol for the
BitTorrent application has low recall. This means that some
BitTorrent flows running on TCP are not identified by our sys-

Precision

0.9
08
0.7
06
05 H Trace-1
04 Trace-2
03 B Trace-3
02
0.1

0

Web - TCP SMTP - TCP BitTorrent- DNS - UDP BitTorrent -
TCP UDP
Recall

1
0.9
0.8
0.7
0.6
05 - mTrace-1
04 Trace-2
03 ETrace-3
0.2 4
0.1 -

0

Web-TCP SMTP-TCP BitTorrent- DNS - UDP BitTorrent -

TCP UDP

Figure 12: The precision (left) and recall (right) for popular protocols over all
three traces.

tem. We attribute this behavior to the multiple communication
modes of BitTorrent over TCP that are distributed over multiple
ports. Given that our system uses port number to generate flow
sets, BitTorrent traffic mixed with other protocols/applications
on non-standard ports do not result in the generation of any
signature. This explains the lower recall for BitTorrent over
TCP. On the other hand, the recall for BitTorrent using UDP is
much higher (>0.96), which is also consistent with the results
in Figure 11 that highlight the high classification performance
of SANTaClass for UDP-based protocols.

4.4.2. Analyzing Unknown Traffic

Figure 13 shows the difference in unknown traffic reported
by SANTaClass compared to Tstat. To generate these results we
subtract the percentage of unknowns reported by SANTaClass
from the unknown traffic reported by Tstat. Therefore, positive
values indicate that Tstat reported more unknown flows than
our system. Conversely, negative values indicate that our sys-
tem reported more unknown flows than Tstat. From Figure 13,
we see that for UDP traffic, SANTaClass always does better
than Tstat (positive values). This is another observation that
highlights the high classification performance of our system in
identifying UDP-based protocols.

The TCP coverage for Trace-1 and Trace-2 is higher for
Tstat, as we see from the negative values in the plot. The main
difference comes from P2P protocols, such as BitTorrent and
eDonkey that use multiple ephemeral ports that make it harder
for SANTaClass to extract signatures from such ports. In ad-
dition, the Tstat tool is more aggressive in reporting traffic as

11

35

30 4

25 4

20

15

10 +

TCP TCP

Difference in Unknown %

Trace-1 Trace-2 Trace-3

-10

-15

Figure 13: Difference between the unknown traffic reported by Tstat and the
unknown traffic reported by SANTaClass. Positive values show that Tstat re-
ported more unknown flows than SANTaClass, and negative values show that
our system reported more unknowns than Tstat.

HTTP, whereas the signatures generated by SANTaClass are
longer, stricter, and tend to be more conservative. Last but not
least, we want to highlight the big difference in coverage be-
tween Tstat and SANTaClass for Trace-3. This trace belongs to
a mobile provider and has a very different application mixture
compared to the other traces. As we see, our system performs
significantly better in such unusual environments by learning
the intrinsic behavior of traffic. On the other hand, Tstat re-
lies on popular protocols which are present in, primarily, wire-
line traces and thus fails to identify traffic when the protocols
are different. By further analyzing the flows identified by our
system but not by Tstat, we observed that approximately 40%
of them match previously unknown P2P traffic. In addition,
some new applications, such as online games and custom video
streaming protocols were also identified. These observations
highlight the advantages of SANTaClass over traditional traffic
classification tools in identifying new protocols.

4.4.3. Analyzing Generated Signatures

Name Binary Text Binary Text
(Known) | (Known) | (Unknown) | (Unknown)
Trace-1(TCP) 0 17 0 14
Trace-1(UDP) 6 7 12 14
Trace-2(TCP) 0 25 0 35
Trace-2(UDP) 42 6 84 24
Trace-3(TCP) 0 13 0 17
Trace-3(UDP) 11 6 21 30

Table 3: Number of signatures generated per trace for protocols "Known” and
”Unknown” by Tstat

Table 3 presents the number of signatures that SANTaClass
generates for protocols known and unknown by Tstat, both for
UDP and TCP flows. We can draw several observations from
this table. First, we note that in our experiments, all binary
signatures are generated for UDP-based protocols. This signa-
tures significantly help increase the coverage of key protocols,
such as DNS and eDonkey. Second, we can observe that even
for short traces, such as Trace-1, with duration 30 minutes and
3.4M flows, we are able to generate a total of 70 signatures,

which allows us to achieve the very good coverage and AoC
shown in Figure 11. Third, we highlight the fact that we are
able to generate many signatures for new protocols which are
unknown to Tstat. For all three traces, we generate 117 binary
signatures and 134 text signatures for unknown protocols. By
investigating these flows further, we identify that approximately
40% of them, match previously unknown P2P traffic.

4.4.4. Interesting Observations

Below we present some interesting findings from our exper-
iments which highlights the accuracy of our system compared
to other approaches.
Well-known applications running on non-standard port. We
found 41 SMTP flows on TCP port 110 which is typically re-
served for POP3. In addition, we found a HTTP flow on port
110. Traditional port-based classification approach system would
have classified these flows as POP3.
Tunneled applications. Many applications tunnel traffic inside
other applications. Traditional DPI approaches label such tun-
neled flows with the label from either the outer application or
the inner application, but not both. In contrast, our approach
presents multiple labels corresponding to both the inner and the
outer application. In our experiments, we identified the follow-
ing tunneled applications based on the labels:

— 3282 flows were labeled as Real Time Message Protocol
(RTMP) and HTTP. Inspection of these flows revealed
keywords such as HTTP, Shockwave, and Flash, clearly
indicating that the flows were carrying RTMP within HTTP.

— We obtained HTTP and LindenLab labels for 5115 flows.
A manual inspection revealed that these were LindenLab
gaming flows tunneled inside HTTP.

— We identified 30080 flows that were running Torrent in-
side HTTP. These flows revealed that “Azureus” client
was being used for tunneling torrents within HTTP.

Applications using random ports. We see that BitTorrent and
other torrent signatures match flows on many different ports.
This is expected since clients for these applications do not re-
quire a fixed port and end up selecting random port in every
session based on user preference.

4.4.5. Discussion

As we have seen before, our system loses coverage on traffic
from P2P applications such as BitTorrent and Edonkey, particu-
larly because of the diversity of destination ports used by these
applications. This could prevent our system from building a
flowset and generating a signature for the P2P protocol. In order
to improve our coverage of P2P applications, we can take a few
approaches: (i) Collect traffic for a longer period of time, so that
we have enough flowsets of a protocol going to a certain port
and our system could create a signature out of it; (ii) Make our
thresholds to construct flowsets less stringent (refer to Table 1)
and generate more signatures for flows directed to ephemeral
ports. Along these lines, we could also reduce these thresh-
olds based on a decaying factor proportional to the time a set

12

of flows associated to a port has waited for a label. These new
and less strict signatures could have a lower confidence score,
which would be communicated to systems consuming the out-
put from SANTaClass. In addition, similar signatures could be
merged to avoid replications; (iii) Merge similar flowsets with
distinct destination port into a single flowset, so that a signature
can be generated. The similarity of flowsets can be evaluated
based on the number of common terms between them.

5. Related Work

DPI Signature Extraction. Failure of port based traffic classi-
fication systems led to a growing interest in DPI solutions [11,
12, 13]. Manual signature generation for DPI systems is tedious
and does not scale well. This resulted in lot of reverse engineer-
ing techniques being developed to automatically extract signa-
tures. Techniques such as [4, 5], try to automatically extract
application signatures based on longest common substrings in
application flows. However, these systems have high false-
positive and false-negative rates due to the lack of context in
signatures. ACAS [14] uses the first 200 bytes from the payload
to automatically extract application signature. Although this
work is novel from a pure conceptual perspective, the practical-
ity of such framework is questionable since it has been tested
only on a very few and well-known applications such as FTP,
POP3, and IMAP. Ma et al [15] developed techniques for un-
supervised learning for traffic classification using common sub-
strings. However, they do not show the practicality of such tech-
niques in recognizing applications in the wild. Automatic worm
detection is another area where researchers have studied signa-
ture extraction in an automated fashion [16, 6, 17]. Other tech-
niques in this category, reverse engineer network traffic from
specific protocols to extract message formats [2, 3, 18]. How-
ever, all the above techniques also require the flows, for which
each per-message signature is to be extracted, to be grouped to-
gether a priori. This limits the use of these techniques for gen-
erating signatures for new applications. Finally, KISS [19] gen-
erates statistical signatures for UDP protocols (mostly binary-
based). However, their technique is not practical for flow iden-
tification in real world as it requires long lived flows which are
rare in the case of UDP.

Statistical Signature Extraction. A drawback of DPI systems is
their inability to handle encrypted traffic and cases in which the
full payload data cannot be accessed (e.g. because of legal rea-
sons). This led to the development of techniques that use flow
statistics (i.e., L4 data) [20, 21, 22, 23, 24, 25]. Some of these
techniques have been shown to achieve high accuracy. How-
ever, in general, these results are from controlled experiments
and do not translate to equivalent high accuracy when dealing
with applications in the wild.

6. Conclusions

In this work we presented SANTaClass, an automated sig-
nature generation and traffic classification system based on the

packet payload content (i.e., application header and data) of bi-
nary and text based applications. We proposed algorithms for
distilling the generated signatures, and showed that the distilled
signatures are practical for real-time classification in the real-
world.

References

(1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

(10]

(11]

[12]
(13]
[14]

(15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

(23]

J. Caballero, H. Yin, Z. Liang, D. Song, Polyglot: Automatic Extraction
of Protocol Message Format using Dynamic Binary Analysis, in: ACM
Conference on Computer and Communications Security, 2007.

W. Cui, J. Kannan, H. Wang, Discoverer: Automatic Protocol Reverse
Engineering of Input Formats, in: Usenix Security Symposium, 2007.

Y. Wang, X. Yun, M. Z. Shafig, L. Wang, A. Liu, Z. Zhang, D. Yao,
Y. Zhang, L. Guo, A Semantics Aware Approach to Automated Reverse
Engineering Unknown Protocols, in: IEEE International Conference on
Network Protocols, 2012.

S. Yeganeh, M. Eftekhar, Y. Ganjali, R. Keralapura, A. Nucci, CUTE:
traffic Classification Using TErms, in: IEEE International Conference on
Computer Communications and Networking, 2012.

B. Park, Y. J. Won, M. Kim, J. W. Hong, Towards Automated Application
Signature Generation for Traffic Identification, in: IEEE/IFIP Network
Operations and Management Symposium, 2008.

J. Newsome, B. Karp, D. Song, Polygraph: Automatically Generating
Signatures for Polymorphic Worms, in: IEEE Symposium on Security
and Privacy, 2005.

R. 3550, http://www.ietf.org/rfc/rfc3550.txt.

A. Aho, M. Corasick, Efficient string matching: An aid to bibliographic
search, Communications of the ACM 18 (6) (1975) 333-340.

1. Bermudez, M. Mellia, M. Munafo, R. Keralapura, A. Nucci, DNS to
the Rescue: Discerning Content and Services in a Tangled Web, in: ACM
Internet Measurement Conference, 2012.

G. Xie, M. Iliofotou, R. Keralapura, M. Faloutsos, A. Nucci, SubFlow:
Towards Practical Flow-Level Traffic Classification, in: IEEE Inter-
national Conference on Computer Communications (Mini-Conference),
2012.

A. Finamore, M. Mellia, M. Meo, M. Munafo, Experiences of Internet
traffic monitoring with tstat, IEEE Network 25 (3) (2011) 8-14.
CloudShield Technologies, http://www.cloudshield.com.

L7 filter, http://17-filter.sourceforge.net/.

P. Haffner, S. Sen, O. Spatscheck, D. Wang, ACAS: Automated Con-
struction of Application Signatures, in: ACM SIGCOMM Workshop on
Mining Network Data, 2005.

J. Ma, K. Levchenko, C. Kreibich, S. Savage, G. Voelker, Unexpected
Means of Protocol Inference, in: ACM Internet Measurement Confer-
ence, 2006.

H. A. Kim, B. Karp, Autograph: Toward Automated, Distributed Worm
Signature Detection, in: USENIX Security Symposium, 2004.

Z.Li, M. Sanghi, Y. Chen, M. Y. Kao, Hamsa: Fast Signature Generation
for Zero-day Polymorphic Worms with Provable Attack Resilience, in:
IEEE Symposium on Security and Privacy, 2006.

Y. Wang, Y. Xiang, W. Zhou, S. Yu, Generating Regular Expression Sig-
natures for Network Traffic Classification in Trusted Network Manage-
ment, Journal of Network and Computer Applications 35 (3) (2012) 992
—1000.

A. Finamore, M. Mellia, M. Meo, D. Rossi, KISS: Stochastic Packet
Inspection Classifier for UDP Traffic, IEEE/ACM Transactions on Net-
working 18 (5) (2010) 1505 — 1515.

L. Bernaille, R. Teixeira, K. Salamatian, Early Application Identification,
in: ACM Conference on emerging Networking EXperiments and Tech-
nologies (CoNEXT), 2006.

S. Zander, T. Nguyen, G. Armitage, Automated Traffic Classification and
Application Identification using Machine Learning, in: IEEE Conference
on Local Computer Networks, 2005.

S. Zander, T. Nguyen, G. Armitage, Self-Learning IP Traffic Classifi-
cation Based on Statistical Flow Characteristics, in: Passive and Active
Measurements, 2005.

J. Erman, M. Arlitt, A. Mahanti, Traffic Classification using Clustering
Algorithms, in: ACM SIGCOMM Workshop on Mining Network Data,
2006.

13

[24] A. Moore, K. Papagiannaki, Toward the Accurate Identification of Net-

work Applications, in: Passive and Active Measurements, 2005.

[25] J. Chung, B. Park, Y. Won, J. Strassner, J. Hong, Traffic Classification

Based on Flow Similarity, in: IEEE Workshop on IP Operations and Man-
agement, 2009.

